VOL. 99

2004

NO. 1

A NOTE ON CHARACTERIZATIONS OF RINGS OF CONSTANTS WITH RESPECT TO DERIVATIONS

ΒY

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. Let A be a commutative algebra without zero divisors over a field k. If A is finitely generated over k, then there exist well known characterizations of all k-subalgebras of A which are rings of constants with respect to k-derivations of A. We show that these characterizations are not valid in the case when the algebra A is not finitely generated over k.

1. Introduction. Let k be a field and let A be a k-domain (that is, a commutative k-algebra without zero divisors). We denote by A_0 the field of fractions of A. If char(k) = p > 0, then we denote by A^p the set $\{a^p; a \in A\}$. A k-linear mapping $d : A \to A$ is called a k-derivation of A if d(ab) = ad(b) + bd(a) for all $a, b \in A$. If d is a k-derivation of A, then we denote by A^d the ring of constants of d, that is,

$$A^{d} = \{ a \in A; \, d(a) = 0 \}.$$

The following two known theorems describe all k-subalgebras of A which are rings of constants with respect to derivations of A.

THEOREM 1 ([2], [3]). Let A be a finitely generated k-domain, where k is a field of characteristic zero. Let B be a k-subalgebra of A. The following conditions are equivalent:

- (1) There exists a k-derivation d of A such that $B = A^d$.
- (2) The ring B is integrally closed in A and $B_0 \cap A = B$.

THEOREM 2 ([1]). Let A be a finitely generated k-domain, where k is a field of characteristic p > 0. Let B be a k-subalgebra of A. The following conditions are equivalent:

- (1) There exists a k-derivation d of A such that $B = A^d$.
- (2) $k[A^p] \subseteq B$ and $B_0 \cap A = B$.

It is clear that in the above theorems the implications $(1)\Rightarrow(2)$ hold for any, not necessarily finitely generated, k-domain A. There is a natural question if there exists an infinitely generated k-domain A such that some

²⁰⁰⁰ Mathematics Subject Classification: Primary 12H05; Secondary 13N05.

k-subalgebra B of A satisfies (2) and is not the ring of constants of any k-derivation of A. In this note we will give a positive answer to this question.

2. The case of characteristic zero. Let us start from the following proposition.

PROPOSITION 3. Let A be a k-domain, where k is a field of characteristic zero. Let $\delta : A_0 \to A_0$ be a k-derivation and let $B = (A_0)^{\delta} \cap A$. Then B is a k-subalgebra of A such that B is integrally closed in A and $B_0 \cap A = B$. In other words, B satisfies condition (2) of Theorem 1.

Proof. Obviously $B \subset B_0 \cap A$. On the other hand, $B \subset (A_0)^{\delta}$, so $B_0 \subset (A_0)^{\delta}$, and then $B_0 \cap A \subset (A_0)^{\delta} \cap A = B$.

If $x \in A$ is integral over B, then x is algebraic over $(A_0)^{\delta}$, because $B \subset (A_0)^{\delta}$. The subfield $(A_0)^{\delta}$, as the field of constants of a k-derivation of A_0 , is algebraically closed in A_0 (see for example [2]), so x belongs to $(A_0)^{\delta}$. Thus $x \in (A_0)^{\delta} \cap A = B$. This shows that B is integrally closed in A.

EXAMPLE 4. Let A be the polynomial ring $k[x_0, x_1, x_2, \ldots]$, where k is a field of characteristic zero. Consider the k-derivation δ of A_0 defined by

 $\delta(x_0) = 1$ and $\delta(x_i) = 1/x_i$ for i = 1, 2, ...

Then the ring $B = (A_0)^{\delta} \cap A$ satisfies condition (2) of Theorem 1 and is not the ring of constants of any k-derivation of A.

Proof. We already know (by Proposition 3) that B satisfies condition (2) of Theorem 1.

Suppose that $B = A^d$, where d is a k-derivation of A. Then $d(x_i^2 - 2x_0) = 0$ for i = 1, 2, ..., because every polynomial of the form $x_i^2 - 2x_0$, with $i \ge 1$, belongs to B. So, $x_i d(x_i) = d(x_0)$ for all $i \ge 1$, and we see that each variable x_i , for $i \ge 1$, divides the polynomial $d(x_0)$. Hence, $d(x_0) = 0$, and consequently $d(x_i) = 0$ for i = 1, 2, ... This implies that d = 0, that is, B = A. But this is a contradiction, because $x_0 \notin B$.

3. The case of positive characteristic. In this case we have the following evident proposition.

PROPOSITION 5. Let A be a k-domain, where k is a field of characteristic p > 0. Let $\delta : A_0 \to A_0$ be a k-derivation and let $B = (A_0)^{\delta} \cap A$. Then B is a k-subalgebra of A such that $k[A^p] \subseteq B$ and $B_0 \cap A = B$. In other words, B satisfies condition (2) of Theorem 2.

Using the above proposition and repeating the proof of Example 4 we obtain the following two examples.

EXAMPLE 6. Let A be the polynomial ring $k[x_0, x_1, x_2, \ldots]$, where k is a field of characteristic 2. Consider the k-derivation δ of A_0 defined by

 $\delta(x_0) = 1$ and $\delta(x_i) = 1/x_i^2$ for i = 1, 2, ...

Then the ring $B = (A_0)^{\delta} \cap A$ satisfies condition (2) of Theorem 2 and is not the ring of constants of any k-derivation of A.

EXAMPLE 7. Let A be the polynomial ring $k[x_0, x_1, x_2, ...]$, where k is a field of characteristic p > 2. Consider the k-derivation δ of A_0 defined by

$$\delta(x_0) = 1$$
 and $\delta(x_i) = 1/x_i$ for $i = 1, 2, ...$

Then the ring $B = (A_0)^{\delta} \cap A$ satisfies condition (2) of Theorem 2 and is not the ring of constants of any k-derivation of A.

4. A question. Let k be an arbitrary field and let A be a k-domain. If D is a family of k-derivations of A, then we denote by A^D the ring of constants of A with respect to D, that is, $A^D = \bigcap_{d \in D} A^d$. Repeating the proof of Example 4 it is easy to deduce that no algebra B in the above examples is of the form A^D , where D is a family of k-derivations of A. Let us end this note with the following question.

QUESTION 8. Let A be a k-domain, where k is a field, and let D be a family of k-derivations of A. Is it true that there exists a k-derivation d of A such that $A^d = A^D$?

If the algebra A is finitely generated over k, then of course the answer to this question is affirmative (this is an easy consequence of Theorems 1 and 2). If A is not finitely generated, then we do not know the answer even in the case when the family D has only two derivations.

REFERENCES

- P. Jędrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501–5511.
- [2] A. Nowicki, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47–55.
- [3] —, Polynomial Derivations and Their Rings of Constants, UMK, Toruń, 1994.

Faculty of Mathematics and Computer Science N. Copernicus University 87-100 Toruń, Poland E-mail: pjedrzej@mat.uni.torun.pl

Received 2 December 2003

(4402)