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Abstract. The class of n-fundamental algebras is introduced. It is a subclass of string
algebras. For n-fundamental algebras we study the problem of when the Auslander–Reiten
quiver contains, at the beginning or at the end, a component which is not generalized
standard.

Introduction. Let K be a fixed algebraically closed field. We shall con-
sider only finite-dimensional, associative K-algebras with a unit element.
All algebras will be assumed to be basic and connected. For a fixed finite-
dimensional K-algebra A, we shall denote by mod(A) the category of right
finite-dimensional A-modules. For every finite-dimensional K-algebra A we
can study its Auslander–Reiten quiver ΓA [1, 3]. Even if A is of tame repre-
sentation type, it is difficult to describe the whole quiver ΓA. Consequently,
one usually studies the properties of the connected components of ΓA.

A. Skowroński introduced in [17] a useful notion of a generalized stan-
dard component. A standard trick in representation theory is to indicate a
generalized standard component C of ΓA; if it has nice properties then one
can derive some interesting information about the algebra A.

Our objective is different. We consider the following question. The
Auslander–Reiten quivers of a wide class of triangular algebras have some
components at the beginning and some components at the end. Is it possi-
ble that at least one of them is not generalized standard? We shall indicate
a class of algebras for which this phenomenon can occur. This class is a
subclass of special biserial algebras.

Biserial rings were introduced by K. Fuller [9]. Later A. Skowroński and
J. Waschbüsch observed that any representation-finite biserial K-algebra is
special biserial [18]. Further B. Wald and J. Waschbüsch proved that any
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special biserial algebra is of tame representation type [19]. The same result
was obtained by P. Dowbor and A. Skowroński in [6] by an application of
Galois covering techniques. Finally, W. Crawley-Boevey proved in [5] that
every finite-dimensional biserial K-algebra is of tame representation type.
Nevertheless our knowledge of Auslander–Reiten quivers of biserial algebras
is still poor, even in the case of representation-infinite special biserial al-
gebras. The main aim of this paper is to look for nongeneralized standard
components at the beginning or end of their quivers.

The paper is organized as follows. Section 1 contains all needed defini-
tions and facts from representation theory.

Section 2 is devoted to one-point extensions. It also contains some fun-
damental information about vector space categories and their subspace cat-
egories.

Section 3 contains a description of the Auslander–Reiten quivers of a
narrow class of special biserial algebras.

The class of fundamental algebras is introduced in Section 4. The struc-
ture of their Auslander–Reiten quivers is also studied.

In Section 5 the class of n-fundamental algebras is introduced. More-
over, 2-fundamental algebras are studied. This section contains Theorem 5.7,
which is our first main result.

Section 6 is devoted to n-fundamental algebras for arbitrary n ≥ 2.
Theorem 6.8 gives a sufficient condition for the Auslander–Reiten quiver of
an n-fundamental algebra to have a starting or an ending component which
is not generalized standard.

We shall use freely all information on the Auslander–Reiten sequences
and irreducible morphisms which can be found in [1, 2, 3]. Moreover, we
shall apply the description of morphisms between indecomposable modules
from [11]. Furthermore, we shall view our algebras as factor algebras KQ/I
of the path algebras KQ of some quivers Q modulo admissible two-sided
ideals I. Then to each vertex x of a quiver Q we can attach a right simple
KQ/I-module Sx, a right projective KQ/I-module Px and a right injective
KQ/I-module Ex.

1. Preparatory facts

1.1. Recall that a finite-dimensionalK-algebra A is said to be tame pro-
vided that for every dimension d there exist finitely manyK[X]-A-bimodules
Qi, 1 ≤ i ≤ nd, which are free left K[X]-modules of finite rank and satisfy
the following condition: all but finitely many isoclasses of indecomposable
right A-modules of dimension d are isoclasses of A-modules of the form
K[X]/(X − λ)⊗K[X] Qi for some λ ∈ K and some 1 ≤ i ≤ nd (see [7]).
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Let µA(d) denote the smallest number of bimodules Qi satisfying the
above conditions. Then the algebra A is said to be of polynomial growth if
there is a positive integer m such that µA(d) ≤ dm (see [16]).

