GOOD-\(\lambda\) INEQUALITIES FOR WAVELETS OF COMPACT SUPPORT

BY

SARAH V. COOK (Topeka, KS)

Abstract. For a wavelet \(\psi\) of compact support, we define a square function \(S_w\) and a maximal function \(N.A\). We then obtain the \(L_p\) equivalence of these functions for \(0 < p < \infty\). We show this equivalence by using good-\(\lambda\) inequalities.

1. Introduction. In 1970, Burkholder and Gundy [4] showed, among other results, that if for a martingale \(f = (f_n)\) the square function \(Sf\) and maximal function \(f^*\) are given by

\[
Sf(x) = \left(\sum_{n=1}^{\infty} (f_n(x) - f_{n-1}(x))^2 \right)^{1/2}, \quad f^*(x) = \sup_n |f_n(x)|,
\]

then \(\|Sf\|_p \approx \|f^*\|_p\) for \(0 < p < \infty\). Previously this result was known only for \(1 < p < \infty\).

Burkholder and Gundy proved their results by first showing that \(Sf\) controls \(f^*\) and conversely \(f^*\) controls \(Sf\) by what is now commonly known as a good-\(\lambda\) inequality.

Definition 1. For positive measurable functions \(f\) and \(g\), we say that \(g\) controls \(f\) by a good-\(\lambda\) inequality if there exist constants \(K > 1, 0 < \varepsilon_0 \leq 1\) and a function \(C(\varepsilon)\), with \(C(\varepsilon) \to 0\) as \(\varepsilon \to 0\), such that for all \(\varepsilon > 0\) and for some fixed constant \(C\) depending only on \(\lambda\) such that for all \(\lambda > 0\) and \(0 < \varepsilon < \varepsilon_0\) we have

\[
\left| \{x \in \mathbb{R} : f(x) > K\lambda, g(x) < \varepsilon\lambda \} \right| \leq C(\varepsilon) \left| \{x \in \mathbb{R} : f(x) > \lambda \} \right|.
\]

Burkholder ([2], [3]) later refined these results and in particular gave in [2] the following lemma, which demonstrates the usefulness of a good-\(\lambda\) inequality.

Lemma 1. Consider a non-decreasing continuous function \(\Phi\) defined on \([0, \infty)\) such that \(\Phi(0) = 0\) and \(\Phi\) is not identically zero. Suppose \(\Phi\) satisfies \(\Phi(2\lambda) \leq C\Phi(\lambda)\) for all \(\lambda > 0\) and for some fixed constant \(C\) depending only on \(\Phi\). Suppose also that \(g\) controls \(f\) by a good-\(\lambda\) inequality. For a fixed \(\varepsilon\), \(0 < \varepsilon < \varepsilon_0\), there exist real numbers \(\varphi\) and \(\nu\) which satisfy

\[2000\ Mathematics\ Subject\ Classification: \ 42C40, \ 42B25.\]
\(\Phi(K \lambda) \leq \varrho \Phi(\lambda) \) and \(\Phi(\varepsilon^{-1} \lambda) \leq \nu \Phi(\lambda) \) for every \(\lambda > 0 \). (The growth condition on \(\Phi \) ensures the existence of \(\varrho \) and \(\nu \).) Finally, suppose \(\varrho C(\varepsilon) < 1 \) and \(\int_{\mathbb{R}} \Phi(\min\{1, f(x)\}) \, dx < \infty \). Then

\[
\int_{\mathbb{R}} \Phi(f(x)) \, dx \leq \frac{\varrho \nu}{1 - \varrho C(\varepsilon)} \int_{\mathbb{R}} \Phi(g(x)) \, dx.
\]

Burkholder and Gundy’s results along with the fact that a martingale is essentially a Haar wavelet provide us with a reason to believe that good-\(\lambda \) inequalities exist for a more generalized wavelet. As further justification, we have the following theorem from Meyer [8] which shows the \(L_p \) equivalence of two square functions for an \(r \)-regular wavelet. In the statement of the theorem and throughout the paper, for a dyadic interval \(Q = [k/2^n, (k+1)/2^n) \), let \(\psi_Q(x) := \psi_{n,k}(x) = 2^n/2^j \psi(2^n x - k) \) be the standard dilation and translation of a wavelet \(\psi \). Also, for each dyadic \(Q \), let \(a_Q \) denote the corresponding wavelet coefficient.

Theorem 1. For \(\psi \) an \(r \)-regular wavelet and \(1 < p < \infty \), the norms \(\| (\sum_J |a_J|^2 |\psi(x)|^2)^{1/2} \|_p \) and \(\| (\sum_J |a_J|^2 |J^{-1}X_J(x)|^2)^{1/2} \|_p \) are equivalent.

We now make some definitions which will be used throughout the paper. Fix \(\psi \) to be a wavelet with compact support. Then there exists \(M \in \mathbb{Z} \) such that if \(\overline{Q} \) is the unique interval that has the same center as \(Q \) and length \(|\overline{Q}| = 2^M |Q| \), then \(\text{supp} (\psi_Q) \subseteq \overline{Q} \). Fix such an \(M \) and for a dyadic \(Q \), define \(\hat{Q} \) in this manner. Similarly, define \(\hat{\hat{Q}} \) to be the interval of \(\mathbb{R} \) that has the same center as \(Q \) and length \(|\hat{\hat{Q}}| = 2^{M+3} |Q| \). Further, let \(Q_n(x) \) be the unique dyadic interval that contains \(x \) and has length \(|Q_n(x)| = 2^{-n} \).

