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ASYMPTOTICS OF PARABOLIC EQUATIONS WITH
POSSIBLE BLOW-UP

BY

RADOSŁAW CZAJA (Katowice)

Abstract. We describe the long-time behaviour of solutions of parabolic equations
in the case when some solutions may blow up in a finite or infinite time. This is done
by providing a maximal compact invariant set attracting any initial data for which the
corresponding solution does not blow up. The abstract result is applied to the Frank-
Kamenetskii equation and the N -dimensional Navier–Stokes system with small external
force.

1. Introduction. In this paper we study the asymptotic behaviour of
parabolic equations when some solutions may blow up in a finite or infinite
time. We consider Xα solutions as in [C-D1] and earlier in [HE] with the
modification given in [MI]. We make use of the theory of semilinear abstract
parabolic equations given e.g. in [HE], [HA] or [CZ].

The situation that for some initial data the corresponding solution blows
up often occurs in physical applications. For a detailed mathematical de-
scription of this phenomenon we refer the reader to [G-V]. Here we only
mention a particular problem with a parameter λ > 0,

{
ut = ∆u+ λeu, t > 0,

u(0) = u0,

which comes from combustion theory and is known under the name of
solid fuel ignition model, exponential reaction-diffusion equation or Frank-
Kamenetskii equation, the latter name being used from now on in this pa-
per. Among many other results concerning this problem (see e.g. [GE], [J-L],
[B-E]) it was shown in [FU] that for special initial data u0 the corresponding
solution blows up. On the other hand, there also exist parabolic problems
for which global solvability for all initial data remains unknown. A typical
example is the famous N -dimensional Navier–Stokes system, N ≥ 3, that
has now been investigated for more than a century.
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The above mentioned specific circumstances make it impossible to de-
scribe the asymptotics by using the notion of a global attractor in the large
space of initial data as in [HA], [LA], [C-D1]. Instead, we consider the max-
imal compact invariant set attracting each initial condition for which the
corresponding solution does not blow up. We first describe all these ideas
abstractly in Section 2 considering a Cauchy problem for a semilinear secto-
rial equation in a Banach space. Next in Section 3 we discuss two particular
examples: the one-dimensional version of the Frank-Kamenetskii equation
and the N -dimensional Navier–Stokes system with small external force.

2. Abstract parabolic problems with possible blow-up. Consider
an abstract parabolic problem

{
ut + Au = F (u), t > 0,

u(0) = u0,
(2.1)

where X is a Banach space and A: X ⊃ dom(A)→ X is a positive sectorial
operator with compact resolvent. Moreover, assume that F : Xα → X (α ∈
[0, 1) is fixed from now on) is Lipschitz continuous on bounded subsets of
the fractional power space Xα = dom(Aα) (cf. [HE], [AM]).

Under the above assumptions the theory of semilinear parabolic equa-
tions given e.g. in [HE] ensures for each u0 ∈ Xα the existence of a unique
local Xα solution defined on a maximal interval of existence [0, τu0), where
τu0 ≤ ∞. Thus we know that

u ∈ C([0, τu0),Xα) ∩ C((0, τu0),X1) ∩ C1((0, τu0),X)

and (2.1) is satisfied in X. Moreover, we have either τu0 = ∞, or τu0 < ∞
and

lim sup
t→τu0

‖u(t, u0)‖Xα =∞.

Since the problem (2.1) is autonomous, the uniqueness of solutions allows
us to construct a local semiflow on Xα. We thus have

u(s, u(t, u0)) = u(s+ t, u0), u0 ∈ Xα, s, t ≥ 0, s+ t < τu0 ,

and the solutions of (2.1) are continuous with respect to their initial data
on compact time intervals (cf. [HE, Theorem 3.4.1] or [C-D1, Proposi-
tion 2.3.2]).

For our further investigations let us define a metric space

V = {u0 ∈ Xα: sup
t∈[0,τu0 )

‖u(t, u0)‖Xα <∞}(2.2)

and assume that V is nonvoid.
Consider a C0-semigroup T (t): V → V defined by

T (t)u0 = u(t, u0), t ≥ 0, u0 ∈ V.(2.3)
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Note that we do not know in advance whether V is a closed subset of Xα.
Thus it is unknown if V , which is the natural phase space for the prob-
lem (2.1), is a complete metric space or not. Therefore the assumption of
the compact resolvent does not necessarily imply the compactness of the
semigroup {T (t): t ≥ 0} on V . Nevertheless, we shall show below that this
semigroup is asymptotically smooth in the sense of [HA].

