ON TOPOLOGICAL PROPERTIES OF THE SPACES OF DARBOUX BAIRE 1 FUNCTIONS AND BOUNDED DERIVATIVES

BY

BOŻENA ŚWIĄTEK (Łódź)

Abstract. We investigate the topological structure of the space \mathcal{DB}_1 of bounded Darboux Baire 1 functions on $[0, 1]$ with the metric of uniform convergence and with the p^*-topology. We also investigate some properties of the set Δ of bounded derivatives.

The class \mathcal{DB}_1 of bounded Darboux Baire 1 functions on $[0, 1]$ contains subclasses of functions important for differentiation theory such as derivatives. For that reason many mathematicians have investigated this class. In [2], [8], [3] “typical” properties in this class were considered, where a property Φ is called typical in \mathcal{DB}_1 if the class of all functions satisfying Φ is residual in \mathcal{DB}_1. Therefore, the topological structure of \mathcal{DB}_1 is worth investigating, and this is one of the purposes of this article. First we shall consider some properties of the set Δ of all bounded derivatives on $[0, 1]$. One of these properties (superporosity at each point of \mathcal{DB}_1) plays an important role in further considerations connected with \mathcal{DB}_1.

We apply the classical terminology and notation. We adopt the following definition of a Darboux function ([9], [5]):

A function $F : X \to Y$ (where X, Y are topological spaces) is called a Darboux function if $F(C)$ is a connected set for each connected set $C \subset X$.

By \mathbb{R}, \mathbb{Q}, \mathbb{N}, \mathbb{I} we denote the sets of real numbers, rational numbers, natural numbers, and the segment $[0, 1]$ respectively. The symbol m_1 stands for the Lebesgue measure on the real line. By C_f (resp. D_f) we denote the set of all points of continuity (resp. discontinuity) of a function $f : X \to Y$. For $x_0 \in Y$, we denote by const$_{x_0} : X \to Y$ the constantly x_0 function.

A subset $L \subset X$ is called an arc if there exists a homeomorphism h from \mathbb{I} onto L. The elements $h(0)$ and $h(1)$ are called the endpoints of L. The arc with endpoints a and b is denoted by $L(a, b)$.

We say that a set $A \subset \mathbb{I}$ is bilaterally c-dense in itself if $\text{card } A \cap (x, x+\delta) = \text{card } A \cap (x-\delta, x) = c$ for all $x \in A$ and $\delta > 0$.

Key words and phrases: Darboux Baire 1 function, p^*-topology, superporosity, derivative.
By \mathcal{D} (resp. \mathcal{B}_1) we denote the set of bounded Darboux (resp. Baire 1) functions $f : \mathbb{I} \to \mathbb{R}$. By g we denote the metric of uniform convergence.

We say that a function $f : \mathbb{I} \to \mathbb{R}$ satisfies the Young condition if

- for every $x \in (0, 1)$ there exist sequences $x_n \searrow x$ and $y_n \nearrow x$ such that both $f(x_n)$ and $f(y_n)$ converge to $f(x)$,
- there exists a sequence $x_n \searrow 0$ such that $f(x_n)$ converges to $f(0)$,
- there exists a sequence $y_n \nearrow 1$ such that $f(y_n)$ converges to $f(1)$.

We say that $A \subset X$ is a stationary set for the class \mathcal{F} of functions from X to Y provided that, for each $f \in \mathcal{F}$, if f is constant on A, then f must be constant on the whole domain.

If (X, d) is a metric space, then we denote by $B(x, R)$ the open ball with center at x and radius $r > 0$. Let $M \subset X$, $x \in X$, $R > 0$. Then $\gamma(x, R, M)$ denotes the supremum of the set of all $r > 0$ for which there exists $z \in X$ such that $B(z, r) \subset B(x, R) \setminus M$. The set M is called porous at x if $\limsup_{R \to 0^+} \gamma(x, R, M)/R > 0$. We say that $E \subset X$ is superporous at $x \in X$ if $E \cap F$ is porous at x whenever F is porous at x. A set $G \subset X$ is said to be p-open if $X \setminus G$ is superporous at each point of G. The system of all superporous sets at x forms an ideal. Therefore the system of all p-open sets forms a topology, called the p-topology ([12]). A set $H \subset X$ is said to be p^*-open if $H = G \setminus N$, where G is p-open and N is p-meager. The system of all p^*-open sets forms a topology, called the p^*-topology. Clearly the p^*-topology is stronger than the p-topology, and the p-topology is stronger than the topology generated by the metric d ([12]).

