C OLLOQ UIUM MATHEMATICUM

ON MARCZEWSKI-BURSTIN REPRESENTABLE ALGEBRAS

BY
MAREK BALCERZAK (Łódź), ARTUR BARTOSZEWICZ (Łódź) and PIOTR KOSZMIDER (São Paulo)

Abstract

We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MBrepresentable algebra of sets.

Introduction. Marczewski in [Sz] introduced operations S and S_{0}, and applied them to the family of all perfect subsets of a Polish space X. The results of these operations yielded an interesting pair of a σ-algebra and a σ-ideal of sets, investigated by several authors (see e.g. [Mo], [Mi]). As observed in $[\mathrm{P}]$ (see also [BBRW]), if the same operations are applied to an arbitrary family \mathcal{F} of nonempty subsets of a set $X \neq \emptyset$, that is,

$$
\begin{aligned}
S(\mathcal{F}) & =\{E \subseteq X:(\forall A \in \mathcal{F})(\exists B \in \mathcal{F}) B \subseteq A \cap E \vee B \subseteq A \backslash E\} \\
S_{0}(\mathcal{F}) & =\{E \subseteq X:(\forall A \in \mathcal{F})(\exists B \in \mathcal{F}) B \subseteq A \backslash E\}
\end{aligned}
$$

then $S(\mathcal{F})$ and $S_{0}(\mathcal{F})$ constitute an algebra and an ideal of subsets of X, respectively. An old result of Burstin [Bu] states that the pair consisting of the σ-algebra of Lebesgue measurable sets in \mathbb{R} and the σ-ideal of Lebesgue null sets in \mathbb{R} is of the form $\left(S(\mathcal{F}), S_{0}(\mathcal{F})\right)$, where \mathcal{F} consists of the perfect sets of positive measure. Note that Burstin worked earlier than and independently of Marczewski, and he did not use operations S and S_{0} explicitly.

A new direction of study that appeared in $[\mathrm{R}]$ and $[\mathrm{BR}]$ was devoted to characterization of the families $S(\mathcal{F}), S_{0}(\mathcal{F})$ when \mathcal{F} denotes the collection of perfect sets in various known topologies. Another trend initiated in [BBRW], [BBC], [BET] was concerned with the problem of how to express known algebras and/or ideals of sets in the form $S(\mathcal{F}), S_{0}(\mathcal{F})$ where sometimes \mathcal{F} is required to be a "good" family in an appropriate sense. This is the question of Marczewski-Burstin representability (for short, MB-representability) of a given algebra of sets, or of a pair consisting of an algebra and an ideal of sets.

[^0]Recently, the following algebras have been proved MB-representable:

- the algebra of sets with the Baire property in a Polish space [BET],
- the interval algebra on $[0,1)$ [BBRW],
- the algebra of Borel sets in an uncountable Polish space (under $2^{\omega}=\omega_{1}$ and $2^{\omega_{1}}=\omega_{2}$) [BBC],
- the algebra of clopen sets in some topological spaces [BR1].

The latest result of Baldwin [Bd] states that if a pair $(\mathcal{A}, \mathcal{I})$ of an algebra and an ideal has the hull property then $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$ and $\mathcal{I}=S_{0}(\mathcal{A} \backslash \mathcal{I})$, which (by the argument based on mutual coinitiality of generating families [BBRW]) easily recovers the results of Burstin $[\mathrm{Bu}]$ and Brown-Elalaoui Talibi [BET]. For other recent results concerning operations S, S_{0} and MBrepresentability, see [Sch], [ET], [BC]. Interestingly, Wroński [W] proved that the maximal number of different algebras which can be obtained by the successive repetitions of the operation $S((\cdot) \backslash\{\emptyset\})$ is three.

