VOL. 99

2004

NO. 1

ON TOPOLOGICAL PROPERTIES OF THE SPACES OF DARBOUX BAIRE 1 FUNCTIONS AND BOUNDED DERIVATIVES

BҮ

BOŻENA ŚWIĄTEK (Łódź)

Abstract. We investigate the topological structure of the space \mathcal{DB}_1 of bounded Darboux Baire 1 functions on [0, 1] with the metric of uniform convergence and with the p^* -topology. We also investigate some properties of the set Δ of bounded derivatives.

The class \mathcal{DB}_1 of bounded Darboux Baire 1 functions on [0, 1] contains subclasses of functions important for differentiation theory such as derivatives. For that reason many mathematicians have investigated this class. In [2], [8], [3] "typical" properties in this class were considered, where a property Φ is called *typical in* \mathcal{DB}_1 if the class of all functions satisfying Φ is residual in \mathcal{DB}_1 . Therefore, the topological structure of \mathcal{DB}_1 is worth investigating, and this is one of the purposes of this article. First we shall consider some properties of the set Δ of all bounded derivatives on [0, 1]. One of these properties (superporosity at each point of \mathcal{DB}_1) plays an important role in further considerations connected with \mathcal{DB}_1 .

We apply the classical terminology and notation. We adopt the following definition of a Darboux function ([9], [5]):

A function $F: X \to Y$ (where X, Y are topological spaces) is called a *Darboux function* if F(C) is a connected set for each connected set $C \subset X$.

By \mathbb{R} , \mathbb{Q} , \mathbb{N} , \mathbb{I} we denote the sets of real numbers, rational numbers, natural numbers, and the segment [0, 1] respectively. The symbol m_1 stands for the Lebesgue measure on the real line. By C_f (resp. D_f) we denote the set of all points of continuity (resp. discontinuity) of a function $f : X \to Y$. For $x_0 \in Y$, we denote by $\operatorname{const}_{x_0} : X \to Y$ the constantly x_0 function.

A subset $L \subset X$ is called an *arc* if there exists a homeomorphism h from \mathbb{I} onto L. The elements h(0) and h(1) are called the endpoints of L. The arc with endpoints a and b is denoted by L(a, b).

We say that a set $A \subset \mathbb{I}$ is bilaterally **c**-dense in itself if card $A \cap (x, x+\delta)$ = card $A \cap (x - \delta, x) = \mathbf{c}$ for all $x \in A$ and $\delta > 0$.

²⁰⁰⁰ Mathematics Subject Classification: 26A21, 54C30, 54C35, 26A24.

Key words and phrases: Darboux Baire 1 function, $p^{\ast}\text{-topology},$ superporosity, derivative.

By \mathcal{D} (resp. \mathcal{B}_1) we denote the set of bounded Darboux (resp. Baire 1) functions $f : \mathbb{I} \to \mathbb{R}$. By ϱ we denote the metric of uniform convergence.

We say that a function $f : \mathbb{I} \to \mathbb{R}$ satisfies the Young condition if

- for every $x \in (0, 1)$ there exist sequences $x_n \searrow x$ and $y_n \nearrow x$ such that both $f(x_n)$ and $f(y_n)$ converge to f(x),
- there exists a sequence $x_n \searrow 0$ such that $f(x_n)$ converges to f(0),
- there exists a sequence $y_n \nearrow 1$ such that $f(y_n)$ converges to f(1).

We say that $A \subset X$ is a *stationary set* for the class \mathcal{F} of functions from X to Y provided that, for each $f \in \mathcal{F}$, if f is constant on A, then f must be constant on the whole domain.

If (X, d) is a metric space, then we denote by B(x, R) the open ball with center at x and radius r > 0. Let $M \subset X$, $x \in X$, R > 0. Then $\gamma(x, R, M)$ denotes the supremum of the set of all r > 0 for which there exists $z \in X$ such that $B(z, r) \subset B(x, R) \setminus M$. The set M is called *porous* at x if $\limsup_{R\to 0^+} \gamma(x, R, M)/R > 0$. We say that $E \subset X$ is *superporous* at $x \in X$ if $E \cup F$ is porous at x whenever F is porous at x. A set $G \subset X$ is said to be p-open if $X \setminus G$ is superporous at each point of G. The system of all superporous sets at x forms an ideal. Therefore the system of all p-open sets forms a topology, called the p-topology ([12]). A set $H \subset X$ is said to be p^* -open if $H = G \setminus N$, where G is p-open and N is p-meager. The system of all p^* -open sets forms a topology, called the p^* -topology. Clearly the p^* topology is stronger than the p-topology, and the p-topology is stronger than the topology generated by the metric d ([12]).

