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BALL REMOTAL SUBSPACES OF BANACH SPACES
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T. S. S. R. K. RAO (Bangalore)

Abstract. We study Banach spaces X with subspaces Y whose unit ball is densely
remotal in X. We show that for several classes of Banach spaces, the unit ball of the space
of compact operators is densely remotal in the space of bounded operators. We also show
that for several classical Banach spaces, the unit ball is densely remotal in the duals of
higher even order. We show that for a separable remotal set E ⊆ X, the set of Bochner
integrable functions with values in E is a remotal set in L1(µ,X).

1. Introduction. For a closed and bounded set K in a real Banach
space X, the farthest distance map % is defined as %(x,K) = sup{‖z − x‖ :
z ∈ K}, x ∈ X. For x ∈ X, we define the farthest point map as FK(x) =
{z ∈ K : ‖z − x‖ = %(x,K)}, i.e., the set of points of K farthest from x.
Note that this set may be empty. Let R(K,X) = {x ∈ X : FK(x) 6= ∅}.
We will write simply R(K) if the space X is understood. Call a closed and
bounded set K remotal if R(K,X) = X, and densely remotal if R(K,X) is
norm dense in X. A sequence {zn} ⊆ K such that lim ‖zn− x‖ = %(x,K) is
called a maximizing sequence for x.

Let Y ⊆ X be a closed subspace. In this paper, we study when the closed
unit ball BY of Y is remotal or densely remotal in X. It is known that:

(a) If Y ⊆ X is finite-dimensional, then BY is remotal in X.
(b) If Y is a reflexive subspace of any Banach space, then BY is densely

remotal [6].
(c) If X∗ is an Asplund space with a LUR dual norm, then for any

closed subspace Y of X∗, BY is densely remotal [13]. In particular,
any space X with X∗∗ separable has an equivalent renorming with
the above property. Note that such a space need not be reflexive.

(d) If X has the Radon–Nikodým property (RNP), then for any w∗-
closed subspace Y of X∗, BY is densely remotal [2, Proposition 3].
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Our main emphasis in this paper is to study these concepts in spaces
of operators and in function spaces. We exhibit several spaces of operators
on classical Banach spaces and function spaces whose unit balls are densely
remotal in an appropriate superspace. Among other things, we show:

(1) For any closed subspace Y of a Hilbert space X, BY is remotal in X.
(2) B`1 is remotal in `∗∗1 .
(3) Bc0 is densely remotal, but not remotal, in `∞.
(4) Suppose X is strictly convex and has the RNP. Then BK(L1(µ),X) is

densely remotal in L(L1(µ), X), where µ is the Lebesgue measure
on [0, 1].

(5) For a large class of Banach spaces that includes all reflexive spaces,
C(K) spaces and L1(µ) spaces, BK(X) is densely remotal in L(X).

(6) For any reflexive Banach space X, BC(K,X) is densely remotal in
WC(K,X).

We also study the dense remotality of X in X∗∗. This leads us to the
study of the largeness of the set of vectors in X∗∗ which attain their norm
at a norm attaining element of X∗. In some cases, we also give an explicit
description of the set R(BY , X). Another interesting geometric property
that we use in this study is that all the extreme points in BX∗ attain their
norm.

We also obtain several stability results. In particular, we show that for
any separable remotal set E ⊆ X, the set L1(µ,E) of Bochner integrable
functions is remotal in L1(µ,X), where µ is the Lebesgue measure on [0, 1],
producing a correct proof, under weaker assumptions, of [5, Theorem 2.3].
We also prove that if E ⊆ X is densely remotal and K is a compact totally
disconnected space, then C(K,E) is densely remotal in C(K,X).

The closed unit ball and the unit sphere of X will be denoted by BX and
SX respectively. We will identify any x ∈ X with its canonical image in X∗∗.
We will denote by NA(X) the set of all x∗ ∈ X∗ which attain their norm
on BX . For a closed bounded convex set C, we let ext(C) denote the set of
extreme points of C. Any unexplained terminology can be found in [4].

2. (∗)-subspaces

Definition 2.1. We say that A ⊆ BX∗ is a norming set for X if ‖x‖ =
sup{|x∗(x)| : x∗ ∈ A} for all x ∈ X.

Let us say that a subspace Y of X is a (∗)-subspace of X if the set

AY = {x∗ ∈ SX∗ : ‖x∗|Y ‖ = 1}
is a norming set for X.

Definition 2.2. A subspace Y of a Banach space X is said to be an
ideal in X if there is a projection P of norm 1 on X∗ with ker(P ) = Y ⊥.
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Y is said to be an M -ideal in X if there is a projection P on X∗ with
ker(P ) = Y ⊥ and, for all x∗ ∈ X∗, ‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖.

A Banach space X is said to be M -embedded if X is an M -ideal in X∗∗

under the canonical embedding.
See [4, Chapters III and VI] for several important examples of M -embed-

ded spaces and their geometric and topological properties.

Here are some natural examples of (∗)-subspaces.

Example 2.3.