The notion of an abstract density topology (in the category sense) is understood as in [6].

It is known that $\Delta \subset DB_1$ ([1], [10]). It is easy to see that $\text{card}(\Delta) = \text{card}(DB_1) = c$. But it turns out that Δ is a “small” subset of DB_1 in the topological sense. To prove this we need two lemmas.

First from [7, Theorem 1.1.9(3) and Corollary 1.7.12] we infer

Lemma 1. If $f : [a, b] \to \mathbb{R}$ $(a < b)$ is a Darboux (resp. Baire 1) function, then for every $\alpha \in \mathbb{R}$, the functions $f^* = \max(f, \text{const}_\alpha)$ and $f_* = \min(f, \text{const}_\alpha)$ are Darboux (resp. Baire 1) functions.

Let $\{a_i\}_{i \in K}$ ($K = \{1, \ldots, n\}$) be a finite increasing sequence of real numbers from an interval (a, b). Put $F_1 = [a, a_1]$, $F_i = [a_{i-1}, a_i]$ for $i \in K \setminus \{1, n\}$, $F_n = [a_{n-1}, b]$. Obviously the family $\{F_i\}_{i \in K}$ is a closed covering of $[a, b]$.

It is easy to check

Lemma 2. Let $\{F_i\}_{i \in K}$ be the sequence of sets defined above and let $f_i : F_i \to \mathbb{R}$, where $i \in K$, be a family of compatible Darboux (resp. Baire 1)
functions. Then the common extension $f = \nabla_{i\in K} f_i$ is a Darboux (resp. Baire 1) function.

Theorem 3. The set Δ is superporous at each point of the space (DB_1, g).

Proof. Let $f \in DB_1$ and let $\Phi \subset DB_1$ be porous at f. Let $R > 0$. Put $r'_1 = \gamma(f, R, \Phi)/2 > 0$. Then there exist $r_1 > r'_1$ and $g \in DB_1$ such that
\begin{equation}
B(g, r_1) \subset B(f, R) \setminus \Phi.
\end{equation}
We shall show that there exists $h \in DB_1$ such that
\begin{equation}
B(h, r_1/8) \subset B(g, r_1) \setminus \Delta.
\end{equation}
Since $g \in B_1$, there exists a point $x_0 \in (0, 1)$ of continuity of g. Consequently, there exists $\delta > 0$ such that $[x_0 - \delta, x_0 + \delta] \subset (0, 1)$ and
\[
g([x_0 - \delta, x_0 + \delta]) \subset (g(x_0) - r_1/4, g(x_0) + r_1/4).
\]
Let $C_\delta \subset (x_0 - \delta/2, x_0 + \delta/2)$ be a bilaterally c-dense in itself F_σ set of null Lebesgue measure. Then ([1, Theorem II.2.4]) there exists a Darboux Baire 1 function $s : [x_0 - \delta/2, x_0 + \delta/2] \rightarrow \mathbb{I}$ such that $s(x) = 0$ for $x \notin C_\delta$ and $0 < s(x) \leq 1$ for $x \in C_\delta$.

Fix $\alpha \in (0, 1] \cap s(C_\delta)$. Put $s_1(x) = \min(1, \alpha^{-1}s(x))$ for $x \in [x_0 - \delta/2, x_0 + \delta/2]$. Obviously $s_1 : [x_0 - \delta/2, x_0 + \delta/2] \rightarrow \mathbb{I}$ is a bounded Darboux Baire 1 function ([1, Theorem II.3.2] and Lemma 1). Note that $1 \in s_1(C_\delta)$.