In this paper, we show the \(L_p \) equivalence, \(0 < p < \infty \), of a maximal function and a square function for our wavelet by using good-\(\lambda \) inequalities. We define our maximal function, \(NA \), by

\[
NA(x) := \sup_n \sup_{y \in Q_n(x)} |A_n(y)|, \quad \text{where} \quad A_n(x) := \sum_{|J| > 2^{-n}} a_J \psi_J(x).
\]

We also define the square function, \(S_w \), by

\[
S_w(x) := \left(\sum_{Q \subset \mathbb{R}} a_Q^2 \frac{1}{|Q|} X_Q(x) \right)^{1/2}.
\]

In Section 2, we show \(S_w \) controls \(NA \) by a good-\(\lambda \) inequality. The proof of this inequality roughly follows the proof of the martingale case. In fact, we shall make use of the following theorem, which is a variation of that found in [4].

Theorem 2. There exists a constant \(K > 1 \), and constants \(C \) and \(c \) possibly depending on \(K \), such that for \(0 < \varepsilon < 1, \lambda > 0 \) we have

\[
|\{x \in Q_0 : f^*(x) > K \lambda, S f < \varepsilon \lambda\}| \leq C \exp\left(\frac{-c}{\varepsilon^2} \right) |\{x \in Q_0 : f^*(x) > \lambda\}|.
\]
In the third section, we will define a new maximal function $N_\alpha A$ and show $N_\alpha A$ controls S_w. We shall then estimate NA by $N_\alpha A$. In that section we will use the theory of dyadic bounded mean oscillation to obtain our good-λ inequality. In particular, we will use the following corollary to the John–Nirenberg Theorem [9].

Corollary 1. Suppose $g \in \text{BMO}_d$, $g \not\equiv 0$, with $\|g\|_d \leq C(\varepsilon \lambda)^2$ for some $0 < \varepsilon < 1$ and $\lambda > 0$. Then there exist constants $K > 1$, $c_1 > 0$, and $c_2 > 0$ independent of ε and λ such that

$$|\{x \in \mathbb{R} : |g(x)| > K\lambda^2\}| \leq c_1 \exp\left(-\frac{c_2}{\varepsilon^2}\right) |\{x \in \mathbb{R} : |g(x)| > \lambda^2\}|.$$

2. Control of NA by S_w. Our goal in this section is to prove the following good-λ inequality:

Theorem 3. There exist $k > 1$, $0 < \varepsilon_0 \leq 1$ and constants C and c such that for $0 < \varepsilon < \varepsilon_0$, $\lambda > 0$ we have

$$|\{x \in \mathbb{R} : NA(x) > k\lambda, S_w(x) < \varepsilon\lambda\}| \leq C \exp\left(-\frac{c}{\varepsilon^2}\right) |\{x \in \mathbb{R} : NA(x) > \lambda\}|.$$

To prove Theorem 3, we shall divide the dyadic intervals of \mathbb{R} into a finite number of sets and examine the square function indexed over these sets. To this end, we make use of the following which is a slight variation of a lemma found in [6].

Lemma 2. Let F denote the set of all dyadic intervals of \mathbb{R} and for $m \in \mathbb{Z}$ let $F_m = \{Q \in F : |Q| = 2^{-m}\}$. For $x \in \mathbb{R}$, set $F^x = \{x + Q : Q \in F\}$ and $F^x_m = \{x + Q : Q \in F_m\}$. For a dyadic interval Q_0, there exist $N \in \mathbb{N}$, \{x_j\}_{j=1}^N \subseteq \mathbb{R}$, and disjoint subsets $(B^j)_{j=1}^N$ of F such that

$$\{Q \in F : Q \subseteq Q_0\} = \bigcup_{j=1}^N B^j.$$

Furthermore, if $Q \in B^j$, then we have $\overline{Q} \subseteq Q'$ for a unique $Q' \in F^{x_j}$ with $|Q'| = 2^{M+2}|Q|$. Also, if $Q_1, Q_2 \in B^j$ and $Q_1 \neq Q_2$, then $Q_1' \neq Q_2'$. Of importance here is the fact that for any dyadic Q_0, we have subsets B^j, $j \in \{1, \ldots, N\}$, where N depends only on M. For simplification, we shall assume in what follows that Q_0 is the unit dyadic interval $[0, 1)$. Similar results for an arbitrary dyadic Q_0 also hold and we shall be free to use this later on.

