COLLOQUIUM MATHEMATICUM

GOOD- INEQUALITIES FOR WAVELETS OF COMPACT SUPPORT

BY
SARAH V. COOK (Topeka, KS)

Abstract

For a wavelet ψ of compact support, we define a square function S_{w} and a maximal function $N \Lambda$. We then obtain the L_{p} equivalence of these functions for $0<p<\infty$. We show this equivalence by using good- λ inequalities.

1. Introduction. In 1970, Burkholder and Gundy [4] showed, among other results, that if for a martingale $f=\left(f_{n}\right)$ the square function $S f$ and maximal function f^{*} are given by

$$
S f(x)=\left(\sum_{n=1}^{\infty}\left(f_{n}(x)-f_{n-1}(x)\right)^{2}\right)^{1 / 2}, \quad f^{*}(x)=\sup _{n}\left|f_{n}(x)\right|
$$

then $\|S f\|_{p} \approx\left\|f^{*}\right\|_{p}$ for $0<p<\infty$. Previously this result was known only for $1<p<\infty$.

Burkholder and Gundy proved their results by first showing that $S f$ controls f^{*} and conversely f^{*} controls $S f$ by what is now commonly known as a good- λ inequality.

Definition 1. For positive measurable functions f and g, we say that g controls f by a good- λ inequality if there exist constants $K>1,0<\varepsilon_{0} \leq 1$ and a function $C(\varepsilon)$, with $C(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, such that for all $\lambda>0$ and $0<\varepsilon<\varepsilon_{0}$ we have

$$
|\{x \in \mathbb{R}: f(x)>K \lambda, g(x)<\varepsilon \lambda\}| \leq C(\varepsilon)|\{x \in \mathbb{R}: f(x)>\lambda\}|
$$

Burkholder ([2], [3]) later refined these results and in particular gave in [2] the following lemma, which demonstrates the usefulness of a good- λ inequality.

Lemma 1. Consider a non-decreasing continuous function Φ defined on $[0, \infty)$ such that $\Phi(0)=0$ and Φ is not identically zero. Suppose Φ satisfies $\Phi(2 \lambda) \leq C \Phi(\lambda)$ for all $\lambda>0$ and for some fixed constant C depending only on Φ. Suppose also that g controls f by a good- λ inequality. For a fixed $\varepsilon, 0<\varepsilon<\varepsilon_{0}$, there exist real numbers ϱ and ν which satisfy

[^0]$\Phi(K \lambda) \leq \varrho \Phi(\lambda)$ and $\Phi\left(\varepsilon^{-1} \lambda\right) \leq \nu \Phi(\lambda)$ for every $\lambda>0$. (The growth condition on Φ ensures the existence of ϱ and ν.) Finally, suppose $\varrho C(\varepsilon)<1$ and $\int_{\mathbb{R}} \Phi(\min \{1, f(x)\}) d x<\infty$. Then
$$
\int_{\mathbb{R}} \Phi(f(x)) d x \leq \frac{\varrho \nu}{1-\varrho C(\varepsilon)} \int_{\mathbb{R}} \Phi(g(x)) d x
$$

Burkholder and Gundy's results along with the fact that a martingale is essentially a Haar wavelet provide us with a reason to believe that good- λ inequalities exist for a more generalized wavelet. As further justification, we have the following theorem from Meyer [8] which shows the L_{p} equivalence of two square functions for an r-regular wavelet. In the statement of the theorem and throughout the paper, for a dyadic interval $Q=\left[k / 2^{n},(k+1) / 2^{n}\right)$, let $\psi_{Q}(x):=\psi_{n, k}(x)=2^{n / 2} \psi\left(2^{n} x-k\right)$ be the standard dilation and translation of a wavelet ψ. Also, for each dyadic Q, let a_{Q} denote the corresponding wavelet coefficient.

Theorem 1. For ψ an r-regular wavelet and $1<p<\infty$, the norms $\left\|\left(\sum_{J}\left|a_{J}\right|^{2}\left|\psi_{J}(x)\right|^{2}\right)^{1 / 2}\right\|_{p}$ and $\left\|\left(\sum_{J}\left|a_{J}\right|^{2}|J|^{-1} \mathcal{X}_{J}(x)\right)^{1 / 2}\right\|_{p}$ are equivalent.

We now make some definitions which will be used throughout the paper. Fix ψ to be a wavelet with compact support. Then there exists $M \in \mathbb{Z}$ such that if \bar{Q} is the unique interval that has the same center as Q and length $|\bar{Q}|=2^{M}|Q|$, then $\operatorname{supp}\left(\psi_{Q}\right) \subseteq \bar{Q}$. Fix such an M and for a dyadic Q, define \bar{Q} in this manner. Similarly, define \widehat{Q} to be the interval of \mathbb{R} that has the same center as Q and length $|\widehat{Q}|=2^{M+3}|Q|$. Further, let $Q_{n}(x)$ be the unique dyadic interval that contains x and has length $\left|Q_{n}(x)\right|=2^{-n}$.

In this paper, we show the L_{p} equivalence, $0<p<\infty$, of a maximal function and a square function for our wavelet by using good- λ inequalities. We define our maximal function, $N \Lambda$, by

$$
N \Lambda(x):=\sup _{n} \sup _{y \in Q_{n}(x)}\left|\Lambda_{n}(y)\right|, \quad \text { where } \quad \Lambda_{n}(x):=\sum_{|J|>2^{-n}} a_{J} \psi_{J}(x)
$$

We also define the square function, S_{w}, by

$$
S_{\mathrm{w}}(x):=\left(\sum_{Q \subseteq \mathbb{R}} a_{Q}^{2} \frac{1}{|Q|} \mathcal{X}_{\widehat{Q}}(x)\right)^{1 / 2}
$$

In Section 2, we show S_{w} controls $N \Lambda$ by a good- λ inequality. The proof of this inequality roughly follows the proof of the martingale case. In fact, we shall make use of the following theorem, which is a variation of that found in [4].

