VOL. 99

2004

NO. 1

ON MARCZEWSKI-BURSTIN REPRESENTABLE ALGEBRAS

BҮ

MAREK BALCERZAK (Łódź), ARTUR BARTOSZEWICZ (Łódź) and PIOTR KOSZMIDER (São Paulo)

Abstract. We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.

Introduction. Marczewski in [Sz] introduced operations S and S_0 , and applied them to the family of all perfect subsets of a Polish space X. The results of these operations yielded an interesting pair of a σ -algebra and a σ -ideal of sets, investigated by several authors (see e.g. [Mo], [Mi]). As observed in [P] (see also [BBRW]), if the same operations are applied to an arbitrary family \mathcal{F} of nonempty subsets of a set $X \neq \emptyset$, that is,

$$S(\mathcal{F}) = \{ E \subseteq X \colon (\forall A \in \mathcal{F}) (\exists B \in \mathcal{F}) B \subseteq A \cap E \lor B \subseteq A \setminus E \}, \\ S_0(\mathcal{F}) = \{ E \subseteq X \colon (\forall A \in \mathcal{F}) (\exists B \in \mathcal{F}) B \subseteq A \setminus E \},$$

then $S(\mathcal{F})$ and $S_0(\mathcal{F})$ constitute an algebra and an ideal of subsets of X, respectively. An old result of Burstin [Bu] states that the pair consisting of the σ -algebra of Lebesgue measurable sets in \mathbb{R} and the σ -ideal of Lebesgue null sets in \mathbb{R} is of the form $(S(\mathcal{F}), S_0(\mathcal{F}))$, where \mathcal{F} consists of the perfect sets of positive measure. Note that Burstin worked earlier than and independently of Marczewski, and he did not use operations S and S_0 explicitly.

A new direction of study that appeared in [R] and [BR] was devoted to characterization of the families $S(\mathcal{F})$, $S_0(\mathcal{F})$ when \mathcal{F} denotes the collection of perfect sets in various known topologies. Another trend initiated in [BBRW], [BBC], [BET] was concerned with the problem of how to express known algebras and/or ideals of sets in the form $S(\mathcal{F})$, $S_0(\mathcal{F})$ where sometimes \mathcal{F} is required to be a "good" family in an appropriate sense. This is the question of *Marczewski–Burstin representability* (for short, MB-representability) of a given algebra of sets, or of a pair consisting of an algebra and an ideal of sets.

²⁰⁰⁰ Mathematics Subject Classification: 28A05, 06E05, 03E50.

 $Key\ words\ and\ phrases:$ algebra of sets, MB-representation, Martin's Axiom, Boolean algebra.

Recently, the following algebras have been proved MB-representable:

- the algebra of sets with the Baire property in a Polish space [BET],
- the interval algebra on [0, 1) [BBRW],
- the algebra of Borel sets in an uncountable Polish space (under $2^{\omega} = \omega_1$ and $2^{\omega_1} = \omega_2$) [BBC],
- the algebra of clopen sets in some topological spaces [BR1].

The latest result of Baldwin [Bd] states that if a pair $(\mathcal{A}, \mathcal{I})$ of an algebra and an ideal has the hull property then $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})$ and $\mathcal{I} = S_0(\mathcal{A} \setminus \mathcal{I})$, which (by the argument based on mutual coinitiality of generating families [BBRW]) easily recovers the results of Burstin [Bu] and Brown–Elalaoui Talibi [BET]. For other recent results concerning operations S, S_0 and MBrepresentability, see [Sch], [ET], [BC]. Interestingly, Wroński [W] proved that the maximal number of different algebras which can be obtained by the successive repetitions of the operation $S((\cdot) \setminus \{\emptyset\})$ is three.

In [BBC] it was shown that if $2^{\kappa} = \kappa^+$ (a part of GCH) and $|X| = \kappa \ge \omega$ then there is a non-MB-representable algebra on X. In the present paper, we propose another method of constructing non-MB-representable algebras. In particular we obtain one such algebra on ω in ZFC. Surprisingly, we show that every Boolean algebra is isomorphic to an MB-representable algebra of sets.

Results. Let $X \neq \emptyset$. For an algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ we put

 $\mathcal{H}(\mathcal{A}) = \{ A \in \mathcal{A} \colon (\forall B \subseteq A) B \in \mathcal{A} \};$

this is the ideal of sets that are hereditary in \mathcal{A} .