Fix $j \in \{1, \ldots, N\}$, where N is as in Lemma 2. Continuing with the notation from the lemma, we re-index the wavelet coefficients and functions by

$$c_{Q'}^{(j)} := a_Q, \quad \omega_{Q'}^{(j)}(x) := \psi_Q(x).$$
Similarly, we also subdivide the function A_n by defining

$$A_{Q_0, m}^{(j)}(x) := \sum_{Q \in B^j} a_Q \psi_Q(x) = \sum_{Q' \in G^x_{i-j}} c_Q^{(j)} \omega_Q^{(j)}(x),$$

for $m \geq 0$ and where $G^x_{i-j} := \{Q' \in F^x_{i-j} : Q \subseteq Q_0, Q \in B^j\}$.

Note that we now have $\text{supp} \omega_Q^{(j)} \subseteq Q'$ and $\int_{Q'} \omega_Q^{(j)}(x) \, dx = 0$. Thus, if we set $f_{Q_0, m}^{(j)} := E(A_{Q_0, m}^{(j)} | G^x_{i-j})$ where G^x_{i-j} is the σ-field generated by intervals in F^x_{m-M+2}, then $f_{Q_0}^{(j)} = (f_{Q_0, 0}^{(j)})$ is a martingale with $f_{Q_0, 0}^{(j)} = 0$. For each martingale in this indexed collection, we denote the martingale maximal function and square function as $(f_{Q_0}^{(j)})^*(x)$ and $Sf_{Q_0}^{(j)}(x)$ respectively.

We wish to estimate the wavelet square function by the martingale square functions and apply Theorem 2. Since we have a collection of indexed martingales, it is necessary to define an indexed set of functions similar to the wavelet square function by

$$S^{(j)}_{Q_0, w}(x) := \left(\sum_{Q' \in G^x_{i-j}} (c_Q^{(j)})^2 \frac{1}{|Q'|} \chi_{Q'}(x) \right)^{1/2}.$$

The following lemmas relate the wavelet square function to the martingale. Lemma 3 is due to Bañuelos and Moore [1].

Lemma 3. There exist c_1 and c_2 depending only on ψ such that

1. $$(Sf_{Q_0}^{(j)}(x))^2 \leq c_1(S^{(j)}_{Q_0, w}(x))^2$$

2. $$|f_{Q_0, k}^{(j)}(x) - A_{Q_0, k}^{(j)}(x)|^2 \leq c_2(S^{(j)}_{Q_0, w}(x))^2.$$

Lemma 4. Fix Q_n to be a dyadic interval with length 2^{-n}. There exists a constant c_3, depending only on ψ, such that if $x, y \in Q_n$ then

$$\left| \sum_{j=1}^{N} (A_{Q_0, n}^{(j)}(y) - A_{Q_0, n}^{(j)}(x)) \right| \leq c_3 S_w(x).$$

Proof. We have

$$\left| \sum_{j=1}^{N} (A_{Q_0, n}^{(j)}(y) - A_{Q_0, n}^{(j)}(x)) \right| = \left| \sum_{J \subseteq Q_0 \atop |J| > 2^{-n}} a_J (\psi_J(y) - \psi_J(x)) \right|.$$

Since $x, y \in Q_n$ it follows that if either x or y is in $\text{supp} \psi_J$ for some dyadic interval J with $|J| > 2^{-n}$, then both $x, y \in J$. Hence we may approximate the above by

$$\left| \sum_{J \subseteq Q_0 \atop |J| > 2^{-n}} a_J (\psi_J(y) - \psi_J(x)) \right| \leq \sum_{J \subseteq Q_0 \atop |J| > 2^{-n}} |a_J| 2^{-n} \|\psi_J\|_\infty \chi_J(x).$$
\[\leq \sum_{|J|>2^{-n}} |a_J|2^{-n} \|\psi'\|_{\infty}|J|^{-3/2}\mathcal{X}(x) \]
\[\leq \|\psi'\|_{\infty} \left(\sum_{|J|>2^{-n}} |a_J|^2 |J|^{-1}\mathcal{X}(x) \right)^{1/2} \left(\sum_{|J|>2^{-n}} 2^{-2n} |J|^{-2}\mathcal{X}(x) \right)^{1/2} \]
\[\leq 2\|\psi'\|_{\infty} S_w(x). \]

To prove Theorem 3, we must obtain constants k and ε_0. We shall explain how these constants are obtained later. In what follows, we simply assume $k > 1$, $\varepsilon_0 \leq 1$, and $\varepsilon < \varepsilon_0$.

Choose a maximal dyadic $Q \subseteq \mathbb{R}$ with $|\{x \in Q : N\Lambda(x) > \lambda\}| > \frac{1}{4}|Q|$. By maximality of Q, there exists $x_0 \in Q$ such that $N\Lambda(x_0) \leq \lambda$. In particular, for $y \in Q$ we have
\[\sum_{|J|>|Q|} a_J \psi_J(y) \leq \lambda. \]