For B ⊂ V we denote its orbit by γ+(B) =
⋃
t≥0 T (t)B, while its ω-limit

set is given by
ω(B) =

⋂

t≥0

clXα T (t)γ+(B).

We also abbreviate γ+({v}) and ω({v}) to γ+(v) and ω(v), respectively.

Remark 2.1. If B ⊂ V and γ+(B) is bounded , then clXα γ+(B) ⊂ V
and T (t)B is precompact in Xα for any t > 0.

Proof. Let v0 ∈ clXα γ+(B). Then there exist vn ∈ B and tn ≥ 0 such
that T (tn)vn → v0 in Xα. Since

∀s≥0 ‖u(s, T (tn)vn)‖Xα = ‖u(s+ tn, vn)‖Xα ≤ Rγ+(B),

the norm ‖u(s, v0)‖Xα cannot blow up so that v0 ∈ V . Also, if γ+(B) is
bounded in Xα, then T (t)B with t > 0 is in fact bounded in Xα+ε, which,
via compactness of the embeddings Xβ ⊂ Xα, β > α, ensures that it is
precompact in Xα.

Proposition 2.2. The C0-semigroup {T (t): t ≥ 0} on V is asymptoti-
cally smooth, i.e. each nonvoid closed (in V ) bounded and positively invari-
ant set W ⊂ V contains a nonvoid compact subset ω(W ) which attracts W .

Proof. Since γ+(W )⊂W, we infer from Remark 2.1 that clXαT (1)γ+(W )
is a compact subset of V . Thus

ω(W ) =
⋂

t≥0

clXα T (t)γ+(W ) ⊂ clXα T (1)γ+(W ) ⊂ V

is compact and nonvoid as the intersection of a centered family of closed
sets in a compact space. Also ω(W ) ⊂ W , since by our assumptions on W
and Remark 2.1 we have

ω(W ) ⊂ clXαW ∩ V = clV W = W.

We now prove that ω(W ) attracts W , that is,

d(T (t)W,ω(W )) −→
t→∞

0,

where d denotes the Hausdorff semidistance. Contrary to our claim suppose
that

∃ε>0 ∃tn→∞ ∀n∈N ∃xn∈W ∀v∈ω(W ) ‖T (tn)xn − v‖Xα > ε.(2.4)
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Since almost all elements of the sequence {T (tn)xn} belong to the compact
set clXα T (1)γ+(W ) it contains a subsequence convergent to an element of
ω(W ), which contradicts (2.4).

Remark 2.3. It is worth noting that Remark 2.1 implies immediately
that if u0 ∈ V , then clXα γ+(u0) is a compact positively invariant subset of
V and the ω-limit set ω(u0) is a nonvoid compact connected and invariant
subset of V which attracts u0 (cf. [LA, Theorem 2.1]). More generally, since
by Proposition 2.2 the semigroup is asymptotically smooth, we infer that for
∅ 6= B ⊂ V with γ+(B) bounded, the ω-limit set ω(B) is a nonvoid compact
and invariant subset of V attracting B (see [C-D1, Proposition 1.1.1]).

Under an additional assumption of the point dissipativeness of the semi-
group {T (t): t ≥ 0} we now prove the existence of a nonvoid compact and
invariant set which attracts each point of V . Indeed, if B0 is a nonvoid
bounded subset of V attracting points of V , then any ε-neighbourhood
N (B0) =

⋃
u∈B0

B(u, ε) of B0 in V absorbs each point of V . Consequently,

B̃0 = {v ∈ N (B0): γ+(v) ⊂ N (B0)}
is a nonvoid bounded positively invariant subset of V absorbing each point
of V . From this and Remark 2.3 it follows that ω(B̃0) is a nonvoid compact
invariant subset of V attracting each point of V .