In $[\mathrm{BBC}]$ it was shown that if $2^{\kappa}=\kappa^{+}$(a part of GCH) and $|X|=\kappa \geq \omega$ then there is a non-MB-representable algebra on X. In the present paper, we propose another method of constructing non-MB-representable algebras. In particular we obtain one such algebra on ω in ZFC. Surprisingly, we show that every Boolean algebra is isomorphic to an MB-representable algebra of sets.

Results. Let $X \neq \emptyset$. For an algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ we put

$$
\mathcal{H}(\mathcal{A})=\{A \in \mathcal{A}:(\forall B \subseteq A) B \in \mathcal{A}\} ;
$$

this is the ideal of sets that are hereditary in \mathcal{A}.
Theorem 1. If an algebra $\mathcal{A} \subseteq \mathcal{P}(X), \mathcal{A} \neq \mathcal{P}(X)$, satisfies the condition

$$
\begin{equation*}
(\forall B \in \mathcal{P}(X) \backslash \mathcal{H}(\mathcal{A}))(\exists A \in \mathcal{A} \backslash \mathcal{H}(\mathcal{A})) A \subseteq B \tag{*}
\end{equation*}
$$

then \mathcal{A} is not $M B$-representable.
Proof. Suppose \mathcal{A} is MB-representable and $\mathcal{A}=S(\mathcal{F})$ for some $\mathcal{F} \subseteq$ $\mathcal{P}(X) \backslash\{\emptyset\}$. First observe that for each $B \in \mathcal{P}(X) \backslash \mathcal{H}(\mathcal{A})$ there is an $F \in \mathcal{F}$ such that $F \subseteq B$. Indeed, suppose there is a $B \in \mathcal{P}(X) \backslash \mathcal{H}(\mathcal{A})$ with $F \backslash B \neq \emptyset$ for each $F \in \mathcal{F}$. By $(*)$, we pick an $A \in \mathcal{A} \backslash \mathcal{H}(\mathcal{A})$ contained in B. Since $A \in S(\mathcal{F})$ and $F \backslash A \neq \emptyset$ for each $F \in \mathcal{F}$, we have $A \in S_{0}(\mathcal{F}) \subseteq \mathcal{H}(S(\mathcal{F}))=$ $\mathcal{H}(\mathcal{A})$, a contradiction.

Next, we show that $\mathcal{P}(X)=S(\mathcal{F})$, which is also a contradiction. Let $Y \in \mathcal{P}(X)$. Take an $F \in \mathcal{F}$. If $F \notin \mathcal{H}(\mathcal{A})$ then at least one of the sets $F \cap Y$, $F \backslash Y$ is not in $\mathcal{H}(\mathcal{A})$. Thus, by our first observation, there is an $F_{1} \in \mathcal{F}$ such that either $F_{1} \subseteq F \cap Y$ or $F_{1} \subseteq F \backslash Y$. Hence $Y \in S(\mathcal{F})$. If $F \in \mathcal{H}(\mathcal{A})$ then for $Z=Y \cap F$ we have $Z \in \mathcal{H}(\mathcal{A}) \subseteq \mathcal{A}$. Thus there is an $F_{2} \in \mathcal{F}$ such
that either $F_{2} \subseteq Z \cap F=Y \cap F$ or $F_{2} \subseteq F \backslash Z=F \backslash(Y \cap F)=F \backslash Y$. Hence $Y \in S(\mathcal{F})$.

For an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$, a family $\mathcal{F} \subseteq \mathcal{P}(X)$ is called \mathcal{I}-almost disjoint if $F_{1} \cap F_{2} \in \mathcal{I}$ for any distinct $F_{1}, F_{2} \in \mathcal{F}$.

Theorem 2. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal such that $|\mathcal{P}(X) \backslash \mathcal{I}|=\kappa$, and $(* *)$ for each $Y \in \mathcal{P}(X) \backslash \mathcal{I}$ there is an \mathcal{I}-almost disjoint family $\mathcal{G} \subseteq$ $\mathcal{P}(Y) \backslash \mathcal{I}$ of cardinality κ.