We define a function $\mu : [x_0 - \delta/2, x_0 + \delta/2] \rightarrow \mathbb{R}$ as follows:
\[
\mu(x) = \frac{r_1}{4} s_1(x) + g(x_0).
\]
Then $\mu : [x_0 - \delta/2, x_0 + \delta/2] \rightarrow [g(x_0), g(x_0) + r_1/4]$ is a bounded Darboux Baire 1 function ([1, Theorem II.3.2]). Note that $r_1/4 + g(x_0) \in \mu(C_\delta)$.

We define a function $h : \mathbb{I} \rightarrow \mathbb{R}$ as follows:
\[
h(x) = \begin{cases}
g(x) & \text{if } x \in \mathbb{I} \setminus (x_0 - \delta, x_0 + \delta), \\
l_1(x) & \text{if } x \in [x_0 - \delta, x_0 - \delta/2], \\
\mu(x) & \text{if } x \in [x_0 - \delta/2, x_0 + \delta/2], \\
l_2(x) & \text{if } x \in [x_0 + \delta/2, x_0 + \delta],
\end{cases}
\]
where l_1 and l_2 are linear functions such that $l_1(x_0 - \delta) = g(x_0 - \delta)$, $l_1(x_0 - \delta/2) = g(x_0)$, $l_2(x_0 + \delta) = g(x_0 + \delta)$ and $l_2(x_0 + \delta/2) = g(x_0)$. Then $h \in DB_1$ (Lemma 2). Note that $r_1/4 + g(x_0) \in h(C_\delta)$.

Notice that $g(h, g) \leq r_1/2$, so
\begin{equation}
B(h, r_1/8) \subset B(g, r_1).
\end{equation}

Now, assume that there exists a function $\xi \in B(h, r_1/8) \cap \Delta$. Then
\begin{equation}
(x_0 - \delta/2, x_0 + \delta/2) \setminus C_\delta \subset \xi^{-1}((-\infty, g(x_0) + r_1/8)).
\end{equation}
Let $z_0 \in C_\delta$ be such that $h(z_0) = r_1/4 + g(x_0)$. Hence $\xi(z_0) > g(x_0) + r_1/8$. Therefore $z_0 \in \xi^{-1}((g(x_0) + r_1/8, \infty)) \cap C_\delta$. Let $U_0 \subset (x_0 - \delta/2, x_0 + \delta/2)$ be a unilateral neighbourhood of z_0. Note that by (4),

$$U_0 \cap \xi^{-1}((g(x_0) + r_1/8, \infty)) \subset C_\delta,$$

so

$$m_1(U_0 \cap \xi^{-1}((g(x_0) + r_1/8, \infty))) \leq m_1(C_\delta) = 0.$$

Thus $\xi \notin \mathcal{M}_2$, which contradicts the fact that $\Delta \subset \mathcal{M}_2$. Hence $B(h, r_1/8) \cap \Delta = \emptyset$. This equality and (3) finish the proof of (2). From (1) and (2) we infer that

$$\gamma(f, R, \Delta \cup \Phi) \geq r_1/8.$$

Therefore

$$\limsup_{R \to 0^+} \frac{\gamma(f, R, \Delta \cup \Phi)}{R} \geq \frac{1}{8} > 0. \blacksquare$$

It is easy to observe that Δ is a nowhere dense and perfect subset of \mathcal{DB}_1. So its topological structure is similar to that of the Cantor set. There are several constructions of Darboux functions from $[0, 1]$ to \mathbb{R} in which the Cantor set plays an important role. This suggests that Δ can play a similar role in constructions of Darboux functions from \mathcal{DB}_1 to \mathbb{R}. It turns out that in some cases we can obtain analogous results (Theorem 4), in others it is impossible (Corollary 6).

Theorem 4. There exists a Darboux function $F : \mathcal{DB}_1 \to \mathbb{R}$ such that $D_F = \Delta$ and $F(B(g, \varepsilon) \cap \Delta) = \mathbb{R}$ for any $g \in \Delta$ and $\varepsilon > 0$.