Fix $x_Q \in Q$ such that $N\Lambda(x_Q) > k\lambda$ and $S_w(x_Q) < \varepsilon \lambda$. Say Q has length $|Q| = 2^{-m}$. Note that since $x_0, x_Q \in Q$, it follows that for every n with $n < m$, both x_0 and x_Q must be in the same dyadic interval of length 2^{-n}. Thus, if $\sup_{y \in Q_n(x_Q)} |A_n(y)| > k\lambda$, then $\sup_{y \in Q_n(x_0)} |A_n(y)| > k\lambda$, which implies $N\Lambda(x_0) > k\lambda$. But by choice of x_0, $N\Lambda(x_0) \leq \lambda < k\lambda$. Hence, for $N\Lambda(x_Q)$, it suffices to take the supremum over only those n where $n \geq m$. Thus
\[N\Lambda(x_Q) = \sup_{m \leq n} \sup_{y \in Q_n(x_Q)} |A_n(y)| \]
\[\leq \sup_{m \leq n} \sup_{y \in Q_n(x_Q)} \left| \sum_{|Q| \geq |J| > 2^{-n}} a_J \psi_J(y) \right| + \sum_{|J|=|Q|} a_J \psi_J(y) \]
\[\leq \lambda + \sup_{m \leq n} \sup_{y \in Q_n(x_Q)} \left| \sum_{|Q| \geq |J| > 2^{-n}} a_J \psi_J(y) \right| \]
where the last inequality comes from (4).

Since $N\Lambda(x_Q) > k\lambda$, we then have
\[(k-1)\lambda \leq \sup_{m \leq n} \sup_{y \in Q_n(x_Q)} \left| \sum_{|Q| \geq |J| > 2^{-n}} a_J \psi_J(y) \right|. \]

By applying Lemma 2 to Q, there must exist $n_0 > m$ and $y_{n_0} \in Q_{n_0}(x_Q)$ where
\[(k-1)\lambda \leq \left| \sum_{j=1}^{N} A_{Q,n_0}^{(j)}(y_{n_0}) \right| \]
\[\leq \left| \sum_{j=1}^{N} A_{Q,n_0}^{(j)}(x_Q) \right| + \left| \sum_{j=1}^{N} (A_{Q,n_0}^{(j)}(y_{n_0}) - A_{Q,n_0}^{(j)}(x_Q)) \right|. \]
It is clear that $\sum_{j=1}^{N}(S_{Q,w}^{(j)}(x_Q))^2 \leq 2^{-M}(S_w(x_Q))^2$. Using this with (2) and $S_w(x_Q) < \varepsilon \lambda$, we may estimate the first summation in (5) by

$$\sum_{j=1}^{N} |A_{Q,k_0}^{(j)}(x_Q)| \leq c_\psi \varepsilon \lambda + \sum_{j=1}^{N} f_{Q,k_0}^{(j)}(x_Q).$$

Using (3) and (6) in inequality (5) we obtain

$$(k - 1)\lambda \leq c_\psi \varepsilon \lambda + \sum_{j=1}^{N} f_{Q,k_0}^{(j)}(x_Q) + c_3 \varepsilon \lambda,$$

which implies $k^* \lambda \leq \sum_{j=1}^{N} f_{Q,k_0}^{(j)}(x_Q) \leq \sum_{j=1}^{N} (f_{Q}^{(j)})^*(x_Q)$. We then have

$$\left| \left\{ x \in Q : N\Lambda(x) > k\Lambda, S_w(x) < \varepsilon \lambda \right\} \right| \leq \sum_{j=1}^{N} \left| \left\{ x \in Q : (f_{Q}^{(j)})^*(x) > \frac{k^* \lambda}{N}, S_{Q,w}^{(j)}(x) < \frac{\varepsilon \lambda}{\sqrt{2M+2}} \right\} \right|$$

$$\leq \sum_{j=1}^{N} \left| \left\{ x \in Q : (f_{Q}^{(j)})^*(x) > \frac{k^* \lambda}{N}, S f_{Q}^{(j)}(x) < c_1 \frac{\varepsilon \lambda}{\sqrt{2M+2}} \right\} \right|$$

where the last estimate is from (1). Now set k large enough and ε_0 small enough so that we may apply Theorem 2 to the above to obtain

$$\left| \left\{ x \in Q : N\Lambda(x) > k\Lambda, S_w(x) < \varepsilon \lambda \right\} \right| \leq C \exp \left(-\frac{c}{\varepsilon^2} \right) |Q|.$$

Note that our constants will depend on N. However, recall that for all dyadic Q, N depends only on M. Summing over all such maximal dyadic Q yields Theorem 3.

3. Control of S_w by $N\Lambda$.

Ideally, in this third section we would prove a version of Theorem 3 with the roles of $N\Lambda$ and S_w reversed. Unfortunately, we have not been able to obtain this inequality. However, we will obtain our desired L_p equivalence of S_w and $N\Lambda$ by showing S_w is controlled by a new maximal function, $N_\alpha \Lambda$, where we shall take the supremum over non-dyadic intervals.

Before we specifically define the maximal function $N_\alpha \Lambda$, we require a few definitions. Since ψ is of compact support, there is a smallest integer L such that for a dyadic interval $J = [k/2^j, (k+1)/2^j)$, we have $\widehat{J} \subseteq [(k - L)/2^j, (k + L)/2^j)$. Fix this L and for a dyadic interval J, define $\overline{J} = [(k - L - 1)/2^j, (k + L + 2)/2^j)$. Thus supp $\psi_J \subseteq \widehat{J} \subseteq \overline{J}$.