Then there is an algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ such that $\mathcal{H}(\mathcal{A})=\mathcal{I}$ and \mathcal{A} satisfies $(*)$.
Proof. Our argument is motivated by [Ha]. Let $X_{\alpha}, \alpha<\kappa$, be an enumeration of sets from $\mathcal{P}(X) \backslash \mathcal{I}$. Denote by \mathcal{A}_{0} the algebra generated by \mathcal{I}. We will construct sequences $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ and $\left\langle B_{\alpha}: \alpha<\kappa\right\rangle$ of sets from $\mathcal{P}(X) \backslash \mathcal{I}$ such that for all $\alpha<\kappa$ we have:
(1) $A_{\alpha}, B_{\alpha} \subseteq X_{\alpha}$,
(2) $(\forall \beta<\alpha) B_{\beta} \notin \mathcal{A}_{\alpha}$, where \mathcal{A}_{α} stands for the algebra generated by $\mathcal{A}_{0} \cup\left\{A_{\gamma}: \gamma<\alpha\right\}$.

Suppose the construction is finished; then we define $\mathcal{A}=\bigcup_{\alpha<\kappa} \mathcal{A}_{\alpha}$. Let us check that \mathcal{A} is as desired. Obviously $\mathcal{I} \subseteq \mathcal{H}(\mathcal{A})$. To check the converse, take any $X_{\alpha} \in \mathcal{P}(X) \backslash \mathcal{I}$. Thus $X_{\alpha} \notin \mathcal{H}(\mathcal{A})$ since $B_{\alpha} \subseteq X_{\alpha}$ and $B_{\alpha} \notin \mathcal{A}$ by (1) and (2). To show $(*)$ consider $X_{\alpha} \in \mathcal{P}(X) \backslash \mathcal{I}$ and observe that $A_{\alpha} \subseteq X_{\alpha}$ and $A_{\alpha} \in \mathcal{A}$.

Now, let us describe the construction. Let $\alpha<\kappa$ and assume that A_{β}, B_{β} for $\beta<\alpha$ have been defined. We will find a set $A_{\alpha} \subseteq X_{\alpha}$ with $B_{\beta} \notin \mathcal{A}_{\alpha+1}$ for all $\beta<\alpha$, and a set $B_{\alpha} \subseteq X_{\alpha}$ with $B_{\alpha} \notin \mathcal{A}_{\alpha+1}$. By (**) there is an \mathcal{I}-almost disjoint family $\mathcal{G}=\left\{C_{\xi}: \xi<\kappa\right\} \subseteq \mathcal{P}\left(X_{\alpha}\right) \backslash \mathcal{I}$. We claim that we may take for A_{α} one of the sets C_{ξ}. If not, for each $\xi<\kappa$ there is a $\beta<\alpha$, $\beta=\beta(\xi)$, such that B_{β} is in the algebra generated by $\mathcal{A}_{\alpha} \cup\left\{C_{\xi}\right\}$, that is,

$$
B_{\beta}=\left(E_{\xi} \cap C_{\xi}\right) \cup\left(F_{\xi} \backslash C_{\xi}\right) \cup G_{\xi},
$$

where $E_{\xi}, F_{\xi}, G_{\xi} \in \mathcal{A}_{\alpha}$ are pairwise disjoint. Recall that \mathcal{A}_{α} is generated by $\mathcal{A}_{0} \cup\left\{A_{\gamma}: \gamma<\alpha\right\}$, which means that the quotient algebra $\mathcal{A}_{\alpha} / \mathcal{I}$ is generated by $\left\{\left[A_{\gamma}\right]: \gamma<\alpha\right\}$, where $\left[A_{\gamma}\right]$ stands for the corresponding equivalence class. Since $|\mathcal{G}|=\kappa>\alpha$, there are two distinct ordinals $\xi, \xi^{\prime}<\kappa$ such that $\beta(\xi)=$ $\beta\left(\xi^{\prime}\right)(:=\beta)$ and $\left[E_{\xi}\right]=\left[E_{\xi^{\prime}}\right],\left[F_{\xi}\right]=\left[F_{\xi^{\prime}}\right],\left[G_{\xi}\right]=\left[G_{\xi^{\prime}}\right]$ for the corresponding representations of B_{β}. Write $C \sim D$ whenever $(C \backslash D) \cup(D \backslash C) \in \mathcal{I}$. We have