The notion of an abstract density topology (in the category sense) is understood as in [6].

It is known that $\Delta \subset \mathcal{DB}_1$ ([1], [10]). It is easy to see that $\operatorname{card}(\Delta) = \operatorname{card}(\mathcal{DB}_1) = \mathbf{c}$. But it turns out that Δ is a "small" subset of \mathcal{DB}_1 in the topological sense. To prove this we need two lemmas.

First from [7, Theorem 1.1.9(3) and Corollary 1.7.12] we infer

LEMMA 1. If $f : [a,b] \to \mathbb{R}$ (a < b) is a Darboux (resp. Baire 1) function, then for every $\alpha \in \mathbb{R}$, the functions $f^* = \max(f, \operatorname{const}_{\alpha})$ and $f_* = \min(f, \operatorname{const}_{\alpha})$ are Darboux (resp. Baire 1) functions.

Let $\{a_i\}_{i\in K}$ $(K = \{1, \ldots, n\})$ be a finite increasing sequence of real numbers from an interval (a, b). Put $F_1 = [a, a_1]$, $F_i = [a_{i-1}, a_i]$ for $i \in K \setminus \{1, n\}$, $F_n = [a_{n-1}, b]$. Obviously the family $\{F_i\}_{i\in K}$ is a closed covering of [a, b].

It is easy to check

LEMMA 2. Let $\{F_i\}_{i \in K}$ be the sequence of sets defined above and let f_i : $F_i \to \mathbb{R}$, where $i \in K$, be a family of compatible Darboux (resp. Baire 1) functions. Then the common extension $f = \bigtriangledown_{i \in K} f_i$ is a Darboux (resp. Baire 1) function.

THEOREM 3. The set Δ is superporous at each point of the space $(\mathcal{DB}_1, \varrho)$.

Proof. Let $f \in \mathcal{DB}_1$ and let $\Phi \subset \mathcal{DB}_1$ be porous at f. Let R > 0. Put $r'_1 = \gamma(f, R, \Phi)/2 > 0$. Then there exist $r_1 > r'_1$ and $g \in \mathcal{DB}_1$ such that

(1)
$$B(g,r_1) \subset B(f,R) \setminus \Phi.$$

We shall show that there exists $h \in \mathcal{DB}_1$ such that

(2)
$$B(h, r_1/8) \subset B(g, r_1) \setminus \Delta$$

Since $g \in \mathcal{B}_1$, there exists a point $x_0 \in (0,1)$ of continuity of g. Consequently, there exists $\delta > 0$ such that $[x_0 - \delta, x_0 + \delta] \subset (0,1)$ and

$$g([x_0 - \delta, x_0 + \delta]) \subset (g(x_0) - r_1/4, g(x_0) + r_1/4).$$

Let $C_{\delta} \subset (x_0 - \delta/2, x_0 + \delta/2)$ be a bilaterally **c**-dense in itself F_{σ} set of null Lebesgue measure. Then ([1, Theorem II.2.4]) there exists a Darboux Baire 1 function $s : [x_0 - \delta/2, x_0 + \delta/2] \to \mathbb{I}$ such that s(x) = 0 for $x \notin C_{\delta}$ and $0 < s(x) \leq 1$ for $x \in C_{\delta}$.

Fix $\alpha \in (0,1] \cap s(C_{\delta})$. Put $s_1(x) = \min(1, \alpha^{-1}s(x))$ for $x \in [x_0 - \delta/2, x_0 + \delta/2]$. Obviously $s_1 : [x_0 - \delta/2, x_0 + \delta/2] \to \mathbb{I}$ is a bounded Darboux Baire 1 function ([1, Theorem II.3.2] and Lemma 1). Note that $1 \in s_1(C_{\delta})$.