THEOREM 1. If an algebra $\mathcal{A} \subseteq \mathcal{P}(X), \ \mathcal{A} \neq \mathcal{P}(X), \ satisfies the condition$ (*) $(\forall B \in \mathcal{P}(X) \setminus \mathcal{H}(\mathcal{A}))(\exists A \in \mathcal{A} \setminus \mathcal{H}(\mathcal{A}))A \subseteq B,$

then \mathcal{A} is not MB-representable.

Proof. Suppose \mathcal{A} is MB-representable and $\mathcal{A} = S(\mathcal{F})$ for some $\mathcal{F} \subseteq \mathcal{P}(X) \setminus \{\emptyset\}$. First observe that for each $B \in \mathcal{P}(X) \setminus \mathcal{H}(\mathcal{A})$ there is an $F \in \mathcal{F}$ such that $F \subseteq B$. Indeed, suppose there is a $B \in \mathcal{P}(X) \setminus \mathcal{H}(\mathcal{A})$ with $F \setminus B \neq \emptyset$ for each $F \in \mathcal{F}$. By (*), we pick an $A \in \mathcal{A} \setminus \mathcal{H}(\mathcal{A})$ contained in B. Since $A \in S(\mathcal{F})$ and $F \setminus A \neq \emptyset$ for each $F \in \mathcal{F}$, we have $A \in S_0(\mathcal{F}) \subseteq \mathcal{H}(S(\mathcal{F})) = \mathcal{H}(\mathcal{A})$, a contradiction.

Next, we show that $\mathcal{P}(X) = S(\mathcal{F})$, which is also a contradiction. Let $Y \in \mathcal{P}(X)$. Take an $F \in \mathcal{F}$. If $F \notin \mathcal{H}(\mathcal{A})$ then at least one of the sets $F \cap Y$, $F \setminus Y$ is not in $\mathcal{H}(\mathcal{A})$. Thus, by our first observation, there is an $F_1 \in \mathcal{F}$ such that either $F_1 \subseteq F \cap Y$ or $F_1 \subseteq F \setminus Y$. Hence $Y \in S(\mathcal{F})$. If $F \in \mathcal{H}(\mathcal{A})$ then for $Z = Y \cap F$ we have $Z \in \mathcal{H}(\mathcal{A}) \subseteq \mathcal{A}$. Thus there is an $F_2 \in \mathcal{F}$ such

that either $F_2 \subseteq Z \cap F = Y \cap F$ or $F_2 \subseteq F \setminus Z = F \setminus (Y \cap F) = F \setminus Y$. Hence $Y \in S(\mathcal{F})$.

For an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$, a family $\mathcal{F} \subseteq \mathcal{P}(X)$ is called \mathcal{I} -almost disjoint if $F_1 \cap F_2 \in \mathcal{I}$ for any distinct $F_1, F_2 \in \mathcal{F}$.

THEOREM 2. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal such that $|\mathcal{P}(X) \setminus \mathcal{I}| = \kappa$, and

(**) for each $Y \in \mathcal{P}(X) \setminus \mathcal{I}$ there is an \mathcal{I} -almost disjoint family $\mathcal{G} \subseteq \mathcal{P}(Y) \setminus \mathcal{I}$ of cardinality κ .

Then there is an algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ such that $\mathcal{H}(\mathcal{A}) = \mathcal{I}$ and \mathcal{A} satisfies (*).

Proof. Our argument is motivated by [Ha]. Let X_{α} , $\alpha < \kappa$, be an enumeration of sets from $\mathcal{P}(X) \setminus \mathcal{I}$. Denote by \mathcal{A}_0 the algebra generated by \mathcal{I} . We will construct sequences $\langle A_{\alpha} : \alpha < \kappa \rangle$ and $\langle B_{\alpha} : \alpha < \kappa \rangle$ of sets from $\mathcal{P}(X) \setminus \mathcal{I}$ such that for all $\alpha < \kappa$ we have:

- (1) $A_{\alpha}, B_{\alpha} \subseteq X_{\alpha},$
- (2) $(\forall \beta < \alpha) B_{\beta} \notin \mathcal{A}_{\alpha}$, where \mathcal{A}_{α} stands for the algebra generated by $\mathcal{A}_{0} \cup \{A_{\gamma}: \gamma < \alpha\}$.

Suppose the construction is finished; then we define $\mathcal{A} = \bigcup_{\alpha < \kappa} \mathcal{A}_{\alpha}$. Let us check that \mathcal{A} is as desired. Obviously $\mathcal{I} \subseteq \mathcal{H}(\mathcal{A})$. To check the converse, take any $X_{\alpha} \in \mathcal{P}(X) \setminus \mathcal{I}$. Thus $X_{\alpha} \notin \mathcal{H}(\mathcal{A})$ since $B_{\alpha} \subseteq X_{\alpha}$ and $B_{\alpha} \notin \mathcal{A}$ by (1) and (2). To show (*) consider $X_{\alpha} \in \mathcal{P}(X) \setminus \mathcal{I}$ and observe that $A_{\alpha} \subseteq X_{\alpha}$ and $A_{\alpha} \in \mathcal{A}$.