$$
\begin{aligned}
B_{\beta} \cap E_{\xi} & \sim B_{\beta} \cap E_{\xi^{\prime}} \\
& \sim\left(B_{\beta} \cap E_{\xi}\right) \cap\left(B_{\beta} \cap E_{\xi^{\prime}}\right)=\left(E_{\xi} \cap C_{\xi}\right) \cap\left(E_{\xi^{\prime}} \cap C_{\xi^{\prime}}\right) \subseteq\left(C_{\xi} \cap C_{\xi^{\prime}}\right) \in \mathcal{I}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{\beta} \cap F_{\xi} & \sim B_{\beta} \cap F_{\xi^{\prime}} \\
& \sim\left(B_{\beta} \cap F_{\xi}\right) \cup\left(B_{\beta} \cap F_{\xi^{\prime}}\right)=\left(F_{\xi} \backslash C_{\xi}\right) \cup\left(F_{\xi^{\prime}} \backslash C_{\xi^{\prime}}\right) \\
& \sim\left(F_{\xi} \backslash C_{\xi}\right) \cup\left(F_{\xi} \backslash C_{\xi^{\prime}}\right)=F_{\xi} \backslash\left(C_{\xi} \cap C_{\xi^{\prime}}\right) \sim F_{\xi}
\end{aligned}
$$

Hence

$$
B_{\beta}=\left(B_{\beta} \cap E_{\xi}\right) \cup\left(B_{\beta} \cap F_{\xi}\right) \cup G_{\xi} \in \mathcal{A}_{\alpha}
$$

which contradicts the assumption.
Now, if $\mathcal{A}_{\alpha+1}$ is defined, we choose a set $B_{\alpha} \subseteq X_{\alpha}$ with $B_{\alpha} \notin \mathcal{A}_{\alpha+1}$ by a similar argument (we consider an \mathcal{I}-almost disjoint subfamily of $\mathcal{P}\left(X_{\alpha}\right) \backslash \mathcal{I}$; at least one set in this family is not in $\mathcal{A}_{\alpha+1}$). This ends the construction.

Recall the following theorem from $[\mathrm{Ku}]$:
Theorem 3. If $|X|=\kappa \geq \omega$ and $2^{<\kappa}=\kappa$, then there is a family $\mathcal{A} \subseteq[X]^{\kappa}$ with $|\mathcal{A}|=2^{\kappa}$ and $|A \cap B|<\kappa$ for all $A, B \in \mathcal{A}, A \neq B$.

Let us apply Theorem 2 to $X=\omega$ and $\mathcal{I}=[\omega]^{<\omega}$. Then by Theorem 3, condition $(* *)$ is satisfied. Thus we obtain the following corollary:

Corollary 1. There is an algebra $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that \mathcal{A} is not $M B$ representable and $\mathcal{H}(\mathcal{A})=[\omega]^{<\omega}$.