(a) X is a (∗)-subspace of X∗∗.
(b) If Y ⊆ Z ⊆ X and Y is a (∗)-subspace of X, then Z is a (∗)-subspace

of X, and Y is a (∗)-subspace of Z.
(c) For any two Banach spaces X and Y , the space K(X,Y ) of all com-

pact operators from X to Y is a (∗)-subspace of L(X,Y ), the space
of all bounded operators from X to Y .

(d) For a compact Hausdorff space K, the space C(K,X) of continuous
functions from K to X is a (∗)-subspace of WC(K,X), the space of
continuous functions when X has the weak topology, with the sup
norm.

(e) More generally, if Y is an ideal in X and satisfies the conditions of
[8, Lemma 1(i)], then Y is a (∗)-subspace of X. See [8] for details.

Proposition 2.4. If Y is a (∗)-subspace of X, then

(1) %(x,BY ) = ‖x‖+ 1 for any x ∈ X.

Proof. Clearly, %(x,BY ) ≤ ‖x‖+ 1. Now, let ε > 0. Since AY is norming
for X, there exists x∗ ∈ AY such that x∗(x) > ‖x‖ − ε/2.

Since ‖x∗|Y ‖ = 1, there exists y ∈ SY such that −x∗(y) > 1 − ε/2.
Therefore, ‖x− y‖ ≥ x∗(x− y) > ‖x‖+ 1− ε.

We next recall the following definitions from [1].

Definition 2.5. We say that x ∈ SX is

(a) a rotund point of BX if ‖y‖ = ‖(x+ y)/2‖ = 1 implies x = y;
(b) an almost LUR (ALUR) (resp. weakly almost LUR (wALUR)) point

of BX if for any {xn} ⊆ BX and {x∗m} ⊆ BX∗ , the condition

lim
m

lim
n
x∗m

(
xn + x

2

)
= 1

implies xn → x in norm (resp. in the weak topology).

We say that a Banach space X has one of the above properties if every point
of SX has the same property.
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Remark 2.6. It follows that if every point of SY is a rotund point of
BX , then no point of X \ Y has a farthest point in BY . This happens in
particular when X is strictly convex.

In view of [1, Corollary 8], in the special case of X in X∗∗, we have the
following result:

If X is wALUR, in particular, if X∗ is smooth, then no point of X∗∗ \X
has a farthest point in BX .

À propos Example 2.3(b) above, for x ∈ X we have 1+‖x‖ = %(x,BZ) =
%(x,BY ). Thus if BY is remotal in X, then BY is remotal in Z and BZ is
remotal in X. Similarly, if BY is densely remotal in X, then BZ is densely
remotal in X. But we do not know in general if BY is densely remotal in Z.

It is immediate from Proposition 2.4 that if Y is a (∗)-subspace of X,
then any farthest point in BY comes from SY . We now observe that this is
actually always true.

Proposition 2.7. Let Y be a subspace of a Banach space X. Let x0 ∈ X.
Then either FBY (x0) ⊆ SY or FBY (x0) = BY .

Proof. Suppose there exists y0 ∈ FBY (x0) such that ‖y0‖ < 1. Then
there exists ε > 0 such that y0 + εy ∈ BY for all y ∈ BY .

Let x∗ ∈ SX∗ be such that x∗(x0 − y0) = ‖x0 − y0‖ = %(x0, BY ). Then
for any y ∈ BY ,

‖x0 − y0‖ ≥ ‖x0 − y0 − εy‖ ≥ x∗(x0 − y0 − εy)
= x∗(x0 − y0)− εx∗(y) = ‖x0 − y0‖ − εx∗(y).

Thus x∗(y) ≥ 0 for all y ∈ BY , whence x∗|Y ≡ 0. It follows that for any
z ∈ BY ,

‖x0 − z‖ ≥ x∗(x0 − z) = x∗(x0) = x∗(x0 − y0) = ‖x0 − y0‖ = %(x0, BY ).

Therefore, z ∈ FBY (x0).

Proposition 2.8. Suppose Y ⊆ X is a subspace of a wLUR Banach
space X. If x ∈ X is such that %(x,BY ) = ‖x‖+ 1, then x ∈ Y .

Proof. If x ∈ X is such that %(x,BY ) = ‖x‖+1, then for any maximizing
sequence {yn} ⊆ BY , ‖x− yn‖ → ‖x‖+ 1. Since X is wLUR, yn → −x/‖x‖
weakly and thus x ∈ Y .

It follows that a wLUR Banach space has no proper (∗)-subspace. This
produces one of the easiest proofs of the following well-known fact.

Corollary 2.9. If X∗∗ is wLUR, then X is reflexive.

Proposition 2.10. If Y ⊆ X is a subspace such that the farthest dis-
tance formula (1) holds, in particular , if Y is a (∗)-subspace of X, then a
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point x0 ∈ X has a farthest point in BY if and only if there exists x∗ ∈ AY
and y ∈ SY such that

x∗(x0) = ‖x0‖ and x∗(y) = 1.