1.2. Let A be a finite-dimensional K-algebra. Following Gabriel [10] we
can associate to A a bound quiver (QA, IA) in such a way that A ∼= KQA/IA,
where KQA is the path algebra of the quiver QA, and IA is a two-sided
ideal in KQA contained in the square of the two-sided ideal generated by
the arrows. The algebra A is called triangular if QA has no oriented cycles.

1.3. An algebra A is said to be special biserial (see [18]) if there exists
a bound quiver (QA, IA) with A ∼= KQA/IA such that:

(1) Every vertex of QA is the source of at most two arrows.
(2) Every vertex of QA is the target of at most two arrows.
(3) For every arrow α in QA there exists at most one arrow β (resp. γ)

such that αβ 6∈ IA (resp. γα 6∈ IA).

Throughout the paper we shall always consider special biserial algebras of
the form KQA/IA with (QA, IA) satisfying the above conditions.

1.4. Let (Q, I) be a bound quiver. Recall that a walk in the quiver Q
is a formal composition of arrows and their formal inverses. We shall also
consider trivial walks ex attached to vertices x of Q. A walk w in the bound
quiver (Q, I) is a walk in Q such that no subpath v in w or its formal inverse
belongs to I.

We are interested in closed walks, i.e. ones with start vertices coinciding
with end vertices. A closed walk w in a bound quiver (Q, I) will be called
small if it is not of the form vn for any integer n ≥ 2, and for any positive
integer m the walk wm does not contain αα−1 or α−1α, and it is not of the
form wm = w1uw2, where u is a path (resp. its formal inverse) such that
either u (resp. u−1) lies in I, or u− z (resp. u−1 − z) belongs to I for some
path z in Q.

A pair of two different small closed walks w1, w2 is said to be inadmissible
if:

(i) w1, w2 have the same start vertex,
(ii) for every prime p and any decompositions p =

∑t
j=1(ij + lj), ij , lj

≥ 1, the closed walks wi11 w
l1
2 w

i2
1 w

l2
2 · · ·wit1 wlt2 are small and pairwise

different.

1.5. Lemma. Let A = KQA/IA be a special biserial K-algebra. If there
is an inadmissible pair of walks w1, w2 in a bound quiver (QA, IA) then the
algebra A is not of polynomial growth.

Proof. Repeat the arguments from the proof of Lemma 1 in [16].
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1.6. Let A = KQA/IA be a special biserial algebra which is a string
algebra, that is, IA is generated only by paths. Then there is a full classi-
fication of indecomposable finite-dimensional right A-modules (see [6, 19]).
For every such module X we have two possibilities. The first is that X is
induced by a walk w satisfying: w 6= w1αα

−1w2, w 6= w1β
−1βw2 and w

does not contain a subwalk of the form u or u−1 with u ∈ IA. In this case
we shall denote X by X(w). The other possibility is that there is a small
closed walk v, an integer n ≥ 1 and an element λ ∈ K∗ such that X is
uniquely determined (up to isomorphism) by these data. In this case we
write X ∼= X(v, n, λ).

Under the above notation we have the following algorithm for computing
Auslander–Reiten sequences, found by Skowroński and Waschbüsch in [18].
If X ∼= X(w) for some walk w in QA then we construct a walk wR in the
following way. If