We define a function $\mu: [x_0 - \delta/2, x_0 + \delta/2] \to \mathbb{R}$ as follows:

$$\mu(x) = \frac{r_1}{4}s_1(x) + g(x_0).$$

Then $\mu : [x_0 - \delta/2, x_0 + \delta/2] \rightarrow [g(x_0), g(x_0) + r_1/4]$ is a bounded Darboux Baire 1 function ([1, Theorem II.3.2]). Note that $r_1/4 + g(x_0) \in \mu(C_{\delta})$.

We define a function $h : \mathbb{I} \to \mathbb{R}$ as follows:

$$h(x) = \begin{cases} g(x) & \text{if } x \in \mathbb{I} \setminus (x_0 - \delta, x_0 + \delta), \\ l_1(x) & \text{if } x \in [x_0 - \delta, x_0 - \delta/2], \\ \mu(x) & \text{if } x \in [x_0 - \delta/2, x_0 + \delta/2], \\ l_2(x) & \text{if } x \in [x_0 + \delta/2, x_0 + \delta], \end{cases}$$

where l_1 and l_2 are linear functions such that $l_1(x_0 - \delta) = g(x_0 - \delta)$, $l_1(x_0 - \delta/2) = g(x_0)$, $l_2(x_0 + \delta) = g(x_0 + \delta)$ and $l_2(x_0 + \delta/2) = g(x_0)$. Then $h \in \mathcal{DB}_1$ (Lemma 2). Note that $r_1/4 + g(x_0) \in h(C_{\delta})$.

Notice that $\rho(h,g) \leq r_1/2$, so

(3)
$$B(h, r_1/8) \subset B(g, r_1).$$

Now, assume that there exists a function $\xi \in B(h, r_1/8) \cap \Delta$. Then

(4)
$$(x_0 - \delta/2, x_0 + \delta/2) \setminus C_\delta \subset \xi^{-1}((-\infty, g(x_0) + r_1/8)).$$

Let $z_0 \in C_{\delta}$ be such that $h(z_0) = r_1/4 + g(x_0)$. Hence $\xi(z_0) > g(x_0) + r_1/8$. Therefore $z_0 \in \xi^{-1}((g(x_0) + r_1/8, \infty)) \cap C_{\delta}$. Let $U_0 \subset (x_0 - \delta/2, x_0 + \delta/2)$ be a unilateral neighbourhood of z_0 . Note that by (4),

$$U_0 \cap \xi^{-1}((g(x_0) + r_1/8, \infty)) \subset C_{\delta},$$

 \mathbf{SO}

$$m_1(U_0 \cap \xi^{-1}((g(x_0) + r_1/8, \infty))) \le m_1(C_\delta) = 0.$$

Thus $\xi \notin \mathcal{M}_2$, which contradicts the fact that $\Delta \subset \mathcal{M}_2$ (¹). Hence $B(h, r_1/8) \cap \Delta = \emptyset$. This equality and (3) finish the proof of (2). From (1) and (2) we infer that

$$\gamma(f, R, \Delta \cup \Phi) \ge r_1/8.$$

Therefore

$$\limsup_{R \to 0^+} \frac{\gamma(f, R, \Delta \cup \Phi)}{R} \ge \frac{1}{8} > 0. \quad \blacksquare$$

It is easy to observe that Δ is a nowhere dense and perfect subset of \mathcal{DB}_1 . So its topological structure is similar to that of the Cantor set. There are several constructions of Darboux functions from [0, 1] to \mathbb{R} in which the Cantor set plays an important role. This suggests that Δ can play a similar role in constructions of Darboux functions from \mathcal{DB}_1 to \mathbb{R} . It turns out that in some cases we can obtain analogous results (Theorem 4), in others it is impossible (Corollary 6).

THEOREM 4. There exists a Darboux function $F : \mathcal{DB}_1 \to \mathbb{R}$ such that $D_F = \Delta$ and $F(B(g, \varepsilon) \cap \Delta) = \mathbb{R}$ for any $g \in \Delta$ and $\varepsilon > 0$.