Now, let us describe the construction. Let $\alpha < \kappa$ and assume that A_{β}, B_{β} for $\beta < \alpha$ have been defined. We will find a set $A_{\alpha} \subseteq X_{\alpha}$ with $B_{\beta} \notin \mathcal{A}_{\alpha+1}$ for all $\beta < \alpha$, and a set $B_{\alpha} \subseteq X_{\alpha}$ with $B_{\alpha} \notin \mathcal{A}_{\alpha+1}$. By (**) there is an \mathcal{I} -almost disjoint family $\mathcal{G} = \{C_{\xi}: \xi < \kappa\} \subseteq \mathcal{P}(X_{\alpha}) \setminus \mathcal{I}$. We claim that we may take for A_{α} one of the sets C_{ξ} . If not, for each $\xi < \kappa$ there is a $\beta < \alpha$, $\beta = \beta(\xi)$, such that B_{β} is in the algebra generated by $\mathcal{A}_{\alpha} \cup \{C_{\xi}\}$, that is,

$$B_{\beta} = (E_{\xi} \cap C_{\xi}) \cup (F_{\xi} \setminus C_{\xi}) \cup G_{\xi},$$

where $E_{\xi}, F_{\xi}, G_{\xi} \in \mathcal{A}_{\alpha}$ are pairwise disjoint. Recall that \mathcal{A}_{α} is generated by $\mathcal{A}_0 \cup \{A_{\gamma}: \gamma < \alpha\}$, which means that the quotient algebra $\mathcal{A}_{\alpha}/\mathcal{I}$ is generated by $\{[A_{\gamma}]: \gamma < \alpha\}$, where $[A_{\gamma}]$ stands for the corresponding equivalence class. Since $|\mathcal{G}| = \kappa > \alpha$, there are two distinct ordinals $\xi, \xi' < \kappa$ such that $\beta(\xi) = \beta(\xi')$ (:= β) and $[E_{\xi}] = [E_{\xi'}], [F_{\xi}] = [F_{\xi'}], [G_{\xi}] = [G_{\xi'}]$ for the corresponding representations of B_{β} . Write $C \sim D$ whenever $(C \setminus D) \cup (D \setminus C) \in \mathcal{I}$. We have

$$B_{\beta} \cap E_{\xi} \sim B_{\beta} \cap E_{\xi'} \\ \sim (B_{\beta} \cap E_{\xi}) \cap (B_{\beta} \cap E_{\xi'}) = (E_{\xi} \cap C_{\xi}) \cap (E_{\xi'} \cap C_{\xi'}) \subseteq (C_{\xi} \cap C_{\xi'}) \in \mathcal{I},$$

and

$$B_{\beta} \cap F_{\xi} \sim B_{\beta} \cap F_{\xi'}$$

$$\sim (B_{\beta} \cap F_{\xi}) \cup (B_{\beta} \cap F_{\xi'}) = (F_{\xi} \setminus C_{\xi}) \cup (F_{\xi'} \setminus C_{\xi'})$$

$$\sim (F_{\xi} \setminus C_{\xi}) \cup (F_{\xi} \setminus C_{\xi'}) = F_{\xi} \setminus (C_{\xi} \cap C_{\xi'}) \sim F_{\xi}.$$

Hence

$$B_{\beta} = (B_{\beta} \cap E_{\xi}) \cup (B_{\beta} \cap F_{\xi}) \cup G_{\xi} \in \mathcal{A}_{\alpha},$$

which contradicts the assumption.

Now, if $\mathcal{A}_{\alpha+1}$ is defined, we choose a set $B_{\alpha} \subseteq X_{\alpha}$ with $B_{\alpha} \notin \mathcal{A}_{\alpha+1}$ by a similar argument (we consider an \mathcal{I} -almost disjoint subfamily of $\mathcal{P}(X_{\alpha}) \setminus \mathcal{I}$; at least one set in this family is not in $\mathcal{A}_{\alpha+1}$). This ends the construction.