w = α1,s1 · · ·α1,1α
−1
2,1 · · ·α−1

2,s2 · · ·αr−1,sr−1 · · ·αr−1,1α
−1
r,1 · · ·α−1

r,sr ,

where each αj,t is an arrow in QA and α1,s1 · · ·α1,1 or α−1
r,1 · · ·α−1

r,sr may be
trivial, then

wR = α1,s1 · · ·α1,1α
−1
2,1 · · ·α−1

2,s2 · · ·αr−1,sr−1 · · ·αr−1,1

· α−1
r,1 · · ·α−1

r,srα
−1
r,sr+1αr+1,sr+1 · · ·αr+1,1,

where αr+1,sr+1 · · ·αr+1,1 6∈ IA is a maximal path, provided that such a
walk wR exists. If there is no walk α−1

r,sr+1αr+1,sr+1 · · ·αr+1,1 then wR =
α1,s1 · · ·α1,1α

−1
2,1 · · ·α−1

2,s2 · · ·αr−1,sr−1 · · ·αr−1,2. Similarly we can construct a
walk wL using the same rules on the other end of the walk w. Then we
can compose our constructions and obtain a walk wRL. Finally, if X(w)
is noninjective then we have the following Auslander–Reiten sequence in
mod(A):

0→ X(w)→ X(wR)⊕X(wL)→ X(wRL)→ 0.

Furthermore, if X ∼= X(v, n, λ) then it is known from [19] that the Auslan-
der–Reiten sequence ending at X is of the form

0→ X(v, n, λ)→ X(v, n− 1, λ)⊕X(v, n+ 1, λ)→ X(v, n, λ)→ 0,

where X(v, 0, λ) is always the zero module.
Following Auslander and Reiten (see [2, 3]) we attach to any K-algebra

A its Auslander–Reiten quiver ΓA. The vertices of ΓA are the isoclasses [M ]
of indecomposable finite-dimensional right A-modules M . The number of
arrows from [M ] to [N ] is dimKIrr(M,N)/Irr2(M,N), where Irr(mod(A))
is the two-sided ideal in mod(A) generated by the irreducible morphisms.
We shall not distinguish between indecomposable A-modules and their iso-
classes.

A component in ΓA will always mean a connected component.
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Following Ringel (see [14]) two components C1, C2 in ΓA are said to
be orthogonal if HomA(M,N) = 0 = HomA(N,M) for any M ∈ C1 and
N ∈ C2. A family {Cj}j∈J of pairwise orthogonal components in ΓA separates
a component C from a component C ′ provided that:

(1) ΓA = C t⊔j∈J Cj t C′.
(2) HomA(C′, C) = HomA(C′,⊔j∈J Cj) = HomA(

⊔
j∈J Cj , C) = 0.

(3) For any nonzero morphism f : M → N with M ∈ C, N ∈ C ′ and for
any j ∈ J there exists a finite-dimensional module Xj in the additive
category formed by the modules from Cj and there are homomor-
phisms f1 : M → Xj and f2 : Xj → N such that f = f2f1.

1.7. Throughout the paper A = KQA/IA will denote a string alge-
bra which is triangular. We define a triangular string algebra A to be Ãn-
separated provided that for any two subquivers Q′, Q′′ in QA of type Ãn
such that KQ′ ∩ IA = 0 = KQ′′ ∩ IA we have Q′0 ∩ Q′′0 = ∅, where Q′0, Q′′0
denote the sets of vertices of Q′, Q′′, respectively.

1.8. Let p = (p1, . . . , pq) denote a strictly increasing sequence of positive
integers. Let l ≥ 1 be an integer. Consider a quiver Q(p,l) of the form
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αq−1,1

αq−1,pq−1−pq−2

αq,1

αq,pq−pq−1

α0,1

α0,l

α1,1

α1,p1

α2,1

α2,p2−p1

α3,1

α3,p3−p2

XXXy ���:
αq−2,pq−2−pq−3

α4,p4−p3
r r r r r r r r r r r r r r r r r r r r r r r

The path algebra KQ(p,l) = A(p,l) is a tame hereditary algebra. It is well
known (see [14]) that its Auslander–Reiten quiver is a disjoint union