For $\alpha > 0$, $n \in \mathbb{Z}$, and $x \in \mathbb{R}$, define $\Gamma_{n,\alpha}(x) := \{ t \in \mathbb{R} : |t - x| < \alpha 2^{-n} \}$, the open interval of length $2^{-n+1}\alpha$ that has its center at x. We now define the maximal function $N_\alpha \Lambda$ by
As mentioned before, our intermediate goal is to prove $N_\alpha A$ controls S_w by a good-λ inequality. We record this as Theorem 4.

Theorem 4. There exist $\alpha_0 > 0$, $K > 1$ and constants C, c such that

$$|\{x : S_w(x) > K\lambda, N_\alpha A(x) < \varepsilon\lambda\}| \leq C \exp\left(\frac{-c}{\varepsilon^2}\right)|\{x : S_w(x) > \lambda\}|$$

for $0 < \varepsilon < 1$, $\lambda > 0$, $\alpha > \alpha_0$.

To prove this theorem, we shall define a function similar to S_w that is of dyadic bounded mean oscillation. To obtain our desired BMO function, set $E := \{x \in \mathbb{R} : N_\alpha A(x) \leq \varepsilon\lambda\}$ for fixed $\lambda > 0$, $0 < \varepsilon < 1$, and define

$$\tilde{S}_w(x) := \left(\sum_{J \subseteq \mathbb{R}, \tilde{J} \cap E \neq \emptyset} a_J^2 \frac{1}{|J|} \mathcal{X}_J(x) \right)^{1/2}.$$

Note that $S_w(x) \geq \tilde{S}_w(x)$ for all $x \in \mathbb{R}$, and $S_w(x) = \tilde{S}_w(x)$ for all $x \in E$. We shall show

Proposition 1. $(\tilde{S}_w)^2 \in \text{BMO}_d$ and $\|\tilde{(S)_w}^2\|_d \leq c_4(\varepsilon\lambda)^2$, where c_4 depends only on $\text{supp}\, \psi$.

Fix an arbitrary dyadic interval Q_0, say $|Q_0| = 2^{-m_0}$. We define

$T := \{Q : |Q| > 2^{-m_0}, \tilde{Q} \cap E \neq \emptyset\}$, $\mathcal{B} := \{Q : |Q| \leq 2^{-m_0}, \tilde{Q} \cap E \neq \emptyset\}$.

For fixed $x \in \mathbb{R}$, set

$$\tilde{S}_w^T(x) := \left(\sum_{Q \in T} a_Q^2 \frac{1}{|Q|} \mathcal{X}_{\tilde{Q}}(x) \right)^{1/2}$$

and

$$\tilde{S}_w^B(x) := \left(\sum_{Q \in \mathcal{B}} a_Q^2 \frac{1}{|Q|} \mathcal{X}_{\tilde{Q}}(x) \right)^{1/2}.$$

Note that $(\tilde{S}_w(x))^2 - (\tilde{S}_w^T(x))^2 = (\tilde{S}_w^B(x))^2$ and that $\tilde{S}_w^T(x)$ is constant on Q_0.

Thus,

$$\int_{Q_0} ((\tilde{S}_w(x))^2 - (\tilde{S}_w^T(x))^2) \, dx = \int_{Q_0} (\tilde{S}_w^B(x))^2 \, dx$$

$$= \int_{Q_0} \sum_{\tilde{Q} \cap E \neq \emptyset} a_Q^2 \frac{1}{|Q|} \mathcal{X}_{\tilde{Q}}(x) \, dx$$

$$\leq 2^{M+3} \sum_{\tilde{Q} \cap E \neq \emptyset, |\tilde{Q} \cap Q_0| \neq \emptyset, \, |Q| \leq |Q_0|} a_Q^2 \sum_{Q \in \mathcal{G}} a_Q^2,$$

where $\mathcal{G} := \{Q : \bar{\tilde{Q}} \cap E \neq \emptyset, \, \bar{\tilde{Q}} \cap Q_0 \neq \emptyset, \, |Q| \leq |Q_0|\}$.
By orthonormality, we have

\[\sum_{Q \in \mathcal{G}} a_Q^2 = \int \sum_{Q \in \mathcal{G}} a_Q^2 |\psi_Q(x)|^2 \, dx = \int \sum_{Q \in \mathcal{G}} a_Q \psi_Q(x) \, dx. \]

To estimate (7), we first note that \(\sum_{Q \in \mathcal{G}} a_Q \psi_Q \) has support of length \(C |Q_0| \), where \(C \) depends only on \(M \). To complete the estimate of (7), we need to make a pointwise estimate for the partial sum of wavelets associated to dyadics in \(\mathcal{G} \). We will make this estimate by taking the summation over a larger collection of dyadic intervals. We remark that this procedure is similar to one used by Gundy and Iribarren [7]. Define

\[\mathcal{H} := \{ Q : Q \cap \tilde{J} \neq \emptyset \text{ for some } J \in \mathcal{G}, |J| = |Q| \}, \]

\[\mathcal{I} := \{ Q : Q \cap \tilde{J} \neq \emptyset \text{ for some } J \in \mathcal{H}, |J| = |Q| \}, \]

\[\mathcal{J} := \{ Q : Q \cap \tilde{J} \neq \emptyset \text{ for some } J \in \mathcal{I}, |J| = |Q| \}. \]

Note that clearly \(\mathcal{G} \subseteq \mathcal{H} \subseteq \mathcal{I} \subseteq \mathcal{J} \).