Next, we apply Theorem 2 to the case when $|X|=\mathfrak{c}$, so we may assume that $X=\mathbb{R}$. The equality $2^{<\mathfrak{c}}=\mathfrak{c}$ is not provable in ZFC but it is ensured by MA (Martin's Axiom). Assume MA, and let either $\mathcal{I}=\mathcal{M}$, the ideal of meager sets in \mathbb{R}, or $\mathcal{I}=\mathcal{N}$, the ideal of Lebesgue null sets in \mathbb{R}. Thus for any $Y \in \mathcal{P}(\mathbb{R}) \backslash \mathcal{I}$ we have $|Y|=\mathfrak{c}$ since, under MA, if $Y \subseteq \mathbb{R}$ and $|Y|<\mathfrak{c}$ then $Y \in \mathcal{I}$. Consequently, from Theorems $1-3$ we derive

Corollary 2. Assume $M A$. Let $\mathcal{I}=\mathcal{M}$ or $\mathcal{I}=\mathcal{N}$. Then there is an algebra $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$ such that \mathcal{A} is not $M B$-representable and $\mathcal{H}(\mathcal{A})=\mathcal{I}$.

Although, as we have seen, not every algebra of sets is MB-representable, we have the following positive result:

Theorem 4. For every Boolean algebra \mathcal{A} there is a set $X \neq \emptyset$ and a family $\mathcal{F} \subseteq \mathcal{P}(X)$ such that $S(\mathcal{F})$ is isomorphic to \mathcal{A} and $S_{0}(\mathcal{F})=\{\emptyset\}$.

Proof. Let Y be the Stone space of \mathcal{A}, that is, the unique zero-dimensional compact Hausdorff space whose algebra of clopen sets is isomorphic to \mathcal{A}. Let $X=Y \times Y$. Define \mathcal{A}^{+}to be the algebra of all subsets of X of the form $A \times Y$, where $A \in \mathcal{A}$. It is clear that \mathcal{A}^{+}and \mathcal{A} are isomorphic. For each $y \in Y$ and clopen A such that $y \in A$, define

$$
F(y, A)=(\{y\} \times Y) \cup((A \backslash\{y\}) \times(Y \backslash\{y\}))
$$

Put $\mathcal{F}=\{F(y, A): y \in A, A$ is clopen $\}$. Note that for any $F(x, A), F(y, B)$ $\in \mathcal{F}$ we have
$(* * *) \quad F(x, A) \subseteq F(y, B) \Rightarrow x=y$.
This is because $\{x\} \times Y \subseteq F\left(x^{\prime}, A\right)$ if and only if $x=x^{\prime}$.
First, let us show that $\mathcal{A}^{+} \subseteq S(\mathcal{F})$. Given $A \times Y \in \mathcal{A}^{+}$and $F(y, B) \in \mathcal{F}$, if $y \in A$ then $F(y, A \cap B)=F(y, B) \cap(A \times Y)$. If $y \notin A$ then $F(y, B \backslash A) \subseteq$ $F(y, B)$ and $F(y, B \backslash A) \cap(A \times Y)=\emptyset$.

Now, let us prove that $S(\mathcal{F}) \subseteq \mathcal{A}^{+}$. So, let $B \in \mathcal{P}(X) \backslash \mathcal{A}^{+}$. Consider two cases.

CASE 1: There is $y \in Y$ such that neither $\{y\} \times Y \subseteq B$ nor $(\{y\} \times Y)$ $\cap B=\emptyset$. Take $F(y, Y)$. By $(* * *)$, any subset of $F(y, Y)$ in \mathcal{F} is of the form $F(y, A)$ for $A \in \mathcal{A}$, but such a set includes $\{y\} \times Y$, so it cannot be disjoint from nor include B. Thus $B \notin S(\mathcal{F})$.

Case 2: Case 1 is false. Put $A=\{y \in Y:\{y\} \times Y \subseteq B\}$. We have $B=A \times Y$. Since $B \notin \mathcal{A}^{+}$, the set A is not clopen, that is, either A or $Y \backslash A$ is not closed. Since $S(\mathcal{F})$ is an algebra of sets, we may assume without loss of generality that A is not closed. Let $y \in(\operatorname{cl} A) \backslash A$ and consider $F(y, Y)$. Again by $(* * *)$ any element of \mathcal{F} included in $F(y, Y)$ is of the form $F(y, C)$ for a clopen $C \subseteq Y$ with $y \in C$. Then from $y \in(\operatorname{cl} A) \cap C$ it follows that $A \cap C \neq \emptyset$. Hence $F(y, C) \cap B \neq \emptyset$. Also since $y \notin A$, we never have $F(y, C) \subseteq B$. So $B \notin S(\mathcal{F})$.