In other words, R(BY ) = {x ∈ X : there exist x∗ ∈ AY and y ∈ SY such
that x∗(x) = ‖x‖ and x∗(y) = 1}.

Proof. If such x∗ and y exist then

‖x0 + y‖ ≥ x∗(x0 + y) = ‖x0‖+ 1.

Hence −y is farthest from x0.
Conversely, if −y is farthest from x0, then ‖x0 + y‖ = ‖x0‖ + 1. Now,

there exists x∗ ∈ SX∗ such that

x∗(x0 + y) = ‖x0 + y‖ = ‖x0‖+ 1.

Since x∗(x0) ≤ ‖x0‖ and x∗(y) ≤ 1, the result follows.

Remark 2.11. It follows that in the case of (∗)-subspaces, R(BY ) is
closed under scalar multiplications. Is this generally true?

We now specialize to some of the cases listed above.

Definition 2.12. X is said to be weakly Hahn–Banach smooth if every
x∗ ∈ NA(X) has a unique norm preserving extension to all of X∗∗, i.e.,
whenever x∗∗∗ ∈ X∗∗∗ is such that x∗∗∗|X = x∗ and ‖x∗∗∗‖ = ‖x∗‖, then
x∗∗∗ = x∗.

By [4, Lemma III.2.14], x∗ ∈ SX∗ has a unique norm preserving extension
to all of X∗∗ if and only if x∗ is a w∗-weak point of continuity of BX∗ , that
is, the relative weak and w∗ topologies on BX∗ agree at x∗.

Let us denote by NA2(X) the set {x∗∗ ∈ X∗∗ : x∗∗(x∗) = ‖x∗∗‖ for some
x∗ ∈ NA(X) ∩ SX∗}. Clearly, X ⊆ NA2(X) ⊆ NA(X∗). The relevance of
this set in our context follows from our next result.

Proposition 2.13. For any Banach space X, R(BX , X∗∗) ⊇ NA2(X).
If BX∗ is w∗-sequentially compact and X is weakly Hahn–Banach smooth,
then equality holds.

Proof. If x∗∗0 ∈ NA2(X), there exist x∗ ∈ SX∗ and x ∈ SX such that
x∗∗0 (x∗) = ‖x∗∗0 ‖ and x∗(x) = 1; then −x ∈ BX is farthest from x∗∗0 .

Conversely, suppose x∗∗0 ∈ SX∗∗ has a farthest point −x ∈ BX , so that
‖x∗∗0 + x‖ = 2. Let {x∗n} ⊆ BX∗ be such that limn(x∗∗0 + x)(x∗n) = 2. It
follows that

lim
n
x∗∗0 (x∗n) = 1 = lim

n
x∗n(x).

Now since BX∗ is w∗-sequentially compact, there is a subsequence {x∗nk}
w∗-converging to some x∗0 ∈ BX∗ . It then follows that x∗0(x) = 1 and
therefore x∗0 ∈ NA(X). Since X is weakly Hahn–Banach smooth, x∗0 is a
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w∗-weak point of continuity. Therefore, x∗nk → x∗0 weakly. It follows that
x∗∗0 (x∗0) = 1, and hence x∗∗0 ∈ NA2(X).

Remark 2.14. In the above result, instead of assuming that BX∗ is w∗-
sequentially compact, we may assume that X is smooth. In that case, any
w∗-cluster point x∗ ∈ BX∗ of {x∗n} satisfies x∗ ∈ SX∗ and x∗(x) = 1. Since
X is smooth, {x∗n} has a unique w∗-cluster point, i.e., {x∗n} is w∗-convergent.
The rest of the argument remains as before.

If X is M -embedded, then by [4, Proposition I.1.12 & Corollary III.4.7],
it satisfies the hypothesis of the above proposition.

Corollary 2.15. Bc0 is densely remotal , but not remotal , in `∞.

Proof. Observe that

R(Bc0 , `∞) = {(αn) ∈ `∞ : ∃n0 ≥ 1 such that |αn0 | = ‖(αn)‖∞}.
Indeed, if (αn) is in the set on the RHS, then −en0 is easily seen to be
farthest from it. For the converse, apply the above result, noting that c0 is
M -embedded [4, p. 4]. Also, if (an) ∈ NA(c0), then only finitely many an’s
are non-zero.

But these are precisely the points of `∞ that belong to NA(`1), and
hence, by the Bishop–Phelps theorem, R(Bc0 , `∞) is dense in `∞.

Clearly, the sequence (1− 1/n) is not in R(Bc0 , `∞).

Remark 2.16. The above argument can be adapted to show that for any
family {Xα} of Banach spaces, the unit ball of

⊕
c0
X∗α is densely remotal in⊕

`∞
X∗α. Indeed, it is easy to see thatR(BL

c0
X∗α

) ⊇ {(x∗α) ∈
⊕

`∞
X∗α: there

exists α0 such that ‖x∗α0
‖ = ‖(x∗α)‖∞}; note that

⊕
`∞
X∗α = (

⊕
`1
Xα)∗ and

again appeal to the Bishop–Phelps theorem.