Proof. In \mathbb{R} we define an equivalence relation \star in the following way: $x \star y \Leftrightarrow x - y \in \mathbb{Q}$. Denote by \mathcal{E} the set of equivalence classes of this relation and let $\xi : \mathcal{E} \to \mathbb{R}$ be a bijection. Define a function $\chi : \mathbb{R} \to \mathbb{R}$ by $\chi(x) = \xi([x]_{\star})$. Then χ is a Darboux function such that $\chi((a, b)) = \mathbb{R}$ for all a < b. Let $\varphi(x) = (1/x) \sin(1/x)$ for $x \in (0, \infty)$. We define $F : \mathcal{DB}_1 \to \mathbb{R}$ by

$$F(f) = \begin{cases} \chi(f(0)) & \text{if } f \in \Delta, \\ \varphi(\varrho_{\Delta}(f)) & \text{if } f \in \mathcal{DB}_1 \setminus \Delta. \end{cases}$$

First we shall show that

(5)

F is a Darboux function.

Let $C \subset \mathcal{DB}_1$ be a connected set. Consider the following three cases.

CASE 1: $C \subset \Delta$. Suppose that F(C) is disconnected. Then there exist $r_1 < r_0 < r_2$ and $f_1, f_2 \in C$ such that $F(f_1) = r_1, F(f_2) = r_2$ and $F(f) \neq r_0$

⁽¹⁾ A function $f : \mathbb{I} \to \mathbb{R}$ is said to be of class \mathcal{M}_2 if for each $a \in \mathbb{R}$ the set $E = \{x \in \mathbb{I} : f(x) > a\}$ is either empty or an F_{σ} and $m_1(E \cap (x - \delta, x)) > 0$ and $m_1(E \cap (x, x + \delta)) > 0$ for each $x \in E$ and each $\delta > 0$. Zahorski proved that every bounded derivative is of class \mathcal{M}_2 ([10]).

for each $f \in C$. Consequently, there exists $E^* \in \mathcal{E}$ such that $\xi(E^*) = r_0$. Then

(6)
$$f(0) \notin E^*$$
 for each $f \in C$.

As $r_1 \neq r_2$, we have $F(f_1) \neq F(f_2)$. Then $[f_1(0)]_{\star} \neq [f_2(0)]_{\star}$, so $f_1(0) \neq f_2(0)$. Let, for instance, $f_1(0) < f_2(0)$. Then there exists $y^{\star} \in E^{\star} \cap (f_1(0), f_2(0))$. By (6),

$$C = \{ f \in C : f(0) < y^* \} \cup \{ f \in C : f(0) > y^* \},\$$

where the sets $\{f \in C : f(0) < y^*\}$ and $\{f \in C : f(0) > y^*\}$ are nonempty (they contain f_1, f_2 respectively) and separated, which contradicts the connectedness of C.

CASE 2: $C \subset \mathcal{DB}_1 \setminus \Delta$. If $\varrho_{\Delta}(C)$ is a singleton, so is F(C). In the opposite case, let $r_1 = \inf\{r > 0 : \exists_{f \in C} \varrho_{\Delta}(f) = r\}$ and $r_2 = \sup\{r > 0 : \exists_{f \in C} \varrho_{\Delta}(f) = r\}$. It is evident that $r_1 \neq r_2$ and $r_1 \geq 0, r_2 > 0$. Note that (by the conectedness of C)

 $\forall_{r \in (r_1, r_2)} \quad C \cap \{ f \in \mathcal{DB}_1 : \varrho_{\Delta}(f) = r \} \neq \emptyset.$

Consider the following subcases:

(a) $\forall_{f \in C} (\varrho_{\Delta}(f) \neq r_1 \land \varrho_{\Delta}(f) \neq r_2)$. Then $F(C) = \varphi((r_1, r_2))$ is connected because φ is continuous on $(0, \infty)$.

(b) $(\forall_{f \in C} \ \varrho_{\Delta}(f) \neq r_1) \land (\exists_{f^0 \in C} \ \varrho_{\Delta}(f^0) = r_2)$. Then $F(C) = \varphi((r_1, r_2])$ is connected.

(c) $(\exists_{f_0 \in C} \ \varrho_\Delta(f_0) = r_1) \land (\forall_{f \in C} \ \varrho_\Delta(f) \neq r_2)$. Since $f_0 \in C \subset \mathcal{DB}_1 \setminus \Delta$ and Δ is a closed set, we have $r_1 = \varrho_\Delta(f_0) > 0$. Hence $[r_1, r_2) \subset (0, \infty)$ and $F(C) = \varphi([r_1, r_2))$ is connected.