Proof. In \mathbb{R} we define an equivalence relation \ast in the following way: $x \ast y \iff x - y \in \mathbb{Q}$. Denote by \mathcal{E} the set of equivalence classes of this relation and let $\xi : \mathcal{E} \to \mathbb{R}$ be a bijection. Define a function $\chi : \mathbb{R} \to \mathbb{R}$ by $\chi(x) = \xi([x]_\ast)$. Then χ is a Darboux function such that $\chi((a, b)) = \mathbb{R}$ for all $a < b$. Let $\varphi(x) = (1/x) \sin(1/x)$ for $x \in (0, \infty)$. We define $F : \mathcal{DB}_1 \to \mathbb{R}$ by

$$F(f) = \begin{cases} \chi(f(0)) & \text{if } f \in \Delta, \\ \varphi(\theta_{\Delta}(f)) & \text{if } f \in \mathcal{DB}_1 \setminus \Delta. \end{cases}$$

First we shall show that

(5)

F is a Darboux function.

Let $C \subset \mathcal{DB}_1$ be a connected set. Consider the following three cases.

Case 1: $C \subset \Delta$. Suppose that $F(C)$ is disconnected. Then there exist $r_1 < r_0 < r_2$ and $f_1, f_2 \in C$ such that $F(f_1) = r_1$, $F(f_2) = r_2$ and $F(f) \neq r_0$.

(1) A function $f : \mathbb{I} \to \mathbb{R}$ is said to be of class \mathcal{M}_2 if for each $a \in \mathbb{R}$ the set $E = \{x \in \mathbb{I} : f(x) > a\}$ is either empty or an F_σ and $m_1(E \cap (x - \delta, x)) > 0$ and $m_1(E \cap (x + \delta)) > 0$ for each $x \in E$ and each $\delta > 0$. Zahorski proved that every bounded derivative is of class \mathcal{M}_2 ([10]).
for each \(f \in C \). Consequently, there exists \(E^* \in \mathcal{E} \) such that \(\xi(E^*) = r_0 \). Then
\[
(6) \quad f(0) \notin E^* \quad \text{for each } f \in C.
\]
As \(r_1 \neq r_2 \), we have \(F(f_1) \neq F(f_2) \). Then \([f_1(0)]_\ast \neq [f_2(0)]_\ast \), so \(f_1(0) \neq f_2(0) \).
Let, for instance, \(f_1(0) < f_2(0) \). Then there exists \(y^* \in E^* \cap (f_1(0), f_2(0)) \).
By (6),
\[
C = \{ f \in C : f(0) < y^* \} \cup \{ f \in C : f(0) > y^* \},
\]
where the sets \(\{ f \in C : f(0) < y^* \} \) and \(\{ f \in C : f(0) > y^* \} \) are nonempty (they contain \(f_1, f_2 \) respectively) and separated, which contradicts the connectedness of \(C \).

Case 2: \(C \subset DB_1 \setminus \Delta \). If \(g_\Delta(C) \) is a singleton, so is \(F(C) \). In the opposite case, let \(r_1 = \inf\{ r > 0 : \exists f \in C \quad g_\Delta(f) = r \} \) and \(r_2 = \sup\{ r > 0 : \exists f \in C \quad g_\Delta(f) = r \} \). It is evident that \(r_1 \neq r_2 \) and \(r_1 \geq 0, r_2 > 0 \). Note that (by the connectedness of \(C \))
\[
\forall r \in (r_1, r_2) \quad C \cap \{ f \in DB_1 : g_\Delta(f) = r \} \neq \emptyset.
\]
Consider the following subcases:

(a) \(\forall f \in C \quad (g_\Delta(f) \neq r_1 \land g_\Delta(f) \neq r_2) \). Then \(F(C) = \varphi((r_1, r_2)) \) is connected because \(\varphi \) is continuous on \((0, \infty) \).