TheOrem 2. There exists a constant $K>1$, and constants C and c possibly depending on K, such that for $0<\varepsilon<1, \lambda>0$ we have

$$
\left|\left\{x \in Q_{0}: f^{*}(x)>K \lambda, S f<\varepsilon \lambda\right\}\right| \leq C \exp \left(\frac{-c}{\varepsilon^{2}}\right)\left|\left\{x \in Q_{0}: f^{*}(x)>\lambda\right\}\right|
$$

In the third section, we will define a new maximal function $N_{\alpha} \Lambda$ and show $N_{\alpha} \Lambda$ controls S_{w}. We shall then estimate $N \Lambda$ by $N_{\alpha} \Lambda$. In that section we will use the theory of dyadic bounded mean oscillation to obtain our good- λ inequality. In particular, we will use the following corollary to the John-Nirenberg Theorem [9].

Corollary 1. Suppose $g \in \mathrm{BMO}_{\mathrm{d}}, g \not \equiv 0$, with $\|g\|_{\mathrm{d}} \leq C(\varepsilon \lambda)^{2}$ for some $0<\varepsilon<1$ and $\lambda>0$. Then there exist constants $K>1, c_{1}>0$, and $c_{2}>0$ independent of ε and λ such that

$$
\left|\left\{x \in \mathbb{R}:|g(x)|>K \lambda^{2}\right\}\right| \leq c_{1} \exp \left(-\frac{c_{2}}{\varepsilon^{2}}\right)\left|\left\{x \in \mathbb{R}:|g(x)|>\lambda^{2}\right\}\right|
$$

2. Control of $N \Lambda$ by S_{w}. Our goal in this section is to prove the following good- λ inequality:

Theorem 3. There exist $k>1,0<\varepsilon_{0} \leq 1$ and constants C and c such that for $0<\varepsilon<\varepsilon_{0}, \lambda>0$ we have

$$
\left|\left\{x \in \mathbb{R}: N \Lambda(x)>k \lambda, S_{\mathrm{w}}(x)<\varepsilon \lambda\right\}\right| \leq C \exp \left(-\frac{c}{\varepsilon^{2}}\right)|\{x \in \mathbb{R}: N \Lambda(x)>\lambda\}|
$$

To prove Theorem 3, we shall divide the dyadic intervals of \mathbb{R} into a finite number of sets and examine the square function indexed over these sets. To this end, we make use of the following which is a slight variation of a lemma found in [6].

Lemma 2. Let F denote the set of all dyadic intervals of \mathbb{R} and for $m \in \mathbb{Z}$ let $F_{m}=\left\{Q \in F:|Q|=2^{-m}\right\}$. For $x \in \mathbb{R}$, set $F^{x}=\{x+Q: Q \in F\}$ and $F_{m}^{x}=\left\{x+Q: Q \in F_{m}\right\}$. For a dyadic interval Q_{0}, there exist $N \in \mathbb{N}$, $\left\{x_{j}\right\}_{j=1}^{N} \subseteq \mathbb{R}$, and disjoint subsets $\left(B^{j}\right)_{j=1}^{N}$ of F such that

$$
\left\{Q \in F: Q \subseteq Q_{0}\right\}=\bigcup_{j=1}^{N} B^{j}
$$

Furthermore, if $Q \in B^{j}$, then we have $\bar{Q} \subseteq Q^{\prime}$ for a unique $Q^{\prime} \in F^{x_{j}}$ with $\left|Q^{\prime}\right|=2^{M+2}|Q|$. Also, if $Q_{1}, Q_{2} \in B^{j}$ and $Q_{1} \neq Q_{2}$, then $Q_{1}^{\prime} \neq Q_{2}{ }^{\prime}$.

Of importance here is the fact that for any dyadic Q_{0}, we have subsets $B^{j}, j \in\{1, \ldots, N\}$, where N depends only on M. For simplification, we shall assume in what follows that Q_{0} is the unit dyadic interval [0,1). Similar results for an arbitrary dyadic Q_{0} also hold and we shall be free to use this later on.

Fix $j \in\{1, \ldots, N\}$, where N is as in Lemma 2. Continuing with the notation from the lemma, we re-index the wavelet coefficients and functions by

$$
c_{Q^{\prime}}^{(j)}:=a_{Q}, \quad \omega_{Q^{\prime}}^{(j)}(x):=\psi_{Q}(x)
$$

Similarly, we also subdivide the function Λ_{n} by defining

$$
\Lambda_{Q_{0}, m}^{(j)}(x):=\sum_{\substack{Q \in B^{j} \\|Q|>2^{-m}}} a_{Q} \psi_{Q}(x)=\sum_{\substack{Q^{\prime} \in G^{x_{j}} \\\left|Q^{\prime}\right|>2^{-m+M+2}}} c_{Q^{\prime}}^{(j)} \omega_{Q^{\prime}}^{(j)}(x)
$$

for $m \geq 0$ and where $G^{x_{j}}:=\left\{Q^{\prime} \in F^{x_{j}}: Q \subseteq Q_{0}, Q \in B^{j}\right\}$.
Note that we now have $\operatorname{supp} \omega_{Q^{\prime}}^{(j)} \subseteq Q^{\prime}$ and $\int_{Q^{\prime}} \omega_{Q^{\prime}}^{(j)}(x) d x=0$. Thus, if we set $f_{Q_{0}, m}^{(j)}:=E\left(\Lambda_{Q_{0}, m}^{(j)} \mid \mathcal{G}_{m}^{x_{j}}\right)$ where $\mathcal{G}_{m}^{x_{j}}$ is the σ-field generated by intervals in $F_{m-M+2}^{x_{j}}$, then $f_{Q_{0}}^{(j)}=\left(f_{Q_{0}, m}^{(j)}\right)$ is a martingale with $f_{Q_{0}, 0}^{(j)} \equiv 0$. For each martingale in this indexed collection, we denote the martingale maximal function and square function as $\left(f_{Q_{0}}^{(j)}\right)^{*}(x)$ and $S f_{Q_{0}}^{(j)}(x)$ respectively.