(d) $(\exists_{f_0 \in C} \ \varrho_\Delta(f_0) = r_1) \land (\exists_{f^0 \in C} \ \varrho_\Delta(f^0) = r_2)$. As in (c) we can show that $[r_1, r_2] \subset (0, \infty)$. Hence $F(C) = \varphi([r_1, r_2])$ is connected.

CASE 3: $C \cap \Delta \neq \emptyset$ and $C \setminus \Delta \neq \emptyset$. Then there exists a function $\hat{f} \in C \setminus \Delta$. Let $\hat{r} = \varrho_{\Delta}(\hat{f}) > 0$. Since C is connected, we have

$$\forall_{r\in(0,\hat{r})} \quad C \cap \{f \in \mathcal{DB}_1 : \varrho_{\Delta}(f) = r\} \neq \emptyset.$$

Hence $F(C) \supset \varphi((0,\hat{r})) = \mathbb{R}$ and $F(C) = \mathbb{R}$ is connected. This ends the proof of (5).

Now we shall show that

(7)
$$\forall_{g \in \Delta} \ \forall_{\varepsilon > 0} \quad F(K(g, \varepsilon) \cap \Delta) = \mathbb{R}.$$

Indeed, if $g \in \Delta$ and $\varepsilon > 0$, then

$$F(K(g,\varepsilon)\cap \Delta)\supset F(\{g+\alpha:\alpha\in(-\varepsilon,\varepsilon)\})=\chi((g(0)-\varepsilon,g(0)+\varepsilon))=\mathbb{R}.$$

It is easy to see that $\mathcal{DB}_1 \setminus \Delta \subset C_F$. From (7) we infer that $\Delta \subset D_F$, so $D_F = \Delta$, which ends the proof.

It is known that for each perfect set $P \subset \mathbb{I}$ there exists a bounded Darboux Baire 1 function $h : \mathbb{I} \to \mathbb{R}$ such that h vanishes off P but does not vanish identically ([1, Theorem II.2.4]). This fact leads to the question: Does there exist a Darboux function $F : \mathcal{DB}_1 \to \mathbb{R}$ which vanishes off Δ but does not vanish identically? The answer is negative (Corollary 6).

The above question is connected with the theory of stationary sets. It is known that E is a stationary set for the family of Darboux functions $f: \mathbb{I} \to \mathbb{R}$ if and only if $\operatorname{card}(\mathbb{I} \setminus E) < \mathbf{c}$ ([1, Theorem XII.1.1]). But it turns out that for the family of real Darboux functions defined on \mathcal{DB}_1 (with the metric of uniform convergence) this characterization of stationary sets fails.

THEOREM 5. In the space $(\mathcal{DB}_1, \varrho)$ the set $\Delta' = \mathcal{DB}_1 \setminus \Delta$ is stationary for the class of real Darboux functions.

Proof. Let $F : \mathcal{DB}_1 \to \mathbb{R}$ be a Darboux function such that $F(\Delta') = \{\alpha_0\}$ (where $\alpha_0 \in \mathbb{R}$). Let $g \in \Delta$. To prove the theorem it is sufficient to construct an arc L = L(g, h) such that $L \setminus \{g\} \subset \Delta'$.

Since $g \in \mathcal{B}_1$, there exists a point $x_0 \in (0, 1)$ of continuity of g. For $r \in \mathbb{I}$ we define $t_r : \mathbb{I} \to \mathbb{R}$ in the following way:

$$t_r(x) = \begin{cases} g(x_0) + r & \text{if } x = x_0, \\ g(x) + r \sin \frac{1}{x - x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Obviously, t_r $(r \in \mathbb{I})$ is a bounded Baire 1 function. It is not difficult to see that it satisfies the Young condition, so it is a Darboux function ([1]). Hence $t_r \in \mathcal{DB}_1$ for $r \in \mathbb{I}$.