We may now select \(\alpha_0 \) large enough so that if \(\alpha > \alpha_0 \) and \(Q \in \mathcal{J} \), \(|Q| = 2^{-j} \), then \(Q \subseteq \Gamma_{j,\alpha}(x_0) \) for some \(x_0 \in E \). We remark that \(\alpha_0 \) depends only on \(M \).

There are three properties of this collection of sets which we state now as propositions. The proof of Proposition 2 is clear from the definition of the relevant sets and is omitted.

PROPOSITION 2. For dyadic \(Q \), let \(\tilde{Q} \) be the parent dyadic interval of \(Q \). If \(|Q| < |Q_0| \) and \(Q \in \mathcal{G} \) (respectively \(\mathcal{H}, \mathcal{I}, \mathcal{J} \)) then \(\tilde{Q} \in \mathcal{G} \) (respectively \(\mathcal{H}, \mathcal{I}, \mathcal{J} \)).

PROPOSITION 3. Let \(Q \in \mathcal{J} \) with \(|Q| = 2^{-j} \). For all \(t \in Q \), and all \(l_1, l_2 \in \mathbb{N} \) with \(m_0 \leq l_1 < l_2 \leq j \), we have

\[\left| \sum_{2^{-l_1} \geq |J| > 2^{-l_2}} a_J \psi_J(t) \right| \leq 2 \varepsilon \lambda. \]

Proof. By choice of \(\alpha_0 \), \(Q \subseteq \Gamma_{j,\alpha}(x_0) \) for some \(x_0 \in E \). Proposition 2 implies that if \(J \) is the unique dyadic interval with \(|J| = 2^{-l_2} \) and \(Q \subseteq J \), then \(J \in \mathcal{J} \). Thus, again by choice of \(\alpha_0 \), we get \(J \subseteq \Gamma_{l_2,\alpha}(x_0) \) and \(|A_{l_2}(t)| \leq \varepsilon \lambda \) for all \(t \in J \).

Similar reasoning shows that if \(I \) is the unique dyadic interval of length \(2^{-l_1+1} \) containing \(Q \) then \(|A_{l_1-1}(t)| \leq \varepsilon \lambda \) for all \(t \in I \). The proposition then follows from the triangle inequality.

Our last proposition estimates the wavelet coefficient \(a_Q \) for \(Q \subseteq \mathcal{I} \).

PROPOSITION 4. If \(Q \in \mathcal{I} \) is such that \(|Q| = 2^{-i} \), then there exists a constant \(C \), depending only on \(\psi \), such that \(|a_Q| \leq 2^{-i/2} C \varepsilon \lambda \).
Proof. Fix such a Q and say $Q = [r/2^i,(r + 1)/2^i)$. Let $t \in \overline{Q}$ be arbitrary. There must exist some dyadic $I \subseteq Q$ with $t \in I$ and $|I| = |Q|$. Thus, since $Q \in \mathcal{I}$, we have $I \in \mathcal{J}$. By Proposition 3,
\[
\left| \sum_{J:|J|=|I|} a_J \psi_J(x) \right| \leq 2\varepsilon \lambda
\]
for all $x \in I$. In particular, the above inequality holds for t.

Using the orthonormality of $\{\psi_J\}$ and applying the above estimate we get
\[
|a_Q| = \left| \int \sum_{J:|J|=|Q|} a_J \psi_J(s) \psi_Q(s) \, ds \right| \leq \int \left| \psi_Q(s) \right| \sum_{J:|J|=|Q|} a_J \psi_J(s) \, ds
\]
\[
\leq \int \left| \psi_Q(s) \right| 2\varepsilon \lambda \, ds.
\]
Since $\psi_Q(s) = 2^{i/2}\psi(2^i s - k)$, we may substitute $y = 2^i s - k$ in the above to obtain
\[
|a_Q| \leq \int \left| \psi_Q(s) \right| 2\varepsilon \lambda \, ds = 2\varepsilon \lambda \int 2^{-i/2} \left| \psi(y) \right| \, dy \leq 2\varepsilon \lambda 2^{-i/2} \|\psi\|_1.
\]

We are now prepared to make the desired pointwise estimate for the partial sum of wavelets associated to dyadic intervals in \mathcal{G}.

Lemma 5. There is a constant c_5 depending only on ψ such that for all $t \in \mathbb{R}$,
\[
\left| \sum_{Q \in \mathcal{G}} a_Q \psi_Q(t) \right| \leq c_5 \varepsilon \lambda.
\]

Proof. Fix $t \in \text{supp}(\sum_{Q \in \mathcal{G}} a_Q \psi_Q)$. Then $t \in J$ for some $J \in \mathcal{H}$. By Proposition 2 applied to \mathcal{H}, we have the following two cases.