We wish to estimate the wavelet square function by the martingale square functions and apply Theorem 2 . Since we have a collection of indexed martingales, it is necessary to define an indexed set of functions similar to the wavelet square function by

$$
S_{Q_{0}, \mathrm{w}}^{(j)}(x):=\left(\sum_{Q^{\prime} \in G^{x_{j}}}\left(c_{Q^{\prime}}^{(j)}\right)^{2} \frac{1}{\left|Q^{\prime}\right|} \mathcal{X}_{Q^{\prime}}(x)\right)^{1 / 2}
$$

The following lemmas relate the wavelet square function to the martingale. Lemma 3 is due to Bañuelos and Moore [1].

Lemma 3. There exist c_{1} and c_{2} depending only on ψ such that

$$
\begin{array}{r}
\left(S f_{Q_{0}}^{(j)}(x)\right)^{2} \leq c_{1}\left(S_{Q_{0}, \mathrm{w}}^{(j)}(x)\right)^{2} \\
\left|f_{Q_{0}, k}^{(j)}(x)-\Lambda_{Q_{0}, k}^{(j)}(x)\right|^{2} \leq c_{2}\left(S_{Q_{0}, \mathrm{w}}^{(j)}(x)\right)^{2} \tag{2}
\end{array}
$$

Lemma 4. Fix Q_{n} to be a dyadic interval with length 2^{-n}. There exists a constant c_{3}, depending only on ψ, such that if $x, y \in Q_{n}$ then

$$
\begin{equation*}
\left|\sum_{j=1}^{N}\left(\Lambda_{Q_{0}, n}^{(j)}(y)-\Lambda_{Q_{0}, n}^{(j)}(x)\right)\right| \leq c_{3} S_{\mathrm{w}}(x) \tag{3}
\end{equation*}
$$

Proof. We have

$$
\left|\sum_{j=1}^{N}\left(\Lambda_{Q_{0}, n}^{(j)}(y)-\Lambda_{Q_{0}, n}^{(j)}(x)\right)\right|=\left|\sum_{\substack{J \subseteq Q_{0} \\|J|>2^{-n}}} a_{J}\left(\psi_{J}(y)-\psi_{J}(x)\right)\right|
$$

Since $x, y \in Q_{n}$ it follows that if either x or y is in $\operatorname{supp} \psi_{J}$ for some dyadic interval J with $|J|>2^{-n}$, then both $x, y \in \bar{J}$. Hence we may approximate the above by

$$
\left|\sum_{\substack{J \subseteq Q_{0} \\|J|>2^{-n}}} a_{J}\left(\psi_{J}(y)-\psi_{J}(x)\right)\right| \leq \sum_{\substack{J \subseteq Q_{0} \\|J|>2^{-n}}}\left|a_{J}\right| 2^{-n}\left\|\psi_{J}^{\prime}\right\|_{\infty} \mathcal{X}_{\bar{J}}(x)
$$

$$
\begin{aligned}
& \leq \sum_{|J|>2^{-n}}\left|a_{J}\right| 2^{-n}\left\|\psi^{\prime}\right\|_{\infty}|J|^{-3 / 2} \mathcal{X}_{\bar{J}}(x) \\
& \leq\left\|\psi^{\prime}\right\|_{\infty}\left(\sum_{|J|>2^{-n}}\left|a_{J}\right|^{2}|J|^{-1} \mathcal{X}_{\bar{J}}(x)\right)^{1 / 2}\left(\sum_{|J|>2^{-n}} 2^{-2 n}|J|^{-2} \mathcal{X}_{\bar{J}}(x)\right)^{1 / 2} \\
& \leq 2\left\|\psi^{\prime}\right\|_{\infty} S_{\mathrm{w}}(x)
\end{aligned}
$$

To prove Theorem 3, we must obtain constants k and ε_{0}. We shall explain how these constants are obtained later. In what follows, we simply assume $k>1, \varepsilon_{0} \leq 1$, and $\varepsilon<\varepsilon_{0}$.

Choose a maximal dyadic $Q \subseteq \mathbb{R}$ with $|\{x \in Q: N \Lambda(x)>\lambda\}|>\frac{1}{4}|Q|$. By maximality of Q, there exists $x_{0} \in Q$ such that $N \Lambda\left(x_{0}\right) \leq \lambda$. In particular, for $y \in Q$ we have

$$
\begin{equation*}
\left|\sum_{|J|>|Q|} a_{J} \psi_{J}(y)\right| \leq \lambda \tag{4}
\end{equation*}
$$

Fix $x_{Q} \in Q$ such that $N \Lambda\left(x_{Q}\right)>k \lambda$ and $S_{\mathrm{w}}\left(x_{Q}\right)<\varepsilon \lambda$. Say Q has length $|Q|=2^{-m}$. Note that since $x_{0}, x_{Q} \in Q$, it follows that for every n with $n<$ m, both x_{0} and x_{Q} must be in the same dyadic interval of length 2^{-n}. Thus, if $\sup _{y \in Q_{n}\left(x_{Q}\right)}\left|\Lambda_{n}(y)\right|>k \lambda$, then $\sup _{y \in Q_{n}\left(x_{0}\right)}\left|\Lambda_{n}(y)\right|>k \lambda$, which implies $N \Lambda\left(x_{0}\right)>k \lambda$. But by choice of $x_{0}, N \Lambda\left(x_{0}\right) \leq \lambda<k \lambda$. Hence, for $N \Lambda\left(x_{Q}\right)$, it suffices to take the supremum over only those n where $n \geq m$. Thus

$$
\begin{aligned}
N \Lambda\left(x_{Q}\right) & =\sup _{m \leq n} \sup _{y \in Q_{n}\left(x_{Q}\right)}\left|\Lambda_{n}(y)\right| \\
& \leq \sup _{m \leq n} \sup _{y \in Q_{n}\left(x_{Q}\right)}\left|\sum_{|Q| \geq|J|>2^{-n}} a_{J} \psi_{J}(y)\right|+\left|\sum_{|J|>|Q|} a_{J} \psi_{J}(y)\right| \\
& \leq \lambda+\sup _{m \leq n} \sup _{y \in Q_{n}\left(x_{Q}\right)}\left|\sum_{|Q| \geq|J|>2^{-n}} a_{J} \psi_{J}(y)\right|
\end{aligned}
$$

where the last inequality comes from (4).
Since $N \Lambda\left(x_{Q}\right)>k \lambda$, we then have

$$
(k-1) \lambda \leq \sup _{m \leq n} \sup _{y \in Q_{n}\left(x_{Q}\right)}\left|\sum_{|Q| \geq|J|>2^{-n}} a_{J} \psi_{J}(y)\right|
$$