Note that $t_r = g + d_r$ $(r \in \mathbb{I})$, where

$$d_r(x) = \begin{cases} r & \text{if } x = x_0, \\ r \sin \frac{1}{x - x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

We shall prove that

(8)
$$d_r \notin \Delta$$
 for $r \in (0,1]$

Indeed, for a fixed $r^* \in (0, 1]$, define $k : \mathbb{I} \to \mathbb{R}$ by

$$k(x) = \begin{cases} 0 & \text{if } x = x_0, \\ r^* (x - x_0)^2 \cos \frac{1}{x - x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Then

$$k'(x) = \begin{cases} 0 & \text{if } x = x_0, \\ 2r^*(x - x_0) \cos \frac{1}{x - x_0} + r^* \sin \frac{1}{x - x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Consider a function $h : \mathbb{I} \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} 0 & \text{if } x = x_0, \\ 2r^*(x - x_0) \cos \frac{1}{x - x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Then h is continuous and bounded on \mathbb{I} , so $h \in \Delta$. Therefore also $f = k' - h \in \Delta$. Hence $d_{r^*} \notin \Delta$, because the difference

$$d_{r^*}(x) - f(x) = \begin{cases} r^* & \text{if } x = x_0, \\ 0 & \text{if } x \in \mathbb{I} \setminus \{x_0\}, \end{cases}$$

is not a derivative (it does not have the Darboux property). In this way we have proved condition (8).

Since $d_r = t_r - g$ for $r \in (0, 1]$ and $g \in \Delta$, it follows that t_r is not a derivative for each $r \in (0, 1]$.

Note that for any $r_1, r_2 \in \mathbb{I}$,

(9)
$$\varrho(t_{r_1}, t_{r_2}) = |r_1 - r_2|.$$

Therefore the function $\zeta : \mathbb{I} \to \{t_r : r \in \mathbb{I}\}$ given by $\zeta(r) = t_r$ is a homeomorphism. Hence $L = \{t_r : r \in \mathbb{I}\}$ is an arc in \mathcal{DB}_1 such that $L = L(g, t_1)$ and $L \setminus \{g\} = \{t_r : r \in (0, 1]\} \subset \Delta'$.

COROLLARY 6. There does not exist a Darboux function $F : \mathcal{DB}_1 \to \mathbb{R}$ which is zero for $t \in \Delta'$, but not identically zero.

Now we shall investigate the topological structure of the space \mathcal{DB}_1 with the metric of uniform convergence and the p^* -topology.

It is easy to see that $(\mathcal{DB}_1, \varrho)$ is a Baire space. So from [12, Theorem 2], we infer

COROLLARY 7. The p^* -topology is an abstract density topology (in the category sense) on $(\mathcal{DB}_1, \varrho)$.

Obviously $(\mathcal{DB}_1, \varrho)$ is a perfectly normal space. For the p^* -topology we have

THEOREM 8. (\mathcal{DB}_1, p^*) is a Hausdorff space but it is not regular.

Proof. Since the p^* -topology is stronger than the ρ -topology ([12]), we deduce that (\mathcal{DB}_1, p^*) is a Hausdorff space.

Suppose that (\mathcal{DB}_1, p^*) is a regular space. For $q \in \mathbb{Q}$ put

$$A_q = \{ f \in \mathcal{DB}_1 : f(0) = q \}, \quad F = \bigcup_{q \in \mathbb{Q}} A_q.$$

Obviously $F \subset \mathcal{DB}_1$. Note that

(10) F is ρ -meager.

To see this, it suffices to prove that A_q is ρ -nowhere dense for each $q \in \mathbb{Q}$. So fix $q_0 \in \mathbb{Q}$ and let $B(g, \varepsilon)$ be an arbitrary open ball in (\mathcal{DB}_1, ρ) . We shall show that there exists a ρ -open set $U \subset B(g, \varepsilon) \setminus A_{q_0}$. If $B(g, \varepsilon) \cap A_{q_0} = \emptyset$, we obviously put $U = B(g, \varepsilon)$. Hence, we may assume that there exists $f_0 \in B(g, \varepsilon) \cap A_{q_0}$. Put $\delta = \varepsilon - \rho(g, f_0) > 0$ and $U = B(f_0 + \delta/2, \delta/4)$. Clearly $U \subset B(g,\varepsilon)$. If $h \in U$, then $h(0) > q_0 + \delta/4$. Hence $h \notin A_{q_0}$, so $U \cap A_{q_0} = \emptyset$. The proof of (10) is thus finished. Hence ([12, Theorem 2])

$$F$$
 is p^* -closed.