Question 2.17. For any family {Xα} of Banach spaces, is B⊕c0Xα
densely remotal in

⊕
`∞
Xα?

We now give an example of an M -embedded space X for which
R(BX , X∗∗) = X.

Example 2.18. Let A be the disc algebra on the unit circle T ⊆ C.
Then it is known that the quotient space X = C(T)/A is an M -embedded
space and its dual H1

0 is a smooth space. Thus, by Remark 2.6, no point of
X∗∗ \X has a farthest point in BX .

We now come to the case of K(X,Y ) as a subspace of L(X,Y ). For
simplicity, we will work with X = Y , but most of our results extend, under
natural assumptions, to the general case as well.

Lemma 2.19.

(a) R(BK(X)) ⊇ {T ∈ L(X) : there exists x ∈ SX such that ‖Tx‖
= ‖T‖}.
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(b) R(BK(X)) ⊇ {T ∈ L(X) : there exists x∗ ∈ NA(X) ∩ SX∗ such that
‖T ∗x∗‖ = ‖T ∗‖}.

Proof. (a) Let T ∈SL(X) be such that there exists x∈SX with ‖Tx‖ = 1.
Let x∗ ∈ SX∗ be such that x∗(x) = 1. Define S = x∗ ⊗ Tx. Then S ∈ SK(X)

and Sx = x∗(x)·Tx = Tx. It follows that ‖T+S‖ ≥ ‖Tx+Sx‖ = 2‖Tx‖ = 2,
and therefore −S is farthest from T .

(b) Let T ∈ SL(X) be such that there exists x∗ ∈ NA(X) with ‖T ∗x∗‖ =
‖T ∗‖ = 1. Let x ∈ SX be such that x∗(x) = 1. Then S = −T ∗x∗⊗x works.

Theorem 2.20. Let µ be the Lebesgue measure on [0, 1]. Suppose X is
strictly convex and has the RNP. Then BK(L1(µ),X) is densely remotal in
L(L1(µ), X).

Proof. It follows from arguments similar to (a) above that R(BK(L1(µ),X))
⊇ {T ∈ L(L1(µ), X) : there exists f ∈ SL1(µ) such that ‖Tf‖ = ‖T‖}. By
[12], this set is dense in L(L1(µ), X).

Theorem 2.21. Suppose X is a reflexive Banach space. Then BK(X) is
densely remotal in L(X).

Proof. Since for a reflexive space, NA(X) = X∗, by Lemma 2.19(b) we
have R(BK(X)) ⊇ {T ∈ L(X) : there exists x∗ ∈ SX∗ such that ‖T ∗x∗‖ =
‖T ∗‖}.

Now by [13, Proposition 4], {T ∈ L(X) : T ∗ attains its norm} is dense
in L(X). Thus the conclusion follows.

Remark 2.22. It follows that for any measure space (Ω,Σ, µ), BK(Lp(µ))

is densely remotal in L(Lp(µ)) for 1 < p <∞. It is well-known that in this
case K(Lp(µ))∗∗ = L(Lp(µ)). Thus these are also examples of spaces whose
unit ball is densely remotal in the bidual.

Also, it is clear from our arguments above that several of the results go
through for other subspaces of operators that contain finite rank operators.
From the results above, we also see that for I ∈ L(X) farthest points in
BK(X) (or any other operator ideal) are related to the so-called Daugavet
equation ‖I + T‖ = 1 + ‖T‖.

Proposition 2.23. Suppose K(X) is an M -ideal in L(X). Then
R(BK(X)) ⊆ {T ∈ L(X): there exists x∗ ∈ SX∗ such that ‖T ∗x∗‖ = ‖T ∗‖}.
In particular , if X is reflexive, then equality holds.

Proof. Let T ∈ R(BK(X)) be such that ‖T‖ = 1 and let −S be farthest
from it. Then ‖T + S‖ = 2 and there exists τ ∈ ext(BL(X)∗) such that

τ(T ) = 1 and τ(S) = 1.

Since K(X) is an M -ideal in L(X),

L(X)∗ = K(X)∗ ⊕1 K(X)⊥.
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Since τ is extreme, and τ(S) 6= 0, we have τ ∈ ext(BK(X)∗). That is, τ =
x∗∗ ⊗ x∗ for some x∗∗ ∈ ext(BX∗∗) and x∗ ∈ ext(BX∗). It follows that

x∗∗(T ∗x∗) = x∗∗(S∗x∗) = 1,

therefore,
‖T ∗x∗‖ = ‖S∗x∗‖ = 1.

If X is reflexive, combining with Lemma 2.19(b), we get the result.

It is known that X = `p for 1 < p < ∞ satisfies the above hypothesis.
See [4, Chapter VI] for more examples of such spaces.