ΓA(p,l) = P(A(p,l)) t C0(A(p,l)) t C∞(A(p,l)) t
⊔

λ∈K∗
Cλ(A(p,l)) t I(A(p,l))

of components, where P(A(p,l)) is the preprojective component and I(A(p,l))
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is the preinjective component. Moreover, the family C0(A(p,l))tC∞(A(p,l))t⊔
λ∈K∗ Cλ(A(p,l)) of pairwise orthogonal components separates P(A(p,l)) from
I(A(p,l)). Furthermore, for every λ ∈ K∗, Cλ(A(p,l)) is a tube of rank 1 in
the sense of [8]. The component C0(A(p,l)) is a tube of rank p1 + p3 − p2 +
p5 − p4 + . . .+ pq − pq−1, and C∞(A(p,l)) is a tube of rank l+ p2 − p1 + p4 −
p3 + . . .+ pq−2 − pq−1. Finally, the following (∗)-condition is satisfied:

(∗1) if Si is a simpleA(p,l)-module which is neither projective nor injective
and the vertex i belongs to a clockwise oriented path then Si ∈
C0(A(p,l)),

(∗2) if Si is a simple A(p,l)-module which is neither projective nor injec-
tive and i belongs to a counter-clockwise oriented path then Si ∈
C∞(A(p,l)),

(∗3) if M ∼= M(w) is an A(p,l)-module and w is a maximal path which is
counter-clockwise oriented then M(w) ∈ C0(A(p,l)),

(∗4) if M ∼= M(w) is an A(p,l)-module and w is a maximal path which is
clockwise oriented then M(w) ∈ C∞(A(p,l)).

1.9. Let B be an algebra. Following Skowroński [17] we shall say that
a component C of ΓB is generalized standard if rad∞(X,Y ) = 0 for any
indecomposable right B-modules X, Y whose isoclasses belong to C, where
rad∞(mod(B)) denotes the intersection of all natural powers of the Jacobson
radical rad(mod(B)) of the category mod(B).

A connected component C in ΓB is defined to be starting (resp. ending) if
there is no nonzero morphism f : X → Y between indecomposable modules
X, Y such that Y ∈ C and X 6∈ C (resp. X ∈ C and Y 6∈ C). An example
of a starting component is the preprojective component P(A(p,l)). It is also
obvious that the preinjective component I(A(p,l)) is an ending component.

2. One-point extensions

2.1. Let B be a finite-dimensional triangular K-algebra. Consider the
algebra

C =
(
K KMB

0 B

)
,

where KMB is a finite-dimensional K-B-bimodule. It is clear that C is
a finite-dimensional triangular K-algebra. Moreover, we can treat finite-
dimensional, right C-modules as triples (V,XB, f), where V is a finite-
dimensional K-linear space, XB is a finite-dimensional right B-module and
f : V → HomB(KMB ,X) is a K-linear morphism. The algebra C is said to
be a one-point extension of B by KMB (see [13, 15]).
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2.2. We can associate a vector space category XMB
(see [15]) to the

bimodule KMB ; the indecomposable objects of XMB
are the indecompos-

able finite-dimensional right B-modules X with HomB(KMB,X) 6= 0, and
morphisms are of the form HomB(KMB, f) for f ∈ HomB(X,Y ). The
structure of a left K-linear space on KMB yields the structure of a right
K-linear space on HomB(KMB,X) for any X ∈ XMB

, and the functor
|−| : XMB

→ mod(K) is of the form |−| = HomB(KMB,−). We know
from [13] that there exists a functor η : U(XMB

) → mod(C) which is full
and faithful and establishes an equivalence between the subspace category
U(XMB

) and the full subcategory of mod(C) consisting of the modules with-
out direct summands of the form (0,X, 0). Moreover, there is an equivalence
of categories (mod(C))/[mod(B)] ∼= U(XMB

) (see [15]).
A vector space category of the form XMB

is said to be linear if

dimK HomB(KMB ,X) = 1

for every indecomposable object X ∈ XMB
and the partially ordered set

attached to XMB
is linearly ordered.