(b) \(\forall f \in C \quad g_\Delta(f) \neq r_1 \land (\exists f_0 \in C \quad g_\Delta(f_0) = r_2) \). Then \(F(C) = \varphi((r_1, r_2)) \) is connected.

(c) \((\exists f_0 \in C \quad g_\Delta(f_0) = r_1) \land (\forall f \in C \quad g_\Delta(f) \neq r_2) \). Since \(f_0 \in C \subset DB_1 \setminus \Delta \) and \(\Delta \) is a closed set, we have \(r_1 = g_\Delta(f_0) > 0 \). Hence \([r_1, r_2] \subset (0, \infty) \) and \(F(C) = \varphi([r_1, r_2]) \) is connected.

(d) \((\exists f_0 \in C \quad g_\Delta(f_0) = r_1) \land (\exists f_0 \in C \quad g_\Delta(f_0) = r_2) \). As in (c) we can show that \([r_1, r_2] \subset (0, \infty) \). Hence \(F(C) = \varphi([r_1, r_2]) \) is connected.

Case 3: \(C \cap \Delta \neq \emptyset \) and \(C \setminus \Delta \neq \emptyset \). Then there exists a function \(\hat{f} \in C \setminus \Delta \).
Let \(\hat{r} = g_\Delta(\hat{f}) > 0 \). Since \(C \) is connected, we have
\[
\forall r \in (0, \hat{r}) \quad C \cap \{ f \in DB_1 : g_\Delta(f) = r \} \neq \emptyset.
\]
Hence \(F(C) \supset \varphi((0, \hat{r})) = \mathbb{R} \) and \(F(C) = \mathbb{R} \) is connected. This ends the proof of (5).

Now we shall show that
\[
(7) \quad \forall g \in \Delta \quad \forall \varepsilon > 0 \quad F(K(g, \varepsilon) \cap \Delta) = \mathbb{R}.
\]
Indeed, if \(g \in \Delta \) and \(\varepsilon > 0 \), then
\[
F(K(g, \varepsilon) \cap \Delta) \supset F(\{ g + \alpha : \alpha \in (-\varepsilon, \varepsilon) \}) = \chi((g(0) - \varepsilon, g(0) + \varepsilon)) = \mathbb{R}.
\]
It is easy to see that \(DB_1 \setminus \Delta \subset C_F \). From (7) we infer that \(\Delta \subset D_F \), so \(D_F = \Delta \), which ends the proof. \(\blacksquare \)
It is known that for each perfect set $P \subset \mathbb{I}$ there exists a bounded Darboux Baire 1 function $h : \mathbb{I} \to \mathbb{R}$ such that h vanishes off P but does not vanish identically ([1, Theorem II.2.4]). This fact leads to the question: Does there exist a Darboux function $F : \mathcal{DB}_1 \to \mathbb{R}$ which vanishes off Δ but does not vanish identically? The answer is negative (Corollary 6).

The above question is connected with the theory of stationary sets. It is known that E is a stationary set for the family of Darboux functions $f : \mathbb{I} \to \mathbb{R}$ if and only if $\text{card}(\mathbb{I} \setminus E) < c$ ([1, Theorem XII.1.1]). But it turns out that for the family of real Darboux functions defined on \mathcal{DB}_1 (with the metric of uniform convergence) this characterization of stationary sets fails.

Theorem 5. In the space $(\mathcal{DB}_1, \varrho)$ the set $\Delta' = \mathcal{DB}_1 \setminus \Delta$ is stationary for the class of real Darboux functions.

Proof. Let $F : \mathcal{DB}_1 \to \mathbb{R}$ be a Darboux function such that $F(\Delta') = \{\alpha_0\}$ (where $\alpha_0 \in \mathbb{R}$). Let $g \in \Delta$. To prove the theorem it is sufficient to construct an arc $L = L(g, h)$ such that $L \setminus \{g\} \subset \Delta'$.