By applying Lemma 2 to Q, there must exist $n_{0}>m$ and $y_{n_{0}} \in Q_{n_{0}}\left(x_{Q}\right)$ where

$$
\begin{align*}
(k-1) \lambda & \leq\left|\sum_{j=1}^{N} \Lambda_{Q, n_{0}}^{(j)}\left(y_{n_{0}}\right)\right| \\
& \leq\left|\sum_{j=1}^{N} \Lambda_{Q, n_{0}}^{(j)}\left(x_{Q}\right)\right|+\left|\sum_{j=1}^{N}\left(\Lambda_{Q, n_{0}}^{(j)}\left(y_{n_{0}}\right)-\Lambda_{Q, n_{0}}^{(j)}\left(x_{Q}\right)\right)\right| \tag{5}
\end{align*}
$$

It is clear that $\sum_{j=1}^{N}\left(S_{Q, w}^{(j)}\left(x_{Q}\right)\right)^{2} \leq 2^{-M}\left(S_{\mathrm{w}}\left(x_{Q}\right)\right)^{2}$. Using this with (2) and $S_{\mathrm{w}}\left(x_{Q}\right)<\varepsilon \lambda$, we may estimate the first summation in (5) by

$$
\begin{equation*}
\sum_{j=1}^{N}\left|\Lambda_{Q, k_{0}}^{(j)}\left(x_{Q}\right)\right| \leq c_{\psi} \varepsilon \lambda+\sum_{j=1}^{N} f_{Q, k_{0}}^{(j)}\left(x_{Q}\right) \tag{6}
\end{equation*}
$$

Using (3) and (6) in inequality (5) we obtain

$$
(k-1) \lambda \leq c_{\psi} \varepsilon \lambda+\sum_{j=1}^{N} f_{Q, k_{0}}^{(j)}\left(x_{Q}\right)+c_{3} \varepsilon \lambda
$$

which implies $k^{*} \lambda \leq \sum_{j=1}^{N} f_{Q, k_{0}}^{(j)}\left(x_{Q}\right) \leq \sum_{j=1}^{N}\left(f_{Q}^{(j)}\right)^{*}\left(x_{Q}\right)$. We then have

$$
\begin{aligned}
\mid\{x \in Q: & \left.N \Lambda(x)>k \Lambda, S_{\mathrm{w}}(x)<\varepsilon \lambda\right\} \mid \\
& \leq \sum_{j=1}^{N}\left|\left\{x \in Q:\left(f_{Q}^{(j)}\right)^{*}(x)>\frac{k^{*} \lambda}{N}, S_{Q, w}^{(j)}(x)<\frac{\varepsilon \lambda}{\sqrt{2^{M+2}}}\right\}\right| \\
& \leq \sum_{j=1}^{N}\left|\left\{x \in Q:\left(f_{Q}^{(j)}\right)^{*}(x)>\frac{k^{*} \lambda}{N}, S f_{Q}^{(j)}(x)<c_{1} \frac{\varepsilon \lambda}{\sqrt{2^{M+2}}}\right\}\right|
\end{aligned}
$$

where the last estimate is from (1). Now set k large enough and ε_{0} small enough so that we may apply Theorem 2 to the above to obtain

$$
\left|\left\{x \in Q: N \Lambda(x)>k \Lambda, S_{\mathrm{w}}(x)<\varepsilon \lambda\right\}\right| \leq C \exp \left(-\frac{c}{\varepsilon^{2}}\right)|Q|
$$

Note that our constants will depend on N. However, recall that for all dyadic Q, N depends only on M. Summing over all such maximal dyadic Q yields Theorem 3.
3. Control of S_{w} by $N \Lambda$. Ideally, in this third section we would prove a version of Theorem 3 with the roles of $N \Lambda$ and S_{w} reversed. Unfortunately, we have not been able to obtain this inequality. However, we will obtain our desired L_{p} equivalence of S_{w} and $N \Lambda$ by showing S_{w} is controlled by a new maximal function, $N_{\alpha} \Lambda$, where we shall take the supremum over non-dyadic intervals.

Before we specifically define the maximal function $N_{\alpha} \Lambda$, we require a few definitions. Since ψ is of compact support, there is a smallest integer L such that for a dyadic interval $J=\left[k / 2^{j},(k+1) / 2^{j}\right)$, we have $\widehat{J} \subseteq\left[(k-L) / 2^{j},(k+L) / 2^{j}\right)$. Fix this L and for a dyadic interval J, define $\overline{\bar{J}}=\left[(k-L-1) / 2^{j},(k+L+2) / 2^{j}\right)$. Thus $\operatorname{supp} \psi_{J} \subseteq \widehat{J} \subseteq \overline{\bar{J}}$.

For $\alpha>0, n \in \mathbb{Z}$, and $x \in \mathbb{R}$, define $\Gamma_{n, \alpha}(x):=\left\{t \in \mathbb{R}:|t-x|<\alpha 2^{-n}\right\}$, the open interval of length $2^{-n+1} \alpha$ that has its center at x. We now define the maximal function $N_{\alpha} \Lambda$ by

$$
N_{\alpha} \Lambda(x):=\sup _{n} \sup _{t \in \Gamma_{n, \alpha}(x)}\left|\Lambda_{n}(t)\right| .
$$

As mentioned before, our intermediate goal is to prove $N_{\alpha} \Lambda$ controls S_{w} by a good- λ inequality. We record this as Theorem 4.