The next two lemmas were proved by Nazarova and Roiter in [12].

2.3. Lemma. Let XMB
be a linear vector space category. Then the triples

of the form (K,X, f), where X is an indecomposable object from XMB
and

f : K → HomB(KMB ,X) is the identity morphism, and (K, 0, 0) form a
full list of nonisomorphic indecomposable objects of the subspace category
U(XMB

).

2.4. Lemma. Let XMB
be a vector space category which is equivalent

to an additive category add(KS), where S is a disjoint union of two lin-
early ordered sets S1, S2. Then the triples of the form (K,X, id), (K,Y, id),
(K,X ⊕ Y,∆), (K, 0, 0), where X is an indecomposable object of XMB

con-
tained in S1, Y is an indecomposable object of XMB

contained in S2, and
∆ : K → HomB(KMB ,X ⊕ Y ) = K2 is given by ∆(k) = (k, k), form a full
list of nonisomorphic indecomposable objects of U(XMB

).

3. One-point extensions of A(p,l)

3.1. Now we shall consider the algebra

A =
(
K MA(p,l)

0 A(p,l)

)
,

where MA(p,l)
∼= M(w) is a simple regular A(p,l)-module in the sense of [14].

Then MA(p,l) is either a simple A(p,l)-module which is neither projective nor
injective, or a simple regular A(p,l)-module which is not simple. In both cases
MA(p,l) ∈ C0(A(p,l)) or MA(p,l) ∈ C∞(A(p,l)). In these notations we have
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3.2. Lemma. (1) The vector space category XMA(p,l)
is linear.

(2) ΓA = P(A(p,l)) t C0(A) t C∞(A) t⊔λ∈K∗ Cλ(A(p,l)) t I(A) and :
(2i) If MA(p,l) ∈ C0(A(p,l)) then C∞(A) = C∞(A(p,l)).

(2ii) If MA(p,l) ∈ C∞(A(p,l)) then C0(A) = C0(A(p,l)).

(2iii) Every indecomposable projective A-module which is not an
A(p,l)-module belongs to the component which contains MA(p,l) .

(2iv) C0(A)tC∞(A)t⊔λ∈K∗ Cλ(A(p,l)) separates P(A(p,l)) from I(A).
(2v) I(A) contains all indecomposable injective A-modules and is an

ending component.

Proof. See [14].

3.3. Let

B =
(

A(p,l) 0

KMA(p,l) K

)
,

where MA(p,l) is either a simple A(p,l)-module which is neither projective
nor injective, or a simple regular A(p,l)-module which is not simple. Then
the algebra B is called a one-point coextension of the algebra A(p,l) by the
K-A(p,l)-bimodule KMA(p,l) . Under the above notations we have

Lemma. ΓB = P(B)tC0(B)tC∞(B)t⊔λ∈K∗ Cλ(A(p,l))tI(A(p,l)) and :

(i) If MA(p,l) ∈ C0(A(p,l)) then C∞(B) = C∞(A(p,l)).

(ii) If MA(p,l) ∈ C∞(A(p,l)) then C0(B) = C0(A(p,l)).

(iii) Every injective indecomposable B-module which is not an A(p,l)-
module belongs to the component which contains MA(p,l).

(iv) C0(B) t C∞(B) t⊔λ∈K∗ Cλ(A(p,l)) separates P(B) from I(A(p,l)).
(v) P(B) contains all indecomposable projective B-modules and is a

starting component.

Proof. See [14].

4. Fundamental algebras

4.1. A triangular string algebra A is defined to be fundamental if A ∼=
KQA/IA is connected and in the bound quiver (QA, IA) there exists exactly
one full subquiver Q′ of type Ãn such that KQ′ ∩ IA = 0 and the quiver
obtained from QA by removing all arrows belonging to Q′ and identifying
all vertices in Q′ with vertex 0 is a tree.