Another class of (∗)-subspaces that can be treated as a special case
of K(X,Y ) ⊆ L(X,Y ) is C(K,X) ⊆ WC(K,X). Note that for any f ∈
C(K,X), T : X∗ → C(K) defined by T (x∗)(k) = x∗(f(k)) is a linear map
with ‖f‖ = ‖T‖ and is a compact operator. Thus C(K,X) ⊆ K(X∗, C(K))
and similarly one can see that WC(K,X) ⊆ F(X∗, C(K)), the space of
weakly compact operators. It can be seen that in the case of a dual space this
map is onto so that C(K,X∗) is isometric to K(X,C(K)) and WC(K,X∗)
is isometric to F(X,C(K)).

To discuss the dense remotality in this case we need the following lemma,
which is of independent interest.

Lemma 2.24. Let X,Y be Banach spaces. If T ∈ L(X,Y ) with ‖T ∗‖ =
‖T ∗(y∗)‖ = ‖y∗‖ = 1, there is an extreme point in y∗0 ∈ ext(BY ∗) such that
‖T ∗(y∗0)‖ = 1.

Proof. Let F = {y∗ ∈ BY ∗ : ‖T ∗(y∗)‖ = 1}. It is easy to see that F is an
extreme set. We recall that a set is extreme if and only if it is a union of faces
(convex, extreme sets). Also, BY ∗ \F =

⋃
{y∗ ∈ BY ∗ : ‖T ∗(y∗)‖ ≤ 1−1/n}.

As these sets are w∗-compact and convex, it follows from [7, Theorem 5.8]
that F ∩ ext(BY ∗) 6= ∅.

Theorem 2.25. Let K be a compact set and let X be a reflexive Banach
space. Then BC(K,X) is densely remotal in WC(K,X).

Proof. By Proposition 2.4, %(f,BC(K,X)) = 1 + ‖f‖ for f ∈WC(K,X).
It is easy to see that R(BC(K,X)) ⊇ {f ∈ WC(K,X) : there exists k ∈ K
such that ‖f(k)‖ = ‖f‖}.

Since X is reflexive, we have C(K,X) = K(X∗, C(K)) and WC(K,X) =
L(X∗, C(K)). We further note that if T ∈ L(X∗, C(K)) is such that T ∗ :
C(K)∗ → X attains its norm, then as ext(BC(K)∗) = TK (via the canonical
embedding of K), by Lemma 2.24, it attains its norm on K.

By [13, Proposition 4] again, BC(K,X) is densely remotal in WC(K,X).

In the following result, we assume that all elements of ext(BX∗) attain
their norm. Apart from the space C(K), as noted above, it is easy to see
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that any reflexive space, any subspace of C(K) which contains constants
and any L1(µ) space have this property.

Corollary 2.26. Let X be a Banach space such that ext(BX∗)⊆NA(X).
Then BK(X) is densely remotal in L(X).

Proof. By Lemma 2.24, a T ∈ L(X) with T ∗ attaining its norm actually
attains it at an extreme point x∗. Now by our assumption x∗ ∈ NA(X).
Hence the conclusion follows from Lemma 2.19 and [13, Proposition 4] as
before.

It is easy to see that the property ext(BX∗) ⊆ NA(X) is preserved under
c0-direct sums. Also, if X has this property then since any extreme point of
BC(K,X)∗ is of the form δ(k)⊗x∗ for some k ∈ K and x∗ ∈ ext(BX∗), we see
that C(K,X) also has this property. Our next two propositions show that
under some natural conditions, this property is preserved by subspaces and
quotients.

Proposition 2.27. Let X be a Banach space such that ext(BX∗) ⊆
NA(X). Let Y be the range of a projection P : X → X of norm one.
Suppose each y∗ ∈ Y ∗ has a unique norm preserving extension to X. Then
ext(BY ∗) ⊆ NA(Y ).

Proof. Let y∗ ∈ ext(BY ∗). It is well-known that there is always an x∗ ∈
ext(BX∗) extending y∗. By our hypothesis, there exists an x ∈ SX with
x∗(x) = 1. Now P ∗(x∗)|Y = x∗|Y = y∗ and thus ‖P ∗(x∗)‖ = 1, so that it
is a norm preserving extension of y∗. Thus by the uniqueness hypothesis,
P ∗(x∗) = x∗. Now y∗(P (x)) = x∗(P (x)) = P ∗(x∗)(x) = x∗(x) = 1. Hence
ext(BY ∗) ⊆ NA(Y ∗).

Proposition 2.28. Let ext(BX∗) ⊆ NA(X). Let Y ⊆ X be an M -ideal.
Then ext(BY ⊥) ⊆ NA(X/Y ).

Proof. Let π be the quotient map. Let y∗ ∈ ext(BY ⊥). As Y is anM -ideal
we have X∗ = Y ⊥⊕1Y

∗. Thus y∗ ∈ ext(BX∗). Therefore by hypothesis there
exists an x0 ∈ SX such that y∗(x0) = 1. Now y∗(x0) = 1 = y∗(π(x0)) ≤
‖π(x0)‖ ≤ 1. So y∗ ∈ NA(X/Y ).

We next consider the “3-space” property for norm attaining extreme
points.