Theorem 4. There exist $\alpha_{0}>0, K>1$ and constants C, c such that

$$
\left|\left\{x: S_{\mathrm{w}}(x)>K \lambda, N_{\alpha} \Lambda(x)<\varepsilon \lambda\right\}\right| \leq C \exp \left(\frac{-c}{\varepsilon^{2}}\right)\left|\left\{x: S_{\mathrm{w}}(x)>\lambda\right\}\right|
$$

for $0<\varepsilon<1, \lambda>0, \alpha>\alpha_{0}$.
To prove this theorem, we shall define a function similar to S_{w} that is of dyadic bounded mean oscillation. To obtain our desired $\mathrm{BMO}_{\mathrm{d}}$ function, set $E:=\left\{x \in \mathbb{R}: N_{\alpha} \Lambda(x) \leq \varepsilon \lambda\right\}$ for fixed $\lambda>0,0<\varepsilon<1$, and define

$$
\widetilde{S}_{\mathrm{w}}(x):=\left(\sum_{\substack{J \subseteq \mathbb{R} \\ \widehat{J} \cap E \neq \emptyset}} a_{J}^{2} \frac{1}{|J|} \mathcal{X}_{\widehat{J}}(x)\right)^{1 / 2}
$$

Note that $S_{\mathrm{w}}(x) \geq \widetilde{S}_{\mathrm{w}}(x)$ for all $x \in \mathbb{R}$, and $S_{\mathrm{w}}(x)=\widetilde{S}_{\mathrm{w}}(x)$ for all $x \in E$. We shall show

Proposition 1. $\left(\widetilde{S}_{\mathrm{w}}\right)^{2} \in \mathrm{BMO}_{\mathrm{d}}$ and $\left\|\left(\widetilde{S}_{\mathrm{w}}\right)^{2}\right\|_{\mathrm{d}} \leq c_{4}(\varepsilon \lambda)^{2}$, where $c_{4} d e$ pends only on $\operatorname{supp} \psi$.

Fix an arbitrary dyadic interval Q_{0}, say $\left|Q_{0}\right|=2^{-m_{0}}$. We define

$$
\mathcal{T}:=\left\{Q:|Q|>2^{-m_{0}}, \widehat{Q} \cap E \neq \emptyset\right\}, \quad \mathcal{B}:=\left\{Q:|Q| \leq 2^{-m_{0}}, \widehat{Q} \cap E \neq \emptyset\right\}
$$

For fixed $x \in \mathbb{R}$, set

$$
\widetilde{S}_{\mathrm{w}}^{\mathcal{T}}(x):=\left(\sum_{Q \in \mathcal{T}} a_{Q}^{2} \frac{1}{|Q|} \mathcal{X}_{\widehat{Q}}(x)\right)^{1 / 2}, \quad \widetilde{S}_{\mathrm{w}}^{\mathcal{B}}(x):=\left(\sum_{Q \in \mathcal{B}} a_{Q}^{2} \frac{1}{|Q|} \mathcal{X}_{\widehat{Q}}(x)\right)^{1 / 2}
$$

Note that $\left(\widetilde{S}_{\mathrm{w}}(x)\right)^{2}-\left(\widetilde{S}_{\mathrm{w}}^{\mathcal{T}}(x)\right)^{2}=\left(\widetilde{S}_{\mathrm{w}}^{\mathcal{B}}(x)\right)^{2}$ and that $\widetilde{S}_{\mathrm{w}}^{\mathcal{T}}(x)$ is constant on Q_{0}. Thus,

$$
\begin{aligned}
\int_{Q_{0}}\left(\left(\widetilde{S}_{\mathrm{w}}(x)\right)^{2}-\left(\widetilde{S}_{\mathrm{w}}^{\mathcal{T}}(x)\right)^{2}\right) d x & =\int_{Q_{0}}\left(\widetilde{S}_{\mathrm{w}}^{\mathcal{B}}(x)\right)^{2} d x \\
& =\int_{Q_{0}} \sum_{\substack{\widehat{Q} \cap E \neq \emptyset \\
|Q| \leq\left|Q_{0}\right|}} a_{Q}^{2} \frac{1}{|Q|} \mathcal{X}_{\widehat{Q}}(x) d x \\
& \leq 2^{M+3} \sum_{\substack{\hat{Q} \cap E \neq \emptyset, \widehat{Q} \cap Q_{0} \neq \emptyset \\
|Q| \leq\left|Q_{0}\right|}} a_{Q}^{2} \leq 2^{M+3} \sum_{Q \in \mathcal{G}} a_{Q}^{2},
\end{aligned}
$$

where $\mathcal{G}:=\left\{Q: \overline{\bar{Q}} \cap E \neq \emptyset, \overline{\bar{Q}} \cap Q_{0} \neq \emptyset,|Q| \leq\left|Q_{0}\right|\right\}$.

By orthonormality, we have

$$
\begin{equation*}
\sum_{Q \in \mathcal{G}} a_{Q}^{2}=\int_{\mathbb{R}} \sum_{Q \in \mathcal{G}} a_{Q}^{2}\left|\psi_{Q}(x)\right|^{2} d x=\int_{\mathbb{R}}\left|\sum_{Q \in \mathcal{G}} a_{Q} \psi_{Q}(x)\right|^{2} d x \tag{7}
\end{equation*}
$$

To estimate (7), we first note that $\sum_{Q \in \mathcal{G}} a_{Q} \psi_{Q}$ has support of length $C\left|Q_{0}\right|$, where C depends only on M. To complete the estimate of (7), we need to make a pointwise estimate for the partial sum of wavelets associated to dyadics in \mathcal{G}. We will make this estimate by taking the summation over a larger collection of dyadic intervals. We remark that this procedure is similar to one used by Gundy and Iribarren [7]. Define

$$
\begin{aligned}
\mathcal{H} & :=\{Q: Q \cap \overline{\bar{J}} \neq \emptyset \text { for some } J \in \mathcal{G},|J|=|Q|\} \\
\mathcal{I} & :=\{Q: Q \cap \overline{\bar{J}} \neq \emptyset \text { for some } J \in \mathcal{H},|J|=|Q|\} \\
\mathcal{J} & :=\{Q: Q \cap \overline{\bar{J}} \neq \emptyset \text { for some } J \in \mathcal{I},|J|=|Q|\}
\end{aligned}
$$

Note that clearly $\mathcal{G} \subseteq \mathcal{H} \subseteq \mathcal{I} \subseteq \mathcal{J}$.
We may now select α_{0} large enough so that if $\alpha>\alpha_{0}$ and $Q \in \mathcal{J}$, $|Q|=2^{-j}$, then $Q \subseteq \Gamma_{j, \alpha}\left(x_{0}\right)$ for some $x_{0} \in E$. We remark that α_{0} depends only on M.