Recall the following theorem from [Ku]:

THEOREM 3. If $|X| = \kappa \geq \omega$ and $2^{<\kappa} = \kappa$, then there is a family $\mathcal{A} \subseteq [X]^{\kappa}$ with $|\mathcal{A}| = 2^{\kappa}$ and $|A \cap B| < \kappa$ for all $A, B \in \mathcal{A}, A \neq B$.

Let us apply Theorem 2 to $X = \omega$ and $\mathcal{I} = [\omega]^{<\omega}$. Then by Theorem 3, condition (**) is satisfied. Thus we obtain the following corollary:

COROLLARY 1. There is an algebra $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that \mathcal{A} is not MB-representable and $\mathcal{H}(\mathcal{A}) = [\omega]^{<\omega}$.

Next, we apply Theorem 2 to the case when $|X| = \mathfrak{c}$, so we may assume that $X = \mathbb{R}$. The equality $2^{<\mathfrak{c}} = \mathfrak{c}$ is not provable in ZFC but it is ensured by MA (Martin's Axiom). Assume MA, and let either $\mathcal{I} = \mathcal{M}$, the ideal of meager sets in \mathbb{R} , or $\mathcal{I} = \mathcal{N}$, the ideal of Lebesgue null sets in \mathbb{R} . Thus for any $Y \in \mathcal{P}(\mathbb{R}) \setminus \mathcal{I}$ we have $|Y| = \mathfrak{c}$ since, under MA, if $Y \subseteq \mathbb{R}$ and $|Y| < \mathfrak{c}$ then $Y \in \mathcal{I}$. Consequently, from Theorems 1–3 we derive

COROLLARY 2. Assume MA. Let $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$. Then there is an algebra $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$ such that \mathcal{A} is not MB-representable and $\mathcal{H}(\mathcal{A}) = \mathcal{I}$.

Although, as we have seen, not every algebra of sets is MB-representable, we have the following positive result:

THEOREM 4. For every Boolean algebra \mathcal{A} there is a set $X \neq \emptyset$ and a family $\mathcal{F} \subseteq \mathcal{P}(X)$ such that $S(\mathcal{F})$ is isomorphic to \mathcal{A} and $S_0(\mathcal{F}) = \{\emptyset\}$.

Proof. Let Y be the Stone space of \mathcal{A} , that is, the unique zero-dimensional compact Hausdorff space whose algebra of clopen sets is isomorphic to \mathcal{A} . Let $X = Y \times Y$. Define \mathcal{A}^+ to be the algebra of all subsets of X of the form $A \times Y$, where $A \in \mathcal{A}$. It is clear that \mathcal{A}^+ and \mathcal{A} are isomorphic. For each $y \in Y$ and clopen A such that $y \in A$, define

$$F(y, A) = (\{y\} \times Y) \cup ((A \setminus \{y\}) \times (Y \setminus \{y\})).$$

Put $\mathcal{F} = \{F(y, A): y \in A, A \text{ is clopen}\}$. Note that for any $F(x, A), F(y, B) \in \mathcal{F}$ we have

$$(***) F(x,A) \subseteq F(y,B) \Rightarrow x = y.$$

This is because $\{x\} \times Y \subseteq F(x', A)$ if and only if x = x'.

First, let us show that $\mathcal{A}^+ \subseteq S(\mathcal{F})$. Given $A \times Y \in \mathcal{A}^+$ and $F(y, B) \in \mathcal{F}$, if $y \in A$ then $F(y, A \cap B) = F(y, B) \cap (A \times Y)$. If $y \notin A$ then $F(y, B \setminus A) \subseteq F(y, B)$ and $F(y, B \setminus A) \cap (A \times Y) = \emptyset$.

Now, let us prove that $S(\mathcal{F}) \subseteq \mathcal{A}^+$. So, let $B \in \mathcal{P}(X) \setminus \mathcal{A}^+$. Consider two cases.

CASE 1: There is $y \in Y$ such that neither $\{y\} \times Y \subseteq B$ nor $(\{y\} \times Y) \cap B = \emptyset$. Take F(y, Y). By (***), any subset of F(y, Y) in \mathcal{F} is of the form F(y, A) for $A \in \mathcal{A}$, but such a set includes $\{y\} \times Y$, so it cannot be disjoint from nor include B. Thus $B \notin S(\mathcal{F})$.