Case 1: There exists a sequence $\{J_k\}_{k=m_0}^{\infty}$ of dyadic intervals with $t \in J_k \in \mathcal{H}$ and $|J_k| = 2^{-k}$. For each $k \geq m_0$, there exist $x_k \in E$ and $y_k \in Q_0$ with $|x_k - t| \leq C 2^{-k}$ and $|y_k - t| \leq C 2^{-k}$ where C depends only on M. Since E is closed we have $t \in E$, which implies $|\sum_{|I| \geq 2^{-n}} a_I \psi_I(t)| \leq \varepsilon \lambda$ for all n and consequently, for every $n > m_0$,
\[
(8) \quad \left| \sum_{2^{-m_0} \geq |I| > 2^{-n}} a_I \psi_I(t) \right| \leq 2\varepsilon \lambda.
\]

Fix $n > m_0$. We wish to show
\[
\{I \in \mathcal{G} : t \in \text{supp} \psi_I, |I| > 2^{-n}\} = \{I : t \in \text{supp} \psi_I, 2^{-m_0} \geq |I| > 2^{-n}\}.
\]
To see this, let I be dyadic with $|I| = 2^{-l}$, $m_0 \leq l < n$, and let $t \in \text{supp} \psi_I$. Note that $t \in \text{supp} \psi_I \subseteq \overline{I}$ and, from the above, $t \in E$. Thus, $\overline{I} \cap E \neq \emptyset$. By definition of \overline{I}, it must be that $\overline{I} \cap Q_0 \neq \emptyset$ and hence $\overline{I} \cap Q_0 \neq \emptyset$. Thus, $I \in \mathcal{G}$.
This gives half of the desired set equality. The remaining set containment is trivial.

We substitute into (8) to obtain \(|\sum_{I \in \mathcal{G}, |I| \geq 2^{-n}} a_I \psi_I(t)| \leq 2\varepsilon \lambda| for every \(n > m_0 \). The conclusion of the lemma is then immediate in this case.

Case 2: There exists a maximum integer \(n_0 \), with \(n_0 \geq m_0 \), and dyadic intervals \(\{J_k\}_{k \geq m_0}^{n_0} \subseteq \mathcal{H} \) with \(|J_k| = 2^{-k}\), such that \(t \in J_k \) for all \(n_0 \geq k \geq m_0 \). Consider the dyadic interval \(J_{n_0} \in \mathcal{H} \). By Proposition 3,

\[
|a_I \psi_I(t)| \leq 2\varepsilon \lambda.
\]

Similarly to Case 1, we can show

\[
\{I \in \mathcal{I} : t \in \text{supp } \psi_I, |I| \geq 2^{-n_0}\} = \{I : t \in \text{supp } \psi_I, 2^{-n_0} \geq |I| \geq 2^{-n_0}\}.
\]

Hence, (9) becomes \(|\sum_{I \in \mathcal{I}, |I| \geq 2^{-n_0}} a_I \psi_I(t)| \leq 2\varepsilon \lambda \) and we obtain our desired inequality by estimating the quantities \(|\sum_{I \in \mathcal{I} \setminus \mathcal{H}, |I| \geq 2^{-n_0}} a_I \psi_I(t)| \) and \(|\sum_{I \in \mathcal{H} \setminus \mathcal{G}, |I| \geq 2^{-n_0}} a_I \psi_I(t)| \) by means of the following claim.

Claim. There exists an \(N \), depending only on \(\psi \), such that for any dyadic \(Q \in \mathcal{I} \setminus \mathcal{H} \) (or \(Q \in \mathcal{H} \setminus \mathcal{G} \)) with \(|Q| \geq 2^N/2^{n_0} \), we have \(t \notin \text{supp } \psi_Q \).

Proof. The condition \(t \in J_{n_0} \in \mathcal{H} \) implies that there exists some \(x_0 \in E \) and some \(y_0 \in Q \) such that \(|t - x_0| \leq C2^{-n_0}\) and \(|y_0 - t| \leq C2^{-n_0}\). Choose \(N \) large enough so that \(2^N > 2C \). Then \(|y_0 - x_0| \leq 2^N/2^{n_0}\). Let \(Q \in \mathcal{I} \setminus \mathcal{H} \) (respectively \(Q \in \mathcal{H} \setminus \mathcal{G} \), with \(|Q| = 2^{-i} \geq 2^N/2^{n_0}\). Thus, \(x_0 \) and \(y_0 \) must be either in the same dyadic interval with sidelength \(2^{-i}\) or in adjacent dyadic intervals with sidelengths \(2^{-i}\), and \(t \) must be in the same dyadic with either \(x_0 \) or \(y_0 \). If \(t \in \text{supp } \psi_Q \), the choice of \(Q \) implies that \(x_0, y_0 \in Q \). This gives us \(Q \in \mathcal{G} \), which is impossible since \(Q \in \mathcal{I} \setminus \mathcal{H} \) (respectively \(Q \in \mathcal{H} \setminus \mathcal{G} \)). Hence it must be that \(t \not\in \text{supp } \psi_Q \), which proves the Claim.