For a K-algebra B, a right finite-dimensional B-module M is said to be
uniserial if the lattice of its submodules is a chain.
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4.2. Lemma. If A is a fundamental K-algebra then there exists a se-
quence p, an integer l ≥ 1 and a sequence A0, A1, . . . , Ar of fundamental
algebras such that :

(1) A0 ∼= A(p,l).
(2) For each i = 1, . . . , r the algebra Ai is a one-point extension or a

one-point coextension of Ai−1 by a uniserial module.
(3) Ar ∼= A.

Proof. Let Q′ be as in the definition of a fundamental algebra. Then
there exists a sequence p and an integer l ≥ 1 such that Q′ = Q(p,l). We

put A0 = A(p,l). Let Q denote the quiver obtained from QA by removing all

arrows in Q′ and identifying all vertices in Q′ with vertex 0. Since Q is a
tree, there is a vertex x 6= 0 which is either the source of exactly one arrow
and the target of none, or the target of exactly one arrow and the source of
none. If Q has r + 1 vertices then we put Ar = A. Let Qr−1 be the quiver
obtained from QA by removing the vertex x and the only arrow α whose
source or target is x. Let Ir−1 be the two-sided ideal in KQr−1 generated
by the paths in IA which do not contain α. We put Ar−1 = KQr−1/Ir−1.
Then Ar−1 is fundamental by construction.

Suppose that the removed arrow α has source x. Let Px be an indecom-
posable projective right A-module which is not an Ar−1-module. It is clear
that rad(Px) is a uniserial right A-module which is an Ar−1-module. Thus
clearly

A ∼=
(
K rad(Px)

0 Ar−1

)

and rad(Px) is a uniserial Ar−1-module.
If α has target x then consider an indecomposable injective right A-

module Ex which is not an Ar−1-module. Again it is clear that Ex/soc(Ex)
is a uniserial A-module which is an Ar−1-module. Thus

A ∼=
(

Ar−1 0

Ex/soc(Ex) K

)

and Ex/soc(Ex) is a uniserial right Ar−1-module.
Consequently, Ar = A is a one-point extension or coextension of Ar−1

by a uniserial Ar−1-module.
Repeating the above arguments we construct algebras Ar−2, . . . , A1 such

that the fundamental algebras A0, A1, . . . , Ar satisfy (1)–(3).

4.3. Lemma. If A = KQA/IA is a fundamental K-algebra then for any
vertex x in QA there exists at most one walk w in QA of minimal length
which starts at x and ends at a vertex of Q′.
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Proof. Since the quiver Q obtained from QA by removing all arrows in
Q′ and identifying all vertices in Q′ with vertex 0 is a tree, the assertion is
obvious.

Define a ±-arrow of a quiver Q to be an arrow of Q or its formal inverse.

4.4. Proposition. Let A be a fundamental K-algebra. Then

ΓA = P(A) t C0(A) t
⊔

λ∈K∗
Cλ(A) t C∞(A) t I(A)

and the following conditions are satisfied :

(1) If X ∈ P(A) then X ∼= X(w) for some walk w in (QA, IA); con-
versely , P(A) contains all X(w) for the walks w satisfying one of the
following conditions:

(1i) w is a walk in Q(p,l) with X(w) ∈ P(A(p,l)).
(1ii) w = w′′ww′ for some walks w′′, w′ which do not contain any

±-arrow from Q(p,l), and w′ = α−1w′1, where α is an arrow
with source in Q(p,l) different from 0, p2, p4, . . . , pq−1, and w is
a walk in Q(p,l) such that X(w) ∈ P(A(p,l)).

(1iii) w does not contain any ±-arrow in Q(p,l) and there exists a
walk w′ (maybe trivial) which does not contain any ±-arrow in
Q(p,l) such that w′ = α−1w′′, where α is an arrow with source
in Q(p,l) different from 0, p2, p4, . . . , pq−1 and the other frame
vertex of w′ is the ending point of w. Moreover , if the source
of α is different from p1, p3, . . . , pq then w′ = w1β

−1 for some
arrow β whose target coincides with the ending point of w.