The required dissipativeness property can be easily controlled if there
exists a Lyapunov function. Recall that by a Lyapunov function on V we
mean a continuous function L: V → R such that for any u0 ∈ V ,

(i) the function t 7→ L(u(t, u0)) is nonincreasing in (0,∞),
(ii) if L(u(·, u0)) ≡ L(u0), then u0 ∈ E ,

where E denotes the set of all stationary solutions of (2.1). Recall also that
the existence of a Lyapunov function on V implies that ω(u0) ⊂ E for each
u0 ∈ V . Therefore, if there exists a Lyapunov function on the metric space
V given in (2.2), then the set E is nonvoid, and if it is bounded, it is also
compact and attracts each point of V . Thus we get

Corollary 2.4. Suppose that {T (t): t ≥ 0} is defined on V given
in (2.2). Assume further that {T (t): t ≥ 0} is point dissipative (for ex-
ample, there exists a Lyapunov function on V and E is bounded). Then for
any u0 ∈ Xα the Xα solution u(·, u0) of (2.1) either blows up (in a finite
or infinite time) or stays bounded and approaches a nonvoid compact and
invariant set.

We have shown above that the semigroup is asymptotically smooth and
we have also stated natural conditions ensuring its point dissipativeness.
However, these two properties do not guarantee the existence of a compact
global attractor in V . It would exist if we knew the semigroup on V was
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compact (cf. [C-D1, Corollary 1.1.6]), which, as we have already observed,
may not be the case, or if the orbits of bounded sets were bounded (cf. [C-D1,
Theorem 1.1.2]). Unfortunately, the latter condition may be difficult to check
in specific examples. As will be seen in Section 3 it is much easier to examine
the boundedness of the set of all (hypothetical) bounded complete orbits of
points.

Following [LA], we recall that a complete trajectory of a point v ∈ V for
the semigroup {T (t): t ≥ 0} is the curve φ: R → V satisfying the following
conditions:

(i) φ(0) = v,
(ii) T (t)φ(s) = φ(s+ t), s ∈ R, t ≥ 0.

If S denotes the set of all points in V for which there exists at least one
bounded complete trajectory for the semigroup {T (t): t ≥ 0}, then T (t)S =
S for each t > 0. Also the following result holds.

Theorem 2.5. Suppose that the semigroup {T (t): t ≥ 0} is defined
by (2.3) on the nonvoid metric space V given in (2.2). Then S is a non-
void invariant subset of V which attracts each subset of V with bounded
orbit. If S is bounded , then it is a compact and maximal bounded invariant
subset of V . If , additionally , the orbits of bounded subsets of V are bounded ,
then S is a compact global attractor in V .

Proof. As a consequence of Remark 2.3, S is nonvoid whenever V is
nonvoid. Moreover, ω(B) ⊂ S for any ∅ 6= B ⊂ V such that γ+(B) is
bounded. It is next sufficient to note that if S is bounded, then—since it
is also invariant—clXα S is a compact subset of V (see Remark 2.1). The
proof is thus complete.

Corollary 2.6. Suppose A is a sectorial operator in a Banach space X
and A has compact resolvent. Assume that F : Xα → X, with α ∈ [0, 1) fixed ,
is Lipschitz continuous on bounded subsets of Xα. Let all (hypothetical)
bounded complete orbits of points be uniformly bounded in Xα. Then for
any u0 ∈ Xα the Xα solution u(·, u0) of (2.1) either blows up (in a finite or
infinite time) or stays bounded and approaches a maximal compact invariant
set.

We recall that similarly to the case of an ω-limit set, the α-limit set of
u0 ∈ S along a bounded complete trajectory φ of u0,

αφ(u0) =
⋂

t≤0

clXα

⋃

s≤t
{φ(s)},

is a nonvoid compact subset of V . If, in addition, there exists a Lyapunov
function on V , then αφ(u0) ⊂ E . In the latter case abstract conditions for
the boundedness of S can be formulated.
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Proposition 2.7. Assume that there exists a Lyapunov function L on V.
Then the following conditions are equivalent :

(a) S is a bounded subset of V ,
(b) E is a bounded subset of V and one of the equivalent conditions

holds:

(i) if vn ∈ S and ‖vn‖Xα → ∞, then |L(vn)| → ∞ (cf. [HA, Defini-
tion 3.8.1]),

(ii) if B ⊂ S and L(B) is a bounded subset of R, then B is bounded.

Proof. We shall prove that (b) implies (a). Therefore we assume (b) and
suppose contrary to our claim that there exist vn = φn(tn), where tn ∈ R,
φn are bounded complete trajectories, say of some un, and ‖vn‖Xα → ∞
as n → ∞. We choose αn ∈ αφn(un) and ωn ∈ ω(un), both in E . Since the
Lyapunov function L is nonincreasing along each complete trajectory, we
see that

max{L(e): e ∈ E} ≥ L(αn) ≥ L(vn) ≥ L(ωn) ≥ min{L(e): e ∈ E},
where the maximum and minimum exist due to the compactness of E . But
this is impossible, because of (i). This shows that S is bounded.