There are three properties of this collection of sets which we state now as propositions. The proof of Proposition 2 is clear from the definition of the relevant sets and is omitted.

Proposition 2. For dyadic Q, let \widetilde{Q} be the parent dyadic interval of Q. If $|Q|<\left|Q_{0}\right|$ and $Q \in \mathcal{G}$ (respectively $\left.\mathcal{H}, \mathcal{I}, \mathcal{J}\right)$ then $\widetilde{Q} \in \mathcal{G}$ (respectively $\mathcal{H}, \mathcal{I}, \mathcal{J})$.

Proposition 3. Let $Q \in \mathcal{J}$ with $|Q|=2^{-j}$. For for all $t \in Q$, and all $l_{1}, l_{2} \in \mathbb{N}$ with $m_{0} \leq l_{1}<l_{2} \leq j$, we have

$$
\left|\sum_{2^{-l_{1}} \geq|J|>2^{-l_{2}}} a_{J} \psi_{J}(t)\right| \leq 2 \varepsilon \lambda
$$

Proof. By choice of $\alpha_{0}, Q \subseteq \Gamma_{j, \alpha}\left(x_{0}\right)$ for some $x_{0} \in E$. Proposition 2 implies that if J is the unique dyadic interval with $|J|=2^{-l_{2}}$ and $Q \subseteq J$, then $J \in \mathcal{J}$. Thus, again by choice of α_{0}, we get $J \subseteq \Gamma_{l_{2}, \alpha}\left(x_{0}\right)$ and $\left|\Lambda_{l_{2}}(t)\right| \leq$ $\varepsilon \lambda$ for all $t \in J$.

Similar reasoning shows that if I is the unique dyadic interval of length $2^{-l_{1}+1}$ containing Q then $\left|\Lambda_{l_{1}-1}(t)\right| \leq \varepsilon \lambda$ for all $t \in I$. The proposition then follows from the triangle inequality.

Our last proposition estimates the wavelet coefficient a_{Q} for $Q \subseteq \mathcal{I}$.
Proposition 4. If $Q \in \mathcal{I}$ is such that $|Q|=2^{-i}$, then there exists a constant C, depending only on ψ, such that $\left|a_{Q}\right| \leq 2^{-i / 2} C \varepsilon \lambda$.

Proof. Fix such a Q and say $Q=\left[r / 2^{i},(r+1) / 2^{i}\right)$. Let $t \in \overline{\bar{Q}}$ be arbitrary. There must exist some dyadic $I \subseteq \overline{\bar{Q}}$ with $t \in I$ and $|I|=|Q|$. Thus, since $Q \in \mathcal{I}$, we have $I \in \mathcal{J}$. By Proposition 3,

$$
\left|\sum_{J:|J|=|I|} a_{J} \psi_{J}(x)\right| \leq 2 \varepsilon \lambda
$$

for all $x \in I$. In particular, the above inequality holds for t.
Using the orthonormality of $\left\{\psi_{J}\right\}$ and applying the above estimate we get

$$
\begin{aligned}
\left|a_{Q}\right| & =\left|\int_{\mathbb{R}} \sum_{J:|J|=|Q|} a_{J} \psi_{J}(s) \psi_{Q}(s) d s\right| \leq \int_{\mathbb{R}}\left|\psi_{Q}(s)\right|\left|\sum_{J:|J|=|Q|} a_{J} \psi_{J}(s)\right| d s \\
& \leq \int_{\mathbb{R}}\left|\psi_{Q}(s)\right| 2 \varepsilon \lambda d s .
\end{aligned}
$$

Since $\psi_{Q}(s)=2^{i / 2} \psi\left(2^{i} s-k\right)$, we may substitute $y=2^{i} s-k$ in the above to obtain

$$
\left|a_{Q}\right| \leq \int_{\mathbb{R}}\left|\psi_{Q}(s)\right| 2 \varepsilon \lambda d s=2 \varepsilon \lambda \int_{\mathbb{R}} 2^{-i / 2}|\psi(y)| d y \leq 2 \varepsilon \lambda 2^{-i / 2}\|\psi\|_{1} .
$$

We are now prepared to make the desired pointwise estimate for the partial sum of wavelets associated to dyadic intervals in \mathcal{G}.

Lemma 5. There is a constant c_{5} depending only on ψ such that for all $t \in \mathbb{R}$,

$$
\left|\sum_{Q \in \mathcal{G}} a_{Q} \psi_{Q}(t)\right| \leq c_{5} \varepsilon \lambda .
$$

Proof. Fix $t \in \operatorname{supp}\left(\sum_{Q \in \mathcal{G}} a_{Q} \psi_{Q}\right)$. Then $t \in J$ for some $J \in \mathcal{H}$. By Proposition 2 applied to \mathcal{H}, we have the following two cases.