To complete the proof of Lemma 5, fix \(i \). There exist at most \(2L \) dyadics \(Q \) with \(|Q| = 2^{-i}\) and \(t \in \text{supp } \psi_Q \). By the above Claim, \(t \in \text{supp } \psi_Q \) for at most \(2LN \) dyadics \(Q \) with \(Q \in \mathcal{I} \setminus \mathcal{H} \) (respectively \(Q \in \mathcal{H} \setminus \mathcal{G} \)).

Finally, if \(t \in \text{supp } \psi_Q \) for \(Q \in \mathcal{I} \setminus \mathcal{H} \) (respectively \(Q \in \mathcal{H} \setminus \mathcal{G} \)), then Proposition 4 yields \(|a_Q \psi_Q(t)| = |a_Q||\psi_Q(t)| \leq 2^{-i/2}C\varepsilon \lambda|\psi_Q(t)|\), where \(|Q| = 2^{-i}\). Note that \(|\psi_Q(t)| \leq 2^{i/2} \sup_{y \in R} |\psi(y)| \). Since \(\psi \) is continuous with compact support, we have \(|a_Q \psi_Q(t)| \leq C\varepsilon \lambda \).

Thus,

\[
\sum_{J \in \mathcal{I} \setminus \mathcal{H}, |J| \geq 2^{-n_0}} a_J \psi_J(t) \leq 2NLC \varepsilon \lambda, \quad \sum_{J \in \mathcal{H} \setminus \mathcal{G}, |J| \geq 2^{-n_0}} a_J \psi_J(t) \leq 2NLC \varepsilon \lambda.
\]

This combined with (9) completes the proof of the lemma.
Using the result of Lemma 5 in (7) we have
\[
\int \left| \sum_{Q \in \mathcal{Q}} a_Q \psi_Q(x) \right|^2 dx \leq C(\varepsilon \lambda)^2 |Q_0|.
\]
Thus, \(\int_{Q_0} (\tilde{S}_w(x))^2 - (\tilde{S}_w^T(x))^2 \) dx \(\leq C(\varepsilon \lambda)^2 |Q_0| \), which finishes the proof of Proposition 1.

From this proposition and Corollary 1, we now have
\[
|\{ x \in \mathbb{R} : \tilde{S}_w(x) > K\lambda \} | \leq C_1 \exp \left(\frac{-C_2}{\varepsilon^2} \right) |\{ x \in \mathbb{R} : \tilde{S}_w(x) > \lambda \} |.
\]
This gives the estimate
\[
|\{ x \in \mathbb{R} : S_w(x) > K\lambda, N_\alpha A(x) < \varepsilon\lambda \} | \\
\leq |\{ x \in \mathbb{R} : \tilde{S}_w(x) > K\lambda, N_\alpha A(x) \leq \varepsilon\lambda \} | \\
\leq |\{ x \in \mathbb{R} : \tilde{S}_w(x) > K\lambda \} | \\
\leq C_1 \exp \left(\frac{-C_2}{\varepsilon^2} \right) |\{ x \in \mathbb{R} : \tilde{S}_w(x) > \lambda \} | \\
\leq C_1 \exp \left(\frac{-C_2}{\varepsilon^2} \right) |\{ x \in \mathbb{R} : S_w(x) > \lambda \} |,
\]
where the last inequality comes from the fact that \(S_w(x) \geq \tilde{S}_w(x) \) for all \(x \in \mathbb{R} \). We have thus proved Theorem 4.

We shall now show the following corollary to Theorem 4, which will give the desired relationship between \(S_w \) and \(N \alpha \). Namely, we will show

Corollary 2. For \(\Phi \) as in Lemma 1, we have
\[
\int_{\mathbb{R}} \Phi(S_w(x)) dx \leq C \int_{\mathbb{R}} \Phi(N\alpha A(x)) dx,
\]
where \(C \) depends only on \(\Phi \) and \(\psi \).

To prove the corollary, we make use of the following lemma. The proof of (a) is given in [5]; (b) follows using similar arguments.

Lemma 6. (a) For \(\gamma > \beta > 0 \), there exists a constant \(C_{\gamma,\beta} \), depending only on \(\gamma, \beta \), such that
\[
|\{ x \in \mathbb{R} : N_\gamma A(x) > \lambda \} | \leq C_{\gamma,\beta} |\{ x \in \mathbb{R} : N_\beta A(x) > \lambda \} |.
\]

(b) For \(\alpha > 0 \), there exists a constant \(C_\alpha \), depending only on \(\alpha \), such that
\[
|\{ x \in \mathbb{R} : N_\alpha A(x) > \lambda \} | \leq C_\alpha |\{ x \in \mathbb{R} : N\alpha A(x) > \lambda \} |.
\]
Applying Lemma 6 with the Lebesgue–Stieltjes measure associated with \(\Phi \), we obtain Corollary 2. Combining Corollary 2 with Theorem 3 we have our desired result of
\[\|S_w\|_p \approx \|N\|_p, \quad 0 < p < \infty. \]

Acknowledgements. The author would like to express her sincere gratitude to Charles N. Moore for his comments and suggestions in the preparation of this paper.

REFERENCES

Department of Mathematics and Statistics
Washburn University
Topeka, KS 66621, U.S.A.
E-mail: sarah.cook@washburn.edu

Received 11 March 2003