Since $g \in \mathcal{B}_1$, there exists a point $x_0 \in (0, 1)$ of continuity of g. For $r \in \mathbb{I}$ we define $t_r : \mathbb{I} \to \mathbb{R}$ in the following way:

$$t_r(x) = \begin{cases} g(x_0) + r & \text{if } x = x_0, \\ g(x) + r \sin \frac{1}{x-x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Obviously, $t_r (r \in \mathbb{I})$ is a bounded Baire 1 function. It is not difficult to see that it satisfies the Young condition, so it is a Darboux function ([1]). Hence $t_r \in \mathcal{DB}_1$ for $r \in \mathbb{I}$.

Note that $t_r = g + d_r$ ($r \in \mathbb{I}$), where

$$d_r(x) = \begin{cases} r & \text{if } x = x_0, \\ r \sin \frac{1}{x-x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

We shall prove that

$$d_r \notin \Delta \quad \text{for } r \in (0, 1). \quad (8)$$

Indeed, for a fixed $r^* \in (0, 1]$, define $k : \mathbb{I} \to \mathbb{R}$ by

$$k(x) = \begin{cases} 0 & \text{if } x = x_0, \\ r^*(x-x_0)^2 \cos \frac{1}{x-x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Then

$$k'(x) = \begin{cases} 0 & \text{if } x = x_0, \\ 2r^*(x-x_0) \cos \frac{1}{x-x_0} + r^* \sin \frac{1}{x-x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$

Consider a function $h : \mathbb{I} \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} 0 & \text{if } x = x_0, \\ 2r^*(x-x_0) \cos \frac{1}{x-x_0} & \text{if } x \in \mathbb{I} \setminus \{x_0\}. \end{cases}$$
Then h is continuous and bounded on I, so $h \in \Delta$. Therefore also $f = k' - h \in \Delta$. Hence $d_r \notin \Delta$, because the difference
\[
d_r(x) - f(x) = \begin{cases}
 r^* & \text{if } x = x_0, \\
 0 & \text{if } x \in I \setminus \{x_0\},
\end{cases}
\]
is not a derivative (it does not have the Darboux property). In this way we have proved condition (8).

Since $d_r = t_r - g$ for $r \in (0, 1]$ and $g \in \Delta$, it follows that t_r is not a derivative for each $r \in (0, 1]$.

Note that for any $r_1, r_2 \in I$,
\[
\varrho(t_{r_1}, t_{r_2}) = |r_1 - r_2|.
\]
Therefore the function $\zeta : I \to \{t_r : r \in I\}$ given by $\zeta(r) = t_r$ is a homeomorphism. Hence $L = \{t_r : r \in I\}$ is an arc in DB_1 such that $L = L(g, t_1)$ and $L \setminus \{g\} = \{t_r : r \in (0, 1]\} \subset \Delta'$.

Corollary 6. There does not exist a Darboux function $F : DB_1 \to \mathbb{R}$ which is zero for $t \in \Delta'$, but not identically zero.

Now we shall investigate the topological structure of the space DB_1 with the metric of uniform convergence and the p^*-topology.

It is easy to see that (DB_1, ϱ) is a Baire space. So from [12, Theorem 2], we infer

Corollary 7. The p^*-topology is an abstract density topology (in the category sense) on (DB_1, ϱ).

Obviously (DB_1, ϱ) is a perfectly normal space. For the p^*-topology we have

Theorem 8. (DB_1, p^*) is a Hausdorff space but it is not regular.

Proof. Since the p^*-topology is stronger than the ϱ-topology ([12]), we deduce that (DB_1, p^*) is a Hausdorff space.

Suppose that (DB_1, p^*) is a regular space. For $q \in \mathbb{Q}$ put
\[
A_q = \{f \in DB_1 : f(0) = q\}, \quad F = \bigcup_{q \in \mathbb{Q}} A_q.
\]
Obviously $F \subset DB_1$. Note that
\[
F \text{ is } \varrho \text{-meager.}
\]

To see this, it suffices to prove that A_q is ϱ-nowhere dense for each $q \in \mathbb{Q}$. So fix $q_0 \in \mathbb{Q}$ and let $B(g, \varepsilon)$ be an arbitrary open ball in (DB_1, ϱ). We shall show that there exists a ϱ-open set $U \subset B(g, \varepsilon) \setminus A_{q_0}$. If $B(g, \varepsilon) \cap A_{q_0} = \emptyset$, we obviously put $U = B(g, \varepsilon)$. Hence, we may assume that there exists $f_0 \in B(g, \varepsilon) \cap A_{q_0}$. Put $\delta = \varepsilon - \varrho(g, f_0) > 0$ and $U = B(f_0 + \delta/2, \delta/4)$.