Now we shall show that

(11)
$$F ext{ is } \rho ext{-dense.}$$

Indeed, let $B(g,\varepsilon)$ be an arbitrary open ball in \mathcal{DB}_1 . Let $q^* \in (g(0) - \varepsilon, g(0) + \varepsilon) \cap \mathbb{Q}$. Put $h^*(x) = g(x) - g(0) + q^*$ for $x \in \mathbb{I}$. Clearly $h^* \in \mathcal{DB}_1$ ([1, Theorem II.3.2]) and $h^*(0) = q^* \in \mathbb{Q}$, so $h^* \in A_{q^*} \subset F$. Of course $\varrho(g,h^*) < \varepsilon$, so $h^* \in B(g,\varepsilon)$. Hence $F \cap B(g,\varepsilon) \neq \emptyset$, which proves (11).

Now, let $f^* \in \mathcal{DB}_1 \setminus F$. Since (\mathcal{DB}_1, p^*) is (by assumption) a regular space, there exist p^* -open and disjoint sets U_1 , U_2 such that $F \subset U_1$ and $f^* \in U_2$. Then ([12, Theorem 2])

$$U_1 = H_1 \setminus N_1, \quad U_2 = H_2 \setminus N_2,$$

where H_1 , H_2 are *p*-open and N_1 , N_2 are *p*-meager.

From $U_1 \cap U_2 = \emptyset$ we conclude that $(H_1 \cap H_2) \setminus (N_1 \cup N_2) = \emptyset$. Since $(\mathcal{DB}_1, \varrho)$ (and hence (\mathcal{DB}_1, p) , see e.g. [12]) is a Baire space, we deduce that $H_1 \cap H_2 = \emptyset$. Therefore

$$F \subset U_1 \subset H_1 \subset \mathcal{DB}_1 \setminus H_2.$$

Since H_2 is a *p*-open set, we conclude that F is porous at f^* (in the space $(\mathcal{DB}_1, \varrho)$). This contradicts (11).

In the proof of Theorem 5 we have constructed an arc in \mathcal{DB}_1 . This leads to the question: Are the spaces considered arcwise connected? Theorems 9 and 12 give an answer to this question.

THEOREM 9. The space (\mathcal{DB}_1, ρ) is arcwise connected.

Proof. Let $f_1, f_2 \in \mathcal{DB}_1$ and $f_1 \neq f_2$. Consider the following cases:

CASE 1: $f_1 = \text{const}_0$ or $f_2 = \text{const}_0$. Assume, for instance, that $f_1 = \text{const}_0$. Put $L = \{af_2 : a \in \mathbb{I}\}$. Then L is an arc in $(\mathcal{DB}_1, \varrho)$ such that $L = L(f_1, f_2)$.

CASE 2: $f_1 \neq \text{const}_0$ and $f_2 \neq \text{const}_0$. Then there are two possibilities:

• There exists $r^* \in \mathbb{R}$ such that $f_1 = r^* f_2$. Since $f_1 \neq f_2$, we have $r^* \neq 1$. Assume, for instance, that $r^* > 1$ (the other case is similar). Put $L = \{af_2 : a \in [1, r^*]\}$. Then L is an arc in $(\mathcal{DB}_1, \varrho)$ such that $L = L(f_2, f_1)$. • There is no $r \in \mathbb{R}$ such that $f_1 = rf_2$. Put $L_1 = \{af_1 : a \in \mathbb{I}\}$ and $L_2 = \{af_2 : a \in \mathbb{I}\}$. Then L_1 and L_2 are arcs in $(\mathcal{DB}_1, \varrho)$ such that $L_1 \cup L_2 = L(\text{const}_0, f_1), L_2 = L(\text{const}_0, f_2)$ and $L_1 \cap L_2 = \{\text{const}_0\}$. Thus $L_1 \cup L_2$ is an arc in $(\mathcal{DB}_1, \varrho)$ such that $L_1 \cup L_2 = L(f_1, f_2)$. LEMMA 10. For each $f \in \mathcal{DB}_1$ and each r > 0, there exist arcs L_1, L_2, L_3 in the space $(\mathcal{DB}_1, \varrho)$ contained in B(f, r) such that $L_i \cap L_j = \{f\}$ for $i, j \in \{1, 2, 3\}, i \neq j$.

