# COLLOQUIUM MATHEMATICUM 

## A NOTE ON CHARACTERIZATIONS OF RINGS OF CONSTANTS WITH RESPECT TO DERIVATIONS

BY<br>PIOTR JĘDRZEJEWICZ (Toruń)


#### Abstract

Let $A$ be a commutative algebra without zero divisors over a field $k$. If $A$ is finitely generated over $k$, then there exist well known characterizations of all $k$-subalgebras of $A$ which are rings of constants with respect to $k$-derivations of $A$. We show that these characterizations are not valid in the case when the algebra $A$ is not finitely generated over $k$.


1. Introduction. Let $k$ be a field and let $A$ be a $k$-domain (that is, a commutative $k$-algebra without zero divisors). We denote by $A_{0}$ the field of fractions of $A$. If char $(k)=p>0$, then we denote by $A^{p}$ the set $\left\{a^{p} ; a \in A\right\}$. A $k$-linear mapping $d: A \rightarrow A$ is called a $k$-derivation of $A$ if $d(a b)=$ $a d(b)+b d(a)$ for all $a, b \in A$. If $d$ is a $k$-derivation of $A$, then we denote by $A^{d}$ the ring of constants of $d$, that is,

$$
A^{d}=\{a \in A ; d(a)=0\}
$$

The following two known theorems describe all $k$-subalgebras of $A$ which are rings of constants with respect to derivations of $A$.

Theorem 1 ([2], [3]). Let $A$ be a finitely generated $k$-domain, where $k$ is a field of characteristic zero. Let $B$ be a $k$-subalgebra of $A$. The following conditions are equivalent:
(1) There exists a $k$-derivation $d$ of $A$ such that $B=A^{d}$.
(2) The ring $B$ is integrally closed in $A$ and $B_{0} \cap A=B$.

Theorem 2 ([1]). Let $A$ be a finitely generated $k$-domain, where $k$ is a field of characteristic $p>0$. Let $B$ be a $k$-subalgebra of $A$. The following conditions are equivalent:
(1) There exists a $k$-derivation $d$ of $A$ such that $B=A^{d}$.
(2) $k\left[A^{p}\right] \subseteq B$ and $B_{0} \cap A=B$.

It is clear that in the above theorems the implications $(1) \Rightarrow(2)$ hold for any, not necessarily finitely generated, $k$-domain $A$. There is a natural question if there exists an infinitely generated $k$-domain $A$ such that some

[^0]$k$-subalgebra $B$ of $A$ satisfies (2) and is not the ring of constants of any $k$-derivation of $A$. In this note we will give a positive answer to this question.
2. The case of characteristic zero. Let us start from the following proposition.

Proposition 3. Let $A$ be a $k$-domain, where $k$ is a field of characteristic zero. Let $\delta: A_{0} \rightarrow A_{0}$ be a $k$-derivation and let $B=\left(A_{0}\right)^{\delta} \cap A$. Then $B$ is a $k$-subalgebra of $A$ such that $B$ is integrally closed in $A$ and $B_{0} \cap A=B$. In other words, $B$ satisfies condition (2) of Theorem 1.

Proof. Obviously $B \subset B_{0} \cap A$. On the other hand, $B \subset\left(A_{0}\right)^{\delta}$, so $B_{0} \subset$ $\left(A_{0}\right)^{\delta}$, and then $B_{0} \cap A \subset\left(A_{0}\right)^{\delta} \cap A=B$.

If $x \in A$ is integral over $B$, then $x$ is algebraic over $\left(A_{0}\right)^{\delta}$, because $B \subset\left(A_{0}\right)^{\delta}$. The subfield $\left(A_{0}\right)^{\delta}$, as the field of constants of a $k$-derivation of $A_{0}$, is algebraically closed in $A_{0}$ (see for example [2]), so $x$ belongs to $\left(A_{0}\right)^{\delta}$. Thus $x \in\left(A_{0}\right)^{\delta} \cap A=B$. This shows that $B$ is integrally closed in $A$.

Example 4. Let $A$ be the polynomial ring $k\left[x_{0}, x_{1}, x_{2}, \ldots\right]$, where $k$ is a field of characteristic zero. Consider the $k$-derivation $\delta$ of $A_{0}$ defined by

$$
\delta\left(x_{0}\right)=1 \quad \text { and } \quad \delta\left(x_{i}\right)=1 / x_{i} \quad \text { for } i=1,2, \ldots
$$

Then the ring $B=\left(A_{0}\right)^{\delta} \cap A$ satisfies condition (2) of Theorem 1 and is not the ring of constants of any $k$-derivation of $A$.