(10)

\[
F \text{ is } \varrho \text{-meager.}
\]
Clearly $U \subset B(g, \varepsilon)$. If $h \in U$, then $h(0) > q_0 + \delta/4$. Hence $h \not\in A_{q_0}$, so $U \cap A_{q_0} = \emptyset$. The proof of (10) is thus finished. Hence ([12, Theorem 2])

$$F \text{ is } p^*\text{-closed.}$$

Now we shall show that

$$\tag{11} F \text{ is } g\text{-dense.}$$

Indeed, let $B(g, \varepsilon)$ be an arbitrary open ball in \mathcal{DB}_1. Let $q^* \in (g(0) - \varepsilon, g(0) + \varepsilon) \cap \mathbb{Q}$. Put $h^*(x) = g(x) - g(0) + q^*$ for $x \in I$. Clearly $h^* \in \mathcal{DB}_1$ ([1, Theorem II.3.2]) and $h^*(0) = q^* \in \mathbb{Q}$, so $h^* \in A_{q^*} \subset F$. Of course $g(g, h^*) < \varepsilon$, so $h^* \in B(g, \varepsilon)$. Hence $F \cap B(g, \varepsilon) \neq \emptyset$, which proves (11).

Now, let $f^* \in \mathcal{DB}_1 \setminus F$. Since (\mathcal{DB}_1, p^*) is (by assumption) a regular space, there exist p^*-open and disjoint sets U_1, U_2 such that $F \subset U_1$ and $f^* \in U_2$. Then ([12, Theorem 2])

$$U_1 = H_1 \setminus N_1, \quad U_2 = H_2 \setminus N_2,$$

where H_1, H_2 are p-open and N_1, N_2 are p-meager.

From $U_1 \cap U_2 = \emptyset$ we conclude that $(H_1 \cap H_2) \setminus (N_1 \cup N_2) = \emptyset$. Since (\mathcal{DB}_1, g) (and hence (\mathcal{DB}_1, p), see e.g. [12]) is a Baire space, we deduce that $H_1 \cap H_2 = \emptyset$. Therefore

$$F \subset U_1 \subset H_1 \subset \mathcal{DB}_1 \setminus H_2.$$

Since H_2 is a p-open set, we conclude that F is porous at f^* (in the space (\mathcal{DB}_1, g)). This contradicts (11).

In the proof of Theorem 5 we have constructed an arc in \mathcal{DB}_1. This leads to the question: Are the spaces considered arcwise connected? Theorems 9 and 12 give an answer to this question.

Theorem 9. The space (\mathcal{DB}_1, g) is arcwise connected.

Proof. Let $f_1, f_2 \in \mathcal{DB}_1$ and $f_1 \neq f_2$. Consider the following cases:

Case 1: $f_1 = \text{const}_{t_0}$ or $f_2 = \text{const}_{t_0}$. Assume, for instance, that $f_1 = \text{const}_{t_0}$. Put $L = \{af_2 : a \in I\}$. Then L is an arc in (\mathcal{DB}_1, g) such that $L = L(f_1, f_2)$.

Case 2: $f_1 \neq \text{const}_{t_0}$ and $f_2 \neq \text{const}_{t_0}$. Then there are two possibilities:

- There exists $r^* \in \mathbb{R}$ such that $f_1 = r^*f_2$. Since $f_1 \neq f_2$, we have $r^* \neq 1$. Assume, for instance, that $r^* > 1$ (the other case is similar). Put $L = \{af_2 : a \in [1, r^*]\}$. Then L is an arc in (\mathcal{DB}_1, g) such that $L = L(f_2, f_1)$.