(2) If X0 ∈ C0(A) then X0 ∼= X0(w) for some walk w in (QA, IA);
conversely , C0(A) contains all X0(w) for the walks w satisfying one
of the following conditions:

(2i) w is a walk in Q(p,l) such that X0(w) ∈ C0(A(p,l)).
(2ii) w = w′′ww′ for some walks w′′, w′ which do not contain any ±-

arrow from Q(p,l), and either the end of w′ is a vertex in Q(p,l)
which belongs to a maximal counter-clockwise oriented path in
Q(p,l) and is neither the starting nor the ending point of this
path, or the end of w′ is one of 0, p1, p2, . . . , pq. Furthermore,
w is contained in Q(p,l) and X0(w) ∈ C0(A(p,l)).

(2iii) w consists of ±-arrows which do not belong to Q(p,l) and there
is a walk w′ (maybe trivial) which does not contain any ±-
arrow from Q(p,l) such that either w′ = α−1w′′, or w′ = αw′′. If
w′ = α−1w′′ then α is an arrow whose source is a vertex of some
maximal counter-clockwise oriented path in Q(p,l) and is neither
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the starting nor the ending point of this path, and w′ = w1β
for some arrow β whose source coincides with the ending point
of w. If w′ = αw′′ then α is an arrow whose target belongs
to a maximal counter-clockwise oriented path in Q(p,l) and is
neither the starting nor the ending point of this path. Moreover ,
w′ = w1β

−1 for some arrow β whose target coincides with the
ending point of w.

(3) If X∞ ∈ C∞(A) then X∞ ∼= X∞(w) for some walk w in (QA, IA);
conversely , C∞(A) contains all X∞(w) for the walks w satisfying one
of the following conditions:

(3i) w is a walk in Q(p,l) such that X∞(w) ∈ C∞(A(p,l)).

(3ii) w = w′′ww′ for some walks w′′, w′ which do not contain any
±-arrow from Q(p,l), and either the ending point of w′ belongs
to a maximal clockwise oriented path in Q(p,l) and is neither the
starting nor the ending point of this path, or the ending point
of w′ is one of 0, p1, p2, . . . , pq. Furthermore, w is contained in
Q(p,l) and X∞(w) ∈ C∞(A(p,l)).

(3iii) w contains no ±-arrow from Q(p,l) and there is a walk w′ (maybe
trivial) which does not contain any ±-arrow from Q(p,l) such
that either w′ = α−1w′′ or w′ = αw′′. If w′ = α−1w′′ then α is
an arrow whose source is a vertex of a maximal clockwise ori-
ented path in Q(p,l) and is neither the starting nor the ending
point of this path. Moreover , w′ = w1β for some arrow β whose
source coincides with the ending point of w. If w′ = αw′′ then
α is an arrow whose target belongs to a maximal clockwise ori-
ented path in Q(p,l) and is neither the starting nor the ending
point of this path. Moreover , w′ = w1β

−1 for some arrow β
whose target coincides with the ending point of w.

(4) Any Xλ ∈ Cλ(A), λ ∈ K∗, is an A(p,l)-module which belongs to
Cλ(A(p,l)).

(5) If Y ∈ I(A) then Y ∼= Y (w) for some walk w in (QA, IA); conversely ,
I(A) contains all Y (w) for the walks w satisfying one of the following
conditions:

(5i) w is a walk in Q(p,l) such that Y (w) ∈ I(A(p,l)).