Proposition 2.29. Let Y ⊆ X be an M -ideal. If ext(BY ∗) ⊆ NA(Y )
and ext(BY ⊥) ⊆ NA(X/Y ) then ext(BX∗) ⊆ NA(X).

Proof. As before we have X∗ = Y ∗ ⊗1 Y
⊥. Now if x∗ ∈ ext(BX∗) then

either x∗ ∈ ext(BY ∗) or x∗ ∈ ext(BY ⊥). If x∗ ∈ ext(BY ∗) x∗ ∈ NA(X).
If x∗ ∈ ext(BY ⊥) then by our assumption there exists an x ∈ X such
that x∗(x) = 1 = ‖π(x)‖. Now since Y is a proximinal subspace of X
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[4, Proposition II.1.1] there exists a y ∈ Y such that x∗(x − y) = 1 =
‖π(x)‖ = ‖x− y‖. Thus x∗ ∈ NA(X).

Our next results show that density of NA2(X) in X∗∗ is preserved under
some natural direct sums.

Theorem 2.30. Let {Xα : α ∈ Γ} be a family of Banach spaces and let
X =

⊕
c0
Xα.

(a) If for every α ∈ Γ , NA2(Xα) = NA(X∗α), then NA2(X) = NA(X∗).
(b) If for every α ∈ Γ , NA2(Xα) is dense in X∗∗α , then NA2(X) is dense

in X∗∗.

Proof. For simplicity, we work with Γ = N.
(a) It is well-known that NA(X) = {Λ ∈

⊕
1X
∗
n : Λ has only finitely

many non-zero coordinates and they attain their norm}. It is also easy to
see that τ ∈ NA(

⊕
1X
∗
n) if and only if τ(Λ) = ‖τ‖ for ‖Λ‖ = 1 and ‖τ‖ =

τ(n)(Λ(n)/‖Λ(n)‖) = ‖τ(n)‖ whenever Λ(n) 6= 0. Now for τ ∈ NA(
⊕

1X
∗
n),

fix such an n0. Then by our hypothesis, there exists an fn0 ∈ NA(Xn0) such
that τ(n0)(fn0) = ‖τ(n0)‖ = ‖τ‖. Let f ∈

⊕
1X
∗
n have f(n0) = fn0 and

0 at other coordinates. Then from our observation in the first part of the
proof, f ∈ NA(X) and τ(f) = ‖τ‖, and thus τ ∈ NA2(X).

To prove (b), consider A = {n ∈ N : Λ(n) 6= 0}. For any ε > 0 and
for n ∈ A, let τ ′(n) ∈ NA2(Xn) with ‖τ(n) − τ ′(n)‖ ≤ ε. Now define
τ ′ ∈

⊕
`∞ X

∗∗
n by taking τ ′(n) for n ∈ A and τ(n) at other coordinates.

It then follows from the arguments given above that τ ′ ∈ NA2(X) and
‖τ − τ ′‖ ≤ ε.

Theorem 2.31. Let {Xα : α ∈ Γ} be a family of Banach spaces and let
X =

⊕
`p
Xα, 1 < p <∞. Then NA2(X) is dense in X∗∗ if and only if for

every α ∈ Γ , NA2(Xα) is dense in X∗∗α .

Proof. It clearly suffices to show that

NA2(X) =
{

(Fα) ∈
⊕

`p
X∗∗α : either Fα = 0 or Fα ∈ NA2(Xα)

}
.

Let 1/p+ 1/q = 1. Suppose F = (Fα) ∈ RHS and ‖F‖p = 1. If Fα 6= 0,
then Fα/‖Fα‖ ∈ NA2(Xα), that is, there exist fα ∈ SX∗α and xα ∈ SXα such
that Fα(fα) = ‖Fα‖ and fα(xα) = 1. Define y = (yα) and g = (gα) by

yα = ‖Fα‖xα, gα = ‖Fα‖p−1fα for all α ∈ Γ.
It is easy to check that ‖y‖p = ‖g‖q = 1 and g(y) = F (g) = 1. Thus,
g ∈ NA(X) and F ∈ NA2(X).

To see the converse, note that if f = (fα) ∈ SX∗ attains its norm at
x = (xα) ∈ SX , then

1 = f(x) =
∑

fa(xa) ≤
∑
|fa(xa)| ≤

∑
‖fa‖ ‖xa‖ ≤ ‖f‖q‖x‖p = 1.
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By the conditions of equality in Hölder’s inequality, it follows that ‖fα‖q =
‖xα‖p and fa(xa) = ‖fa‖ ‖xa‖ for all α ∈ Γ .

Now if F = (Fα) ∈ NA2(X) and ‖F‖p = 1, then there exist f = (fα) ∈
SX∗ and x ∈ SX such that F (f) = f(x) = 1. By the above observation,
‖fα‖q = ‖Fα‖p = ‖xα‖p, Fa(fa) = ‖Fa‖ ‖fa‖ and fa(xa) = ‖fa‖ ‖xa‖ for all
α ∈ Γ . It follows that whenever Fα is zero, so are fα and xα. And if Fα 6= 0,
then Fα attains its norm at fα/‖fα‖, which, in turn, attains its norm at
xα/‖xα‖. That is, Fα ∈ NA2(Xα).