3. Examples

Example 3.1. Consider the Dirichlet problem for the Frank-Kamene-
tskii equation 




ut = ∆u+ λeu, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(3.1)

where λ > 0 is a parameter and Ω = B(0, 1) ⊂ RN . This problem occurs
in models of thermal explosions, especially in the description of thermal
self-ignition of a chemically active mixture contained in some vessel. We
refer the reader to [FK], [GE, §15] and [B-E] for more details.

Rewriting the problem (3.1) in an abstract setting we consider
{
ut + Au = F (u), t > 0,

u(0) = u0,
(3.2)

in the Hilbert space X = L2(Ω), where A = −∆D: X ⊃ dom(A) → X
with dom(A) = H2(Ω) ∩ H1

0 (Ω). It is well known that this operator is
a positive sectorial operator in X with compact resolvent. Although the
Frank-Kamenetskii equation is also interesting and complex for dimensions
3 ≤ N ≤ 9 (especially because of an infinite number of stationary solutions
for λ = 2(N−2), see e.g. [J-L], [B-E, Theorem 2.19], [F-P], [N-S]), we restrict
our attention to N = 1. Nevertheless, we still use the general notation.
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Fix 3/4 < α < 1 so that Xα ⊂ C1(Ω). Evidently, if u ∈ Xα, then u ∈
C1(Ω), F (u) = λeu ∈ C1(Ω), and F : Xα → X is Lipschitz continuous on
bounded sets. Consequently, (3.1) generates a local semiflow ofXα solutions.
Denoting then by V the set of all initial data for which the solution stays
bounded in Xα we see that

L(u) =
1
2

�

Ω

|∇u|2 dx−
�

Ω

λeu dx(3.3)

is a Lyapunov function on V .

Stationary solutions and their Morse indices. If w ∈ dom(A) is a sta-
tionary solution, then w satisfies{−∆w = λew, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,(3.4)

which is also known in the literature under the names of the Emden–Fowler
equation or Gelfand problem. From the regularity theory of elliptic operators
(cf. [TR, Theorem 5.4.1]) it follows that the stationary solutions are smooth
and in particular they belong to C2([−1, 1]). Also, all solutions of (3.4) are
positive, and thus radially symmetric by the result of [G-N-N]. We recall
(see [B-E, Theorem 2.19]) that there exists λ∗ > 0, λ∗ ≈ 0.878, such that

(a) for each λ ∈ (0, λ∗) there are two solutions,
(b) for λ = λ∗ there is a unique solution,
(c) for λ > λ∗ there are no solutions.

Moreover, each solution w has to satisfy

w(x) = w(0)− 2 ln cosh
(

1
2

√
2λew(0)x

)
, −1 ≤ x ≤ 1.(3.5)

If λ ∈ (0, λ∗), then from [FU] we infer that there exists the minimal
solution. Let us denote it by w+ and the maximal solution by w−. We know
that there exists γ > 0 such that

γ%(x) ≤ w−(x)− w+(x), x ∈ Ω,
where %(x) is the distance from x to ∂Ω. Consequently, the curve shown
in Figure 1 describes the set of solution curves

{(λ,w) ∈ (0,∞)× C(Ω): (λ,w) satisfies (3.4)}.
We remark that, as shown in [FU, Theorem 6] (see also the refinement

in [FI, Remark 2.5]), if λ ∈ (0, λ∗), w−(x) ≤ u0(x) for x ∈ Ω and u0 6≡ w−,
then the solution u of (3.1) blows up in a finite time.

Consider now the linearization of (3.4) at w,
{
∆v + λewv = 0, x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,(3.6)
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Fig. 1. Dependence between w(0) and λ

and observe that σ(−∆−λew) consists only of real eigenvalues. We say that
w is a hyperbolic stationary solution if 0 6∈ σ(−∆− λew). Furthermore, the
number of negative eigenvalues of −∆−λew is called the Morse index ind(w)
of the stationary solution w. Although 0 ∈ σ(−∆− λ∗ew), it is known that
if λ ∈ (0, λ∗), then w− and w+ are both hyperbolic stationary solutions.
Additionally, we have ind(w+) = 0 and ind(w−) = 1 (for details see [C-R,
Proposition 2.15] and [N-S, Section 2]).