CASE 2: Case 1 is false. Put $A = \{y \in Y : \{y\} \times Y \subseteq B\}$. We have $B = A \times Y$. Since $B \notin A^+$, the set A is not clopen, that is, either A or $Y \setminus A$ is not closed. Since $S(\mathcal{F})$ is an algebra of sets, we may assume without loss of generality that A is not closed. Let $y \in (\operatorname{cl} A) \setminus A$ and consider F(y, Y). Again by (***) any element of \mathcal{F} included in F(y, Y) is of the form F(y, C) for a clopen $C \subseteq Y$ with $y \in C$. Then from $y \in (\operatorname{cl} A) \cap C$ it follows that $A \cap C \neq \emptyset$. Hence $F(y, C) \cap B \neq \emptyset$. Also since $y \notin A$, we never have $F(y, C) \subseteq B$. So $B \notin S(\mathcal{F})$.

Observe that $S_0(\mathcal{F}) \subseteq \mathcal{H}(S(\mathcal{F})) = \mathcal{H}(\mathcal{A}^+) = \{\emptyset\}$. Thus $S_0(\mathcal{F}) = \{\emptyset\}$.

Acknowledgements. The third author was supported by State of São Paulo Research Assistance Foundation (FAPESP 02/03677-7) and by Łódź Technical University.

REFERENCES

- [BBC] M. Balcerzak, A. Bartoszewicz and K. Ciesielski, On Marczewski-Burstin representations of certain algebras of sets, Real Anal. Exchange 26 (2000/2001), 581–592.
- [BBRW] M. Balcerzak, A. Bartoszewicz, J. Rzepecka and S. Wroński, Marczewski fields and ideals, ibid., 703–715.
- [BR] M. Balcerzak and J. Rzepecka, Marczewski sets in the Hashimoto topologies for measure and category, Acta Univ. Carolin. Math. Phys. 39 (1998), 93–97.
- [BR1] —, —, On Marczewski-Burstin representations of algebras and ideals, J. Appl. Anal. 9 (2003), 275–286.
- [Bd] S. Baldwin, The Marczewski hull property and complete Boolean algebras, Real Anal. Exchange 28 (2002/2003), 415–428.
- [BC] A. Bartoszewicz and K. Ciesielski, MB-representations and topological algebras, ibid. 27 (2001/2002), 749–756.

60	M. BALCERZAK ET AL.	
[BET]	J. B. Brown and H. Elalaoui-Talibi, N of σ -algebras, ideals, and measurable 286.	<i>Marczewski–Burstin-like characterizations</i> <i>functions</i> , Colloq. Math. 82 (1999), 277–
[Bu]	C. Burstin, <i>Eigenschaften messbaren</i> 123 (1914), 1525–1551.	und nichtmessbaren Mengen, Wien Ber.
[ET]	H. Elalaoui-Talibi, On Marczewski–B algebras and σ -ideals, Real Anal. Exc	urstin like characterizations of certain σ - change 26 (2000/2001), 413–415.
[Ha]	R. Haydon, A nonreflexive GrothendiJ. Math. 40 (1981), 65–73.	eck space that does not contain l_{∞} , Israel
[Ku]	K. Kunen, Set Theory, North-Holland	d, Amsterdam, 1980.
[Mi]	A. W. Miller, <i>Special subsets of the</i> Topology, K. Kunen and J. E. Vaug 201–233.	real line, in: Handbook of Set-Theoretic ghan (eds.), Elsevier, Amsterdam, 1984,
[Mo]	J. C. Morgan II, Point Set Theory, Dekker, New York, 1990.	
[P]	J. Pawlikowski, <i>Parametrized Ellente</i> 65–73.	uck theorem, Topology Appl. 37 (1990),
[R]	P. Reardon, <i>Ramsey</i> , <i>Lebesgue and</i> . Fund. Math. 149 (1996), 191–203.	Marczewski sets and the Baire property,
[Sch]	K. Schilling, A tale of two (s)-ities, Real Anal. Exchange 26 (1998/99), 477–481.	
[Sz]	E. Szpilrajn (Marczewski), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.	
[W]	S. Wroński, <i>Marczewski operation can</i> Sci. Math. 50 (2002), 217–219.	be iterated few times, Bull. Polish Acad.
M. Balc	erzak	A. Bartoszewicz
Institute of Mathematics		Institute of Mathematics
Łódź Technical University		Łódź Technical University

Lódź Technical University Al. Politechniki 11, I-2 90-924 Łódź, Poland E-mail: mbalce@p.lodz.pl and Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland A. Bartoszewicz Institite of Mathematics Łódź Technical University Al. Politechniki 11, I-2 90-924 Łódź, Poland E-mail: arturbar@p.lodz.pl

P. Koszmider Departamento de Matemática Universidade de São Paulo Caixa Postal 66281 São Paulo, SP, CEP: 05315-970, Brasil E-mail: piotr@ime.usp.br

Received 7 October 2003; revised 17 December 2003

(4385)