3. Stability results. This section deals with stability aspects of dense
remotality and remotality under various natural operations like direct sums
and in spaces of vector-valued functions. Our first result is about certain
natural summands.

Lemma 3.1. Suppose X = Y ⊕ Z and there exists a monotone map
ϕ : R+ × R+ → R+ such that if x = y + z, then ‖x‖ = ϕ(‖y‖, ‖z‖). Let
E ⊆ Y and F ⊆ Z be remotal sets. Then E + F is remotal in X. In
particular , BY and BZ are remotal in X.

Proof. Let x0 = y0 + z0 ∈ X. Let e0 be farthest from y0 in E and f0 be
farthest from z0 in F . Then for any e ∈ E and f ∈ F ,

‖y0 + z0 − e− f‖ = ϕ(‖y0 − e‖, ‖z0 − f‖)
≤ ϕ(‖y0 − e0‖, ‖z0 − f0‖) = ‖y0 + z0 − e0 − f0‖

by the monotonicity of ϕ.

We note that the above lemma holds with “remotal” replaced by “densely
remotal” when convergence inX is equivalent to componentwise convergence.

Since any subspace of a Hilbert space is an `2-summand, we get

Corollary 3.2. Let M be a subspace of a Hilbert space H. Then BM
is remotal in H.

Since for any measure space (Ω,Σ, µ), L1(µ) is an L-summand in its
bidual, we also have

Corollary 3.3. BL1(µ) is remotal in L1(µ)∗∗.

It follows from Lemma 3.1 that for any M -summand Y in X, BY is
remotal in X. But Example 2.18 shows that this is no longer true for M -
ideals. Indeed, one may actually have R(BY , X) = Y . This lemma also leads
to an easy example of an ideal with a densely remotal unit ball but such
that formula (1) for % in Proposition 2.4 fails to hold:

Example 3.4. Let X = Y ⊕∞ Z be a non-trivial direct sum. Then Y is
an ideal, BY is remotal in X. For an appropriate choice of x = y+ z, we see
that %(x,BY ) < 1 + ‖x‖.
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Remark 3.5. For an M -embedded non-reflexive Banach space X, it was
shown in [9] that X is also an M -ideal, under the canonical embedding, in
all the even order duals of X. This was achieved by showing that X is an
M -ideal in a component of some `∞-decomposition of any higher even order
dual. Now let X be an M -embedded space with BX densely remotal in X∗∗.
It thus follows from the above remark that BX continues to be a densely
remotal set in all the higher even order duals of X.

Our next result exhibits densely ball remotal subspaces of c0-direct sum
of reflexive spaces. We recall that a subspace Y ⊆ X is proximinal if for
every x ∈ X, there exists a y ∈ Y such that d(x, Y ) = ‖x − y‖, and factor
reflexive if the quotient space X/Y is reflexive.

Theorem 3.6. Let {Xi}i∈I be any family of reflexive spaces. Let X =⊕
c0
Xi. For any factor reflexive proximinal subspace Y ⊆ X, BY is densely

remotal.

Proof. Since Y is a proximinal factor reflexive subspace it follows from
[10, Lemma 1.1, p. 292] that Y ⊥ ⊆ NA(X). It follows from our computations
in the proof of Theorem 2.30 above that any Λ ∈ Y ⊥ has only finitely many
non-zero components. As Y ⊥ is a Banach space, a simple Baire category
argument shows that there is a finite set F ⊆ I such that Y ⊥ ⊆

⊕
1{X∗i :

i ∈ F}. Let X1 =
⊕
∞{Xi : i ∈ F} and X2 =

⊕
c0
{Xi : I /∈ F}, so

that X = X1 ⊕∞ X2. Since X∗ = X∗1 ⊕1 X
∗
2 , by duality we have Y =

(Y ∩ X1) ⊕∞ X2 = Y1 ⊕ X2 (say). As only finitely many reflexive spaces
occur in X1, it is a reflexive space and thus BY1 is densely remotal in X1.
Further, BY = BY1 ⊕∞ BX2 . Thus, from Lemma 3.1 we conclude that BY
is densely remotal in X.

We see in particular that for any proximinal finite-codimensional sub-
space Y ⊆ c0, BY is densely remotal in c0.

Coming to the spaces of Bochner integrable functions, we note that

Lemma 3.7. Let µ be the Lebesgue measure on [0, 1]. For any densely
remotal set E ⊆ X, L1(µ,E) is densely remotal in L1(µ,X).

Proof. Let s =
∑n

i=1 χAixi be a simple function in L1(µ,X). Since R(E)
is dense, given ε > 0, we can get a simple function s′ =

∑n
i=1 χAix

′
i with

x′i ∈ R(E) and ‖s−s′‖1 < ε. For each i, let ei ∈ E be farthest from x′i. Then
s0 =

∑n
i=1 χAiei is pointwise farthest from s′ and hence, by [5, Theorem 1.1],

it is farthest from s′ in L1(µ,E) as well.