Unstable manifold of w− and description of S. Let λ ∈ (0, λ∗). Note
that w− is a hyperbolic fixed point in the sense of [C-C-H, p. 357]. Then the
unstable set W u(w−) is a C1 submanifold of Xα with

dimW u(w−) = ind(w−) = 1

(see [HE, Theorem 6.1.9], [C-C-H, Appendix C]) and by [B-F1, Theorem 2.1]
we have

∀v∈W u(w−) z(v − w−) < dimW u(w−) = 1,(3.7)

where z(g) denotes the number of sign changes of a continuous function g.
The existence of a Lyapunov function excludes the existence of (non-

constant) homoclinic orbits. Thus we restrict our attention to heteroclinic
orbits. Let φ be a (hypothetical) complete trajectory of u0 ∈ Xα such that
φ(t)→ w− as t→ −∞ and φ(t)→ w+ as t→∞ in Xα ⊂ C1(Ω). Since the
complete trajectory φ does not blow up, from (3.7) we obtain

∀t∈R ∀x∈Ω φ(t)(x) ≤ w−(x).

If we show that

∃t∗<0 ∀t≤t∗ ∀x∈Ω w+(x) ≤ φ(t)(x),(3.8)
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by monotonicity we will then have

∀t∈R ∀x∈Ω w+(x) ≤ φ(t)(x) ≤ w−(x).

Hence for the boundedness of S it is sufficient to prove (3.8).
Contrary to our claim, assume that there exist tn → −∞, yn ∈ Ω such

that
φ(tn)(yn) < w+(yn).(3.9)

Then there exist xn → x0 with x0 ∈ Ω and

φ(tn)(xn) = w+(xn), n ∈ N.(3.10)

Indeed, there exists n0 ∈ N such that for n ≥ n0 we have φ(tn)(0) > w+(0).
Since (3.9) holds, the Darboux property ensures the existence of xn ∈ Ω
such that φ(tn)(xn) = w+(xn). By the compactness of Ω we may choose
a convergent subsequence of {xn}, still denoted by {xn}, which is as required.

We consider two cases. If x0 ∈ (−1, 1), then φ(tn)(xn) tends to w−(x0)
and w−(x0) = w+(x0), which is impossible. Therefore x0 ∈ {−1, 1}. From
(3.5) we get

(w+)′(1) > (w−)′(1), (w+)′(−1) < (w−)′(−1).

Let us consider x0 = 1. By (3.10) and the mean value theorem we have

w+(xn)− w+(1)
xn − 1

=
φ(tn)(xn)− φ(tn)(1)

xn − 1
= [φ(tn)]′(ξn).

Since the left hand side tends to (w+)′(1) and the right hand side to (w−)′(1),
we get (w+)′(1) = (w−)′(1), a contradiction. The same reasoning applies to
x0 = −1. This ends the proof of the boundedness of S.

Observe that the solution semigroup for u ∈ Xα satisfying w+(x) ≤
u(x) ≤ w−(x) for all x ∈ Ω is compact. Hence it has a compact connected
global attractor. In particular there must exist a heteroclinic orbit connect-
ing w− to w+.

In fact there exists a unique heteroclinic orbit connecting these two equi-
libria. This can be established using the argument in [B-F3, Lemma 3.5].
Thus we obtain the description of S = {w−, w+, φ(R)}, where φ is the only
complete trajectory connecting w− to w+.

We conclude that S is a maximal compact invariant set attracting any
subset of V with bounded orbit. In particular, if u0 ∈ Xα, then the cor-
responding Xα solution either blows up or stays bounded and approaches
a maximal compact invariant set.

Example 3.2. Consider theN -dimensional Navier–Stokes system for in-
compressible viscous fluid flow subject to a small perturbation. Following
[C-D2, Section 4], we shall show that in this case there exists a Lyapunov
function. We consider the problem
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



ut = ν∆u−∇p− (u · ∇)u+ f, t > 0, x ∈ Ω,
div u = 0, t > 0, x ∈ Ω,
u(t, x) = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,

(3.11)

where N ≥ 2, ν > 0 is a viscosity constant and Ω is a bounded domain in
RN with boundary ∂Ω of class C2+ε.