Proof. Let $f \in \mathcal{DB}_1$ and let r > 0. Consider the following cases:

• f is not a constant function. Put $M = \sup\{|f(x)| : x \in \mathbb{I}\} > 0$. Then $L_1 = \{f + a : a \in [0, r/2]\}, L_2 = \{f + a : a \in [-r/2, 0]\}$ and $L_3 = \{af : a \in [1, 1 + r/(2M)]\}$ satisfy the required conditions.

• f is a constant function. Put $L_1 = \{f + a : a \in [0, r/2]\}, L_2 = \{f + a : a \in [-r/2, 0]\}$ and $L_3 = \{l_a : a \in [0, r/2]\}$, where $l_a(x) = ax + f(x), x \in \mathbb{I}$. Then L_1, L_2 and L_3 satisfy the required conditions.

LEMMA 11. Let X be an arbitrary set and let \mathcal{T} and \mathcal{T}' be two topologies on X such that $\mathcal{T} \subset \mathcal{T}'$ and (X, \mathcal{T}) is a Hausdorff space. Then, if L is an arc in (X, \mathcal{T}') , it is also an arc in (X, \mathcal{T}) .

THEOREM 12. The space (\mathcal{DB}_1, p^*) is not arcwise connected. Moreover, there exists no arc in (\mathcal{DB}_1, p^*) .

Proof. Suppose that there exists an arc L in (\mathcal{DB}_1, p^*) . From Lemma 11, we infer that L is an arc in $(\mathcal{DB}_1, \varrho)$. Now we show that

(12) L has empty interior in $(\mathcal{DB}_1, \varrho)$.

Indeed, suppose that there exists an open ball $B(f,r) \subset L$. By Lemma 10 there exist arcs L_1, L_2, L_3 in $(\mathcal{DB}_1, \varrho)$, contained in B(f,r), such that $L_i \cap L_j = \{f\}$ for $i \neq j$. Then L_1, L_2, L_3 are arcs in (L, ϱ) . It is not difficult to check that this is impossible.

Clearly L is ρ -closed. Hence (by (12)) L is ρ -nowhere dense, so L is ρ -meager. Then each subset of L is p^* -closed. It follows that L is disconnected in (\mathcal{DB}_1, p^*) , which contradicts the fact that L is an arc.

REFERENCES

- [1] A. M. Bruckner, Differentiation of Real Functions, Springer, 1978.
- [2] J. G. Ceder and T. L. Pearson, On typical bounded Darboux Baire 1 functions, Acta Math. Acad. Sci. Hungar. 37 (1981), 339–348.
- [3] —, —, A survey of Darboux Baire 1 functions, Real Anal. Exchange 9 (1983–84), 179–194.
- [4] R. Engelking, General Topology, PWN, Warszawa, 1977.
- J. Jędrzejewski, Properties of functions relating to connectedness, Acta Univ., Łódź, 1984 (in Polish).
- [6] J. Lukeš, J. Maly and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1183, Springer, 1986.
- [7] T. Natkaniec, Almost Continuity, WSP, Bydgoszcz, 1992.
- [8] G. Petruska, An extension of the Darboux property and some typical properties of Baire 1 functions, Real Anal. Exchange 8 (1982–83), 62–64.

- [9] F. Roush, R. G. Gibson and K. R. Kellum, *Darboux retracts*, Proc. Amer. Math. Soc. 79 (1980), 491–494.
- [10] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54.
- [11] L. Zajíček, Porosity and σ -porosity, Real Anal. Exchange 13 (1987–88), 314–350.
- [12] —, Porosity, I-density topology and abstract density topologies, ibid. 12 (1986–87), 313–326.

Institute of Mathematics Łódź University of Technology Al. Politechniki 11 90-924 Łódź, Poland E-mail: bswiatek@ck-sg.p.lodz.pl

> Received 19 November 1998; revised 7 October 2003

(3663)