CASE 1: There exists a sequence $\left\{J_{k}\right\}_{k=m_{0}}^{\infty}$ of dyadic intervals with $t \in$ $J_{k} \in \mathcal{H}$ and $\left|J_{k}\right|=2^{-k}$. For each $k \geq m_{0}$, there exist $x_{k} \in E$ and $y_{k} \in Q_{0}$ with $\left|x_{k}-t\right| \leq C 2^{-k}$ and $\left|y_{k}-t\right| \leq C 2^{-k}$ where C depends only on M. Since E is closed we have $t \in E$, which implies $\left|\sum_{|I|>2^{-n}} a_{I} \psi_{I}(t)\right| \leq \varepsilon \lambda$ for all n and consequently, for every $n>m_{0}$,

$$
\begin{equation*}
\left|\sum_{2^{-m_{0}} \geq|I|>2^{-n}} a_{I} \psi_{I}(t)\right| \leq 2 \varepsilon \lambda . \tag{8}
\end{equation*}
$$

Fix $n>m_{0}$. We wish to show

$$
\left\{I \in \mathcal{G}: t \in \operatorname{supp} \psi_{I},|I|>2^{-n}\right\}=\left\{I: t \in \operatorname{supp} \psi_{I}, 2^{-m_{0}} \geq|I|>2^{-n}\right\} .
$$

To see this, let I be dyadic with $|I|=2^{-l}, m_{0} \leq l<n$, and let $t \in \operatorname{supp} \psi_{I}$. Note that $t \in \operatorname{supp} \psi_{I} \subseteq \overline{\bar{I}}$ and, from the above, $t \in E$. Thus, $\overline{\bar{I}} \cap E \neq \emptyset$. By definition of \widehat{I}, it must be that $\widehat{I} \cap Q_{0} \neq \emptyset$ and hence $\overline{\bar{I}} \cap Q_{0} \neq \emptyset$. Thus, $I \in \mathcal{G}$.

This gives half of the desired set equality. The remaining set containment is trivial.

We substitute into (8) to obtain $\left|\sum_{I \in \mathcal{G},|I|>2^{-n}} a_{I} \psi_{I}(t)\right| \leq 2 \varepsilon \lambda$ for every $n>m_{0}$. The conclusion of the lemma is then immediate in this case.

CASE 2: There exists a maximum integer n_{0}, with $n_{0} \geq m_{0}$, and dyadic intervals $\left\{J_{k}\right\}_{k=m_{0}}^{n_{0}} \subseteq \mathcal{H}$ with $\left|J_{k}\right|=2^{-k}$, such that $t \in J_{k}$ for all $n_{0} \geq k \geq$ m_{0}. Consider the dyadic interval $J_{n_{0}} \in \mathcal{H}$. By Proposition 3,

$$
\begin{equation*}
\left|\sum_{2^{-m_{0}} \geq|I| \geq 2^{-n_{0}}} a_{I} \psi_{I}(t)\right| \leq 2 \varepsilon \lambda \tag{9}
\end{equation*}
$$

Similarly to Case 1 , we can show
$\left\{I \in \mathcal{I}: t \in \operatorname{supp} \psi_{I},|I| \geq 2^{-n_{0}}\right\}=\left\{I: t \in \operatorname{supp} \psi_{I}, 2^{-m_{0}} \geq|I| \geq 2^{-n_{0}}\right\}$.
Hence, (9) becomes $\left|\sum_{I \in \mathcal{I},|I| \geq 2^{-n_{0}}} a_{I} \psi_{I}(t)\right| \leq 2 \varepsilon \lambda$ and we obtain our desired inequality by estimating the quantities $\left|\sum_{I \in \mathcal{I} \backslash \mathcal{H},|I| \geq 2^{-n_{0}}} a_{I} \psi_{I}(t)\right|$ and $\left|\sum_{I \in \mathcal{H} \backslash \mathcal{G},|I| \geq 2^{-n_{0}}} a_{I} \psi_{I}(t)\right|$ by means of the following claim.

Claim. There exists an N, depending only on ψ, such that for any dyadic $Q \in \mathcal{I} \backslash \mathcal{H}($ or $Q \in \mathcal{H} \backslash \mathcal{G})$ with $|Q| \geq 2^{N} / 2^{n_{0}}$, we have $t \notin \operatorname{supp} \psi_{Q}$.

Proof. The condition $t \in J_{n_{0}} \in \mathcal{H}$ implies that there exists some $x_{0} \in E$ and some $y_{0} \in Q_{0}$ such that $\left|t-x_{0}\right| \leq C 2^{-n_{0}}$ and $\left|y_{0}-t\right| \leq C 2^{-n_{0}}$. Choose N large enough so that $2^{N}>2 C$. Then $\left|y_{0}-x_{0}\right| \leq 2^{N} / 2^{n_{0}}$. Let $Q \in \mathcal{I} \backslash \mathcal{H}$ (respectively $Q \in \mathcal{H} \backslash \mathcal{G}$), with $|Q|=2^{-i} \geq 2^{N} / 2^{n_{0}}$. Thus, x_{0} and y_{0} must be either in the same dyadic interval with sidelength 2^{-i} or in adjacent dyadic intervals with sidelengths 2^{-i}, and t must be in the same dyadic with either x_{0} or y_{0}. If $t \in \operatorname{supp} \psi_{Q}$, the choice of \widehat{Q} implies that $x_{0}, y_{0} \in \widehat{Q}$. This gives us $Q \in \mathcal{G}$, which is impossible since $Q \in \mathcal{I} \backslash \mathcal{H}$ (respectively $Q \in \mathcal{H} \backslash \mathcal{G}$). Hence it must be that $t \notin \operatorname{supp} \psi_{Q}$, which proves the Claim.

To complete the proof of Lemma 5, fix i. There exist at most $2 L$ dyadics Q with $|Q|=2^{-i}$ and $t \in \operatorname{supp} \psi_{Q}$. By the above Claim, $t \in \operatorname{supp} \psi_{Q}$ for at most $2 L N$ dyadics Q with $Q \in \mathcal{I} \backslash \mathcal{H}$ (respectively $Q \in \mathcal{H} \backslash \mathcal{G}$).

Finally, if $t \in \operatorname{supp} \psi_{Q}$ for $Q \in \mathcal{I} \backslash \mathcal{H}$ (respectively $Q \in \mathcal{H} \backslash \mathcal{G}$), then Proposition 4 yields $\left|a_{Q} \psi_{Q}(t)\right|=\left|a_{Q}\right|\left|\psi_{Q}(t)\right| \leq 2^{-i / 2} C \varepsilon \lambda\left|\psi_{Q}(t)\right|$, where $|Q|=2^{-i}$. Note that $\left|\psi_{Q}(t)\right| \leq 2^{i / 2} \sup _{y \in \mathbb{R}}|\psi(y)|$. Since ψ is continuous with compact support, we have $\left|a_{Q} \psi_{Q}(t)\right| \leq C \varepsilon \lambda$.