Observe that $S_{0}(\mathcal{F}) \subseteq \mathcal{H}(S(\mathcal{F}))=\mathcal{H}\left(\mathcal{A}^{+}\right)=\{\emptyset\}$. Thus $S_{0}(\mathcal{F})=\{\emptyset\}$.
Acknowledgements. The third author was supported by State of São Paulo Research Assistance Foundation (FAPESP 02/03677-7) and by Łódź Technical University.

REFERENCES

[BBC] M. Balcerzak, A. Bartoszewicz and K. Ciesielski, On Marczewski-Burstin representations of certain algebras of sets, Real Anal. Exchange 26 (2000/2001), 581-592.
[BBRW] M. Balcerzak, A. Bartoszewicz, J. Rzepecka and S. Wroński, Marczewski fields and ideals, ibid., 703-715.
[BR] M. Balcerzak and J. Rzepecka, Marczewski sets in the Hashimoto topologies for measure and category, Acta Univ. Carolin. Math. Phys. 39 (1998), 93-97.
[BR1] -, 一, On Marczewski-Burstin representations of algebras and ideals, J. Appl. Anal. 9 (2003), 275-286.
[Bd] S. Baldwin, The Marczewski hull property and complete Boolean algebras, Real Anal. Exchange 28 (2002/2003), 415-428.
[BC] A. Bartoszewicz and K. Ciesielski, MB-representations and topological algebras, ibid. 27 (2001/2002), 749-756.
[BET] J. B. Brown and H. Elalaoui-Talibi, Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions, Colloq. Math. 82 (1999), 277286.
[Bu] C. Burstin, Eigenschaften messbaren und nichtmessbaren Mengen, Wien Ber. 123 (1914), 1525-1551.
[ET] H. Elalaoui-Talibi, On Marczewski-Burstin like characterizations of certain σ algebras and σ-ideals, Real Anal. Exchange 26 (2000/2001), 413-415.
[Ha] R. Haydon, A nonreflexive Grothendieck space that does not contain l_{∞}, Israel J. Math. 40 (1981), 65-73.
$[\mathrm{Ku}] \quad$ K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
[Mi] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, Amsterdam, 1984, 201-233.
[Mo] J. C. Morgan II, Point Set Theory, Dekker, New York, 1990.
[P] J. Pawlikowski, Parametrized Ellentuck theorem, Topology Appl. 37 (1990), 65-73.
[R] P. Reardon, Ramsey, Lebesgue and Marczewski sets and the Baire property, Fund. Math. 149 (1996), 191-203.
[Sch] K. Schilling, A tale of two (s)-ities, Real Anal. Exchange 26 (1998/99), 477481.
[Sz] E. Szpilrajn (Marczewski), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
[W] S. Wroński, Marczewski operation can be iterated few times, Bull. Polish Acad. Sci. Math. 50 (2002), 217-219.
M. Balcerzak

Institute of Mathematics
Łódź Technical University
Al. Politechniki 11, I-2
90-924 Łódź, Poland
E-mail: mbalce@p.lodz.pl
and
Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
A. Bartoszewicz Institite of Mathematics Łódź Technical University

Al. Politechniki 11, I-2
90-924 Łódź, Poland
E-mail: arturbar@p.lodz.pl
P. Koszmider

Departamento de Matemática Universidade de São Paulo

Caixa Postal 66281
São Paulo, SP, CEP: 05315-970, Brasil
E-mail: piotr@ime.usp.br

[^0]: 2000 Mathematics Subject Classification: 28A05, 06E05, 03E50.
 Key words and phrases: algebra of sets, MB-representation, Martin's Axiom, Boolean algebra.