For any f ∈ [Lp(Ω)]N , p > N , the system can be viewed as an abstract
Cauchy problem {

ut + Au = F (u), t > 0,

u(0) = u0,
(3.12)

in the space

X = cl[Lp(Ω)]N {φ ∈ [C∞0 (Ω)]N : divφ = 0 in Ω}
using the projector P given by the decomposition of [Lp(Ω)]N into the spaces
of divergence free vector fields and scalar function gradients (see [F-M] and
[G-M]). Namely, we define A = −νP∆: X ⊃ dom(A)→ X with

dom(A) = X ∩ {φ ∈ [W 2,p(Ω)]N : φ = 0 on ∂Ω},
which is a sectorial operator with compact resolvent, and F : Xα → X by

F (u) = −P (u · ∇)u+ Pf, u ∈ Xα.(3.13)

Restricting further α to the interval [1/2, 1) we observe that F in (3.13) is
well defined and is Lipschitz continuous on bounded subsets of Xα.

Recall that for sufficiently small f ∈ [Lp(Ω)]N (especially if the external
force f is zero)

(3.14) there exists a stationary solution w ∈ dom(A) of the Navier–Stokes
system such that ‖w‖[W 1,∞(Ω)]N < ν/C2

Ω,

where CΩ is the constant in the Poincaré inequality.

Lyapunov function on V and description of S. Assuming (3.14) we de-
fine V as in (2.2) and consider the functional

L(u) = 1
2‖u− w‖2[L2(Ω)]N , u ∈ V.(3.15)

We shall show that L is a Lyapunov function on V . Since p > N ≥ 2, it
follows that L is continuous on V . Fix u0 ∈ V . Letting u(t) = u(t, u0), t ≥ 0,
we have

(u− w)t = −A(u− w)− P ((u− w) · ∇)w − P (u · ∇)(u− w)(3.16)

for t > 0. From [F-M] it follows that

Pv = P2v, v ∈ [Lp(Ω)]N ,



ASYMPTOTICS OF PARABOLIC EQUATIONS 71

where P2 is a selfadjoint bounded projection operator on [L2(Ω)]N . Hence
for v1, v2, v3 ∈ dom(A) we have

〈P (v1 · ∇)v2, v3〉[L2(Ω)]N = 〈P2(v1 · ∇)v2, v3〉[L2(Ω)]N

= 〈(v1 · ∇)v2, v3〉[L2(Ω)]N

and
〈Av1, v1〉[L2(Ω)]N = −ν〈∆v1, v1〉[L2(Ω)]N .

Multiplying (3.16) by u− w in [L2(Ω)]N we obtain

1
2
d

dt
‖u− w‖2[L2(Ω)]N ≤ −ν

N∑

i=1

‖∇(ui − wi)‖2L2(Ω)(3.17)

+ ‖w‖[W 1,∞(Ω)]N ‖u− w‖2[L2(Ω)]N

≤ (−ν/C2
Ω + ‖w‖[W 1,∞(Ω)]N )‖u− w‖2[L2(Ω)]N .

The above inequality proves that t 7→ L(u(t, u0)) is nonincreasing for t > 0.
Moreover, there exists a > 0 such that

‖u− w‖[L2(Ω)]N ≤ ‖u0 − w‖[L2(Ω)]N e
−at, t ≥ 0.

This shows in particular that

lim
t→∞

u(t, u0) = w in [L2(Ω)]N .(3.18)

Our task will be, however, to justify the convergence in Xα. Meanwhile,
assume that L(u(·, u0)) ≡ L(u0). Then as in (3.17) we have

0 =
d

dt
L(u(t, u0)) ≤ (−ν/C2

Ω + ‖w‖[W 1,∞(Ω)]N )‖u(t, u0)− w‖2[L2(Ω)]N ≤ 0.

This implies u0 = w ∈ E and consequently E = {w}.
Suppose that φ is a (hypothetical) bounded complete trajectory of u0.

Since αφ(u0) = {w} and ω(u0) = {w}, we have

L(w) ≥ L(φ(s)) ≥ L(w), s ∈ R,
so that φ(R) = {w}. Hence we obtain S = {w}.

We thus infer that if (3.14) holds, then for any u0 ∈ Xα, α ∈ [1/2, 1),
the Xα solution u(·, u0) of the Navier–Stokes system either blows up in Xα

or stays bounded and approaches in Xα the maximal compact invariant
set {w}.
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