Proof. We already know (by Proposition 3) that $B$ satisfies condition (2) of Theorem 1.

Suppose that $B=A^{d}$, where $d$ is a $k$-derivation of $A$. Then $d\left(x_{i}^{2}-2 x_{0}\right)=$ 0 for $i=1,2, \ldots$, because every polynomial of the form $x_{i}^{2}-2 x_{0}$, with $i \geq 1$, belongs to $B$. So, $x_{i} d\left(x_{i}\right)=d\left(x_{0}\right)$ for all $i \geq 1$, and we see that each variable $x_{i}$, for $i \geq 1$, divides the polynomial $d\left(x_{0}\right)$. Hence, $d\left(x_{0}\right)=0$, and consequently $d\left(x_{i}\right)=0$ for $i=1,2, \ldots$ This implies that $d=0$, that is, $B=A$. But this is a contradiction, because $x_{0} \notin B$.
3. The case of positive characteristic. In this case we have the following evident proposition.

Proposition 5. Let $A$ be a $k$-domain, where $k$ is a field of characteristic $p>0$. Let $\delta: A_{0} \rightarrow A_{0}$ be a $k$-derivation and let $B=\left(A_{0}\right)^{\delta} \cap A$. Then $B$ is a $k$-subalgebra of $A$ such that $k\left[A^{p}\right] \subseteq B$ and $B_{0} \cap A=B$. In other words, $B$ satisfies condition (2) of Theorem 2.

Using the above proposition and repeating the proof of Example 4 we obtain the following two examples.

Example 6. Let $A$ be the polynomial ring $k\left[x_{0}, x_{1}, x_{2}, \ldots\right]$, where $k$ is a field of characteristic 2 . Consider the $k$-derivation $\delta$ of $A_{0}$ defined by

$$
\delta\left(x_{0}\right)=1 \quad \text { and } \quad \delta\left(x_{i}\right)=1 / x_{i}^{2} \quad \text { for } i=1,2, \ldots
$$

Then the ring $B=\left(A_{0}\right)^{\delta} \cap A$ satisfies condition (2) of Theorem 2 and is not the ring of constants of any $k$-derivation of $A$.

Example 7. Let $A$ be the polynomial ring $k\left[x_{0}, x_{1}, x_{2}, \ldots\right]$, where $k$ is a field of characteristic $p>2$. Consider the $k$-derivation $\delta$ of $A_{0}$ defined by

$$
\delta\left(x_{0}\right)=1 \quad \text { and } \quad \delta\left(x_{i}\right)=1 / x_{i} \quad \text { for } i=1,2, \ldots
$$

Then the ring $B=\left(A_{0}\right)^{\delta} \cap A$ satisfies condition (2) of Theorem 2 and is not the ring of constants of any $k$-derivation of $A$.
4. A question. Let $k$ be an arbitrary field and let $A$ be a $k$-domain. If $D$ is a family of $k$-derivations of $A$, then we denote by $A^{D}$ the ring of constants of $A$ with respect to $D$, that is, $A^{D}=\bigcap_{d \in D} A^{d}$. Repeating the proof of Example 4 it is easy to deduce that no algebra $B$ in the above examples is of the form $A^{D}$, where $D$ is a family of $k$-derivations of $A$. Let us end this note with the following question.

Question 8. Let $A$ be a $k$-domain, where $k$ is a field, and let $D$ be a family of $k$-derivations of $A$. Is it true that there exists a $k$-derivation $d$ of $A$ such that $A^{d}=A^{D}$ ?

If the algebra $A$ is finitely generated over $k$, then of course the answer to this question is affirmative (this is an easy consequence of Theorems 1 and 2 ). If $A$ is not finitely generated, then we do not know the answer even in the case when the family $D$ has only two derivations.

## REFERENCES

[1] P. Jędrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501-5511.
[2] A. Nowicki, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47-55.
[3] -, Polynomial Derivations and Their Rings of Constants, UMK, Toruń, 1994.
Faculty of Mathematics and Computer Science
N. Copernicus University

87-100 Toruń, Poland
E-mail: pjedrzej@mat.uni.torun.pl


[^0]:    2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N05.