Thus,

$$
\left|\sum_{\substack{J \in \mathcal{I} \backslash \mathcal{H} \\|J| \geq 2^{-n_{0}}}} a_{J} \psi_{J}(t)\right| \leq 2 N L C \varepsilon \lambda, \quad\left|\sum_{\substack{J \in \mathcal{H} \backslash \mathcal{G} \\|J| \geq 2^{-n_{0}}}} a_{J} \psi_{J}(t)\right| \leq 2 N L C \varepsilon \lambda
$$

This combined with (9) completes the proof of the lemma.

Using the result of Lemma 5 in (7) we have

$$
\int_{\mathbb{R}}\left|\sum_{Q \in \mathcal{G}} a_{Q} \psi_{Q}(x)\right|^{2} d x \leq C(\varepsilon \lambda)^{2}\left|Q_{0}\right|
$$

Thus, $\int_{Q_{0}}\left(\left(\widetilde{S}_{\mathrm{w}}(x)\right)^{2}-\left(\widetilde{S}_{\mathrm{w}}^{\mathcal{T}}(x)\right)^{2}\right) d x \leq C(\varepsilon \lambda)^{2}\left|Q_{0}\right|$, which finishes the proof of Proposition 1.

From this proposition and Corollary 1, we now have

$$
\left|\left\{x \in \mathbb{R}: \widetilde{S}_{\mathrm{w}}(x)>K \lambda\right\}\right| \leq C_{1} \exp \left(\frac{-C_{2}}{\varepsilon^{2}}\right)\left|\left\{x \in \mathbb{R}: \widetilde{S}_{\mathrm{w}}(x)>\lambda\right\}\right|
$$

This gives the estimate

$$
\begin{aligned}
\mid\left\{x \in \mathbb{R}: S_{\mathrm{w}}(x)>K \lambda, N_{\alpha}\right. & \Lambda(x)<\varepsilon \lambda\} \mid \\
& \leq\left|\left\{x \in E: \widetilde{S}_{\mathrm{w}}(x)>K \lambda, N_{\alpha} \Lambda(x) \leq \varepsilon \lambda\right\}\right| \\
& \leq\left|\left\{x \in \mathbb{R}: \widetilde{S}_{\mathrm{w}}(x)>K \lambda\right\}\right| \\
& \leq C_{1} \exp \left(\frac{-C_{2}}{\varepsilon^{2}}\right)\left|\left\{x \in \mathbb{R}: \widetilde{S}_{\mathrm{w}}(x)>\lambda\right\}\right| \\
& \leq C_{1} \exp \left(\frac{-C_{2}}{\varepsilon^{2}}\right)\left|\left\{x \in \mathbb{R}: S_{\mathrm{w}}(x)>\lambda\right\}\right|
\end{aligned}
$$

where the last inequality comes from the fact that $S_{\mathrm{w}}(x) \geq \widetilde{S}_{\mathrm{w}}(x)$ for all $x \in \mathbb{R}$. We have thus proved Theorem 4 .

We shall now show the following corollary to Theorem 4, which will give the desired relationship between S_{w} and $N \Lambda$. Namely, we will show

Corollary 2. For Φ as in Lemma 1, we have

$$
\int_{\mathbb{R}} \Phi\left(S_{\mathrm{w}}(x)\right) d x \leq C \int_{\mathbb{R}} \Phi(N \Lambda(x)) d x
$$

where C depends only on Φ and ψ.
To prove the corollary, we make use of the following lemma. The proof of (a) is given in [5]; (b) follows using similar arguments.

Lemma 6. (a) For $\gamma>\beta>0$, there exists a constant $C_{\gamma, \beta}$, depending only on γ, β, such that

$$
\left|\left\{x \in \mathbb{R}: N_{\gamma} \Lambda(x)>\lambda\right\}\right| \leq C_{\gamma, \beta}\left|\left\{x \in \mathbb{R}: N_{\beta} \Lambda(x)>\lambda\right\}\right|
$$

(b) For $\alpha>0$, there exists a constant C_{α}, depending only on α, such that

$$
\left|\left\{x \in \mathbb{R}: N_{\alpha} \Lambda(x)>\lambda\right\}\right| \leq C_{\alpha}|\{x \in \mathbb{R}: N \Lambda(x)>\lambda\}|
$$

Applying Lemma 6 with the Lebesgue-Stieltjes measure associated with Φ, we obtain Corollary 2. Combining Corollary 2 with Theorem 3 we have our desired result of $\left\|S_{\mathrm{w}}\right\|_{p} \approx\|N \Lambda\|_{p}, 0<p<\infty$.

Acknowledgements. The author would like to express her sincere gratitude to Charles N. Moore for his comments and suggestions in the preparation of this paper.

REFERENCES

[1] R. Bañuelos and C. N. Moore, Probabilistic Behavior of Harmonic Functions, Birkhäuser, Basel, 1999.
[2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42.
[3] -, One-sided maximal functions and H^{p}, J. Funct. Anal. 18 (1975), 429-454.
[4] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249-304.
[5] -, 一, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527-544.
[6] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246.
[7] R. Gundy and I. Iribarren, Quadratic variation functionals and dilation equations, Potential Anal. 4 (1995), 503-519.
[8] Y. Meyer, Ondelettes et opérateurs, Hermann, Paris, 1990.
[9] T. Murai and A. Uchiyama, Good λ inequalities for the area integral and the nontangential maximal function, Studia Math. 83 (1986), 251-262.

Department of Mathematics and Statistics
Washburn University
Topeka, KS 66621, U.S.A.
E-mail: sarah.cook@washburn.edu

[^0]: 2000 Mathematics Subject Classification: 42C40, 42B25.