In general, for a remotal set E ⊆ X, we do not expect L1(µ,E) to be
remotal in L1(µ,X), but if E is separable, the result is given below.

We would like to point out that the proof of [5, Theorem 2.3]—which
states that if E is a closed and bounded set spanning a finite-dimensional
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space, then L1(µ,E) is remotal in L1(µ,X)—is incomplete, since the claim
that weakly convergent sequences in L1(µ,X) have pointwise convergent
subsequences is incorrect. For example, the well-known Rademacher se-
quence {rn} ⊆ L1(µ) weakly converges to 0, and ‖rn‖ = 1 for all n ≥ 1, so
that there is no pointwise convergent subsequence. Since their hypothesis
implies that E is separable and remotal, our result below gives a correct
proof of their result under a weaker hypothesis.

Theorem 3.8. Let µ be the Lebesgue measure on [0, 1]. For any separable
remotal set E ⊆ X, L1(µ,E) is remotal in L1(µ,X).

Proof. Let f ∈ L1(µ,X). Since the measure space is complete, we may
assume without loss of generality that all the functions involved are defined
everywhere. In view of [5, Theorem 1.1], we only need to get a g ∈ L1(µ,E)
such that g(t) ∈ E is a farthest point for f(t) for all t ∈ [0, 1].

Let {en}n≥1 ⊆ E be a dense sequence. Define F : [0, 1] → 2E by
F (t) = FE(f(t)) = {e ∈ E : %(f(t), E) = ‖f(t) − e‖}. By hypothesis, F is
a non-empty, closed set-valued map. We now show the set Gr(F ) = {(t, e) :
e ∈ F (t)} is a measurable set. Note that Gr(F ) = {(t, e) : %(f(t), E) =
‖f(t) − e‖} =

⋂
{(t, e) : ‖f(t) − en‖ ≤ ‖f(t) − e‖}. Since f is measurable

and ‖ · ‖ is continuous we see that Gr(F ) is measurable.
It thus follows from the von Neumann measurable selection theorem

[11, Corollary 5.5.8] that there exists a g : [0, 1] → E measurable such
that g(t) ∈ F (t). As E is separable by the Pettis measurability theorem [3,
Chapter 2, Theorem 2], we deduce that g is strongly measurable. As g is
bounded, we have g ∈ L1(µ,E).

It is not clear how these arguments can be extended to spaces which
are “rich” in separable subspaces like the weakly compactly generated Ba-
nach spaces (for example reflexive spaces). The usual separable reduction
argument based on the fact that Bochner integrable functions are almost
everywhere separably-valued does not work as remotality is in general not
a hereditary property. Thus in the following corollary we make an appropri-
ate assumption to get remotality in spaces of Bochner integrable functions.
Hilbert spaces satisfy the hypothesis assumed below.

Corollary 3.9. Let µ be the Lebesgue measure on [0, 1]. Let E be a
remotal set such that every maximizing sequence is contained in a separable
remotal set. Then L1(µ,E) is remotal in L1(µ,X).

Remark 3.10. Now let X be a reflexive Banach space. It is known that
L1(µ,X) is an L-summand in its bidual L1(µ,X)∗∗ (see [4, p. 200]). By
Lemma 3.7, L1(µ,BX) is densely remotal in L1(µ,X), since BX is always a
remotal subset of X. Thus by Lemma 3.1, L1(µ,BX) is also densely remotal
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in L1(µ,X)∗∗. In particular, when X is also separable we even find that
L1(µ,BX) is remotal in L1(µ,X)∗∗.

We now turn to the question of dense remotality in C(K,X). Let E ⊆ X
be a densely remotal set. For any f ∈ C(K,X), if g ∈ C(K,E) is such that
g(k) is a farthest point from f(k) for all k ∈ K, then it is easy to see that
g is a farthest point from f .

Theorem 3.11. Let E ⊆ X be a densely remotal set. Let K be a compact
totally disconnected space. Then C(K,E) is densely remotal in C(K,X).

Proof. Since E is densely remotal, R(E) is dense. Let s =
∑n

i=1 χAixi
be a simple function, where xi ∈ R(E) and the Ai’s are clopen sets. We
may assume that the Ai’s are disjoint and that their union is K. Now let
s0 =

∑n
i=1 χAiei, where ei ∈ E are the farthest points from xi. Since s0 is

pointwise farthest from s, it follows that s ∈ R(C(K,E)). It is well-known
that C(K) ⊗X is dense in C(K,X). Since K is totally disconnected, it is
easy to see that simple functions of the form s′ =

∑n
i=1 χAixi, where xi ∈ X,

are dense in C(K,X). Finally, since R(E) is dense in X we conclude that
s′ can be approximated by a simple function of the form s.
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Note. Some of the results of this paper have since been improved by
P. Bandyopadhyay and Tanmoy Paul. In particular, they have proved that
any M -ideal in a C(K) space is densely ball remotal and any function space
is ball remotal.
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