- There is no $r \in \mathbb{R}$ such that $f_1 = rf_2$. Put $L_1 = \{af_1 : a \in I\}$ and $L_2 = \{af_2 : a \in I\}$. Then L_1 and L_2 are arcs in (\mathcal{DB}_1, g) such that $L_1 = L(\text{const}_{t_0}, f_1), L_2 = L(\text{const}_{t_0}, f_2)$ and $L_1 \cap L_2 = \{\text{const}_{t_0}\}$. Thus $L_1 \cup L_2$ is an arc in (\mathcal{DB}_1, g) such that $L_1 \cup L_2 = L(f_1, f_2)$. ■
Lemma 10. For each \(f \in \mathcal{DB}_1 \) and each \(r > 0 \), there exist arcs \(L_1, L_2, L_3 \) in the space \((\mathcal{DB}_1, \mathcal{g}) \) contained in \(B(f, r) \) such that \(L_i \cap L_j = \{ f \} \) for \(i, j \in \{ 1, 2, 3 \}, i \neq j \).

Proof. Let \(f \in \mathcal{DB}_1 \) and let \(r > 0 \). Consider the following cases:

- \(f \) is not a constant function. Put \(M = \sup \{|f(x)| : x \in \mathbb{I}\} > 0 \). Then \(L_1 = \{ f + a : a \in [0, r/2] \} \), \(L_2 = \{ f + a : a \in [-r/2, 0] \} \) and \(L_3 = \{ af : a \in [1, 1 + r/(2M)] \} \) satisfy the required conditions.

- \(f \) is a constant function. Put \(L_1 = \{ f + a : a \in [0, r/2] \} \), \(L_2 = \{ f + a : a \in [-r/2, 0] \} \) and \(L_3 = \{ l_a : a \in [0, r/2] \} \), where \(l_a(x) = ax + f(x) \), \(x \in \mathbb{I} \). Then \(L_1, L_2, L_3 \) satisfy the required conditions.

Lemma 11. Let \(X \) be an arbitrary set and let \(T \) and \(T' \) be two topologies on \(X \) such that \(T \subset T' \) and \((X, T) \) is a Hausdorff space. Then, if \(L \) is an arc in \((X, T') \), it is also an arc in \((X, T) \).

Theorem 12. The space \((\mathcal{DB}_1, p^*) \) is not arcwise connected. Moreover, there exists no arc in \((\mathcal{DB}_1, p^*) \).

Proof. Suppose that there exists an arc \(L \) in \((\mathcal{DB}_1, p^*) \). From Lemma 11, we infer that \(L \) is an arc in \((\mathcal{DB}_1, \mathcal{g}) \). Now we show that

\[
L \text{ has empty interior in } (\mathcal{DB}_1, \mathcal{g}).
\]

Indeed, suppose that there exists an open ball \(B(f, r) \subset L \). By Lemma 10 there exist arcs \(L_1, L_2, L_3 \) in \((\mathcal{DB}_1, \mathcal{g}) \), contained in \(B(f, r) \), such that \(L_i \cap L_j = \{ f \} \) for \(i \neq j \). Then \(L_1, L_2, L_3 \) are arcs in \((L, \mathcal{g}) \). It is not difficult to check that this is impossible.

Clearly \(L \) is \(\mathcal{g} \)-closed. Hence (by (12)) \(L \) is \(\mathcal{g} \)-nowhere dense, so \(L \) is \(\mathcal{g} \)-meager. Then each subset of \(L \) is \(p^* \)-closed. It follows that \(L \) is disconnected in \((\mathcal{DB}_1, p^*) \), which contradicts the fact that \(L \) is an arc.

References

Institute of Mathematics
Łódź University of Technology
Al. Politechniki 11
90-924 Łódź, Poland
E-mail: bswiatek@ck-sg.p.lodz.pl

Received 19 November 1998;
revised 7 October 2003