(5ii) w = w′′ww′ for some walks w′′, w′ which do not contain any
±-arrow from Q(p,l), and w′ = αw′1, where α is an arrow whose
target belongs to Q(p,l) and is different from p1, p3, . . . , pq. Fur-
thermore, w is contained in Q(p,l) and Y (w) ∈ I(A(p,l)).
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(5iii) w does not contain any ±-arrow from Q(p,l) and there is a walk
w′ (maybe trivial) which does not contain any ±-arrow from
Q(p,l) such that w′ = αw′′, where α is an arrow whose target
belongs to Q(p,l) and is different from p1, p3, . . . , pq and the other
frame vertex of w′ is the ending point of w. Moreover , if the
target of α is different from 0, p2, p4, . . . , pq−1 then w′ = w1β
for some arrow β whose source coincides with the ending point
of w.

Proof. Let A0, A1, . . . , Ar be given by Lemma 4.2. We shall prove the
assertion by induction on r.

If r = 1 then the assertion is clear by Lemmas 3.2, 3.3.
Assume that the assertion is true for all fundamental algebras A with

r ≤ r0. Let A′ be a fundamental algebra such that there is a sequence
of fundamental algebras A0, A1, . . . , Ar0 , Ar0+1 which satisfies the relevant
conditions. Assume that Ar0+1 = A′ is a one-point extension of Ar0 = A.
Every bound quiver (QA′ , IA′) ofA′ is obtained from a bound quiver (QA, IA)
of A by adding to QA one vertex 0′ and one arrow κ with source 0′ and target
x ∈ QA. Furthermore, IA′ is a two-sided ideal which contains IA and possibly
new paths starting with κ.

Consider rad(P0′), which is a uniserial A-module. There is a nonzero path
εn · · · ε1 in (QA, IA) starting at x such that rad(P0′) ∼= M(εn · · · ε1), because
A is a string algebra. It is clear that A′ is a one-point extension of A by the
module M(εn · · · ε1) = M .

If no walk in (QA, IA) starts at x and ends at a vertex of Q(p,l) then
the vector space category XM contains only finitely many indecomposable
A-modules Z1, . . . , Zm with Zj ∼= Sx or Zj ∼= Zj(wj), where wj = w′εi · · · ε1,
i = 1, . . . , n, and either w′ is trivial, or w′ = w′′τ−1, or else wj = w′τ−1,
where τ is an arrow in QA whose target is x. Then XM is linear by [12].

If there is a walk w in (QA, IA) which starts at x and ends at a vertex from
Q(p,l) then by Lemma 4.3 there exists exactly one such walk w of minimal
length. If w = w′δεn · · · ε1 then HomA(M,M(w)) = 0 and XM consists of
finitely many indecomposable A-modules of the above form. Hence XM is
linear. If w = w′δ−1εi · · · ε1, i = 1, . . . , n, or w = w′δ−1, where δ is an
arrow in QA whose target is x, then HomA(M,M(w)) ∼= K. Let y ∈ Q(p,l)
be the end of w. Then there are walks w in Q(p,l) which start at y such

that HomA(M,M(ww)) ∼= K. Now consider the case w = ηw̃′′δ−1εi · · · ε1,
i = 1, . . . , n, or w = ηw̃′′δ−1. Then y is the target of the arrow η. Thus y 6=
p1, p3, . . . , pq. If y ∈ {0, p2, p4, . . . , pq−1} then by the inductive assumption
for every walk w in Q(p,l) starting at y we have either M(w) ∼= Y (w) ∈ I(A),
or M(w) ∼= X0(w) ∈ C0(A), or else M(w) ∼= X∞(w) ∈ C∞(A). Since A is
fundamental, we have either XM ⊂ C0(A) t I(A) or XM ⊂ C∞(A) t I(A).
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Consider the case XM ⊂ C0(A) t I(A). First suppose that y ∈ {0, p2,
p4, . . . , pq−1}. Then X0(ww) ∈ C0(A) ∩ XM , where w = w′αi,pi−pi−1 · · ·αi,1
if y = pi, and pi − pi−1 = l if y = 0. In this case all X0(ww) are of the form

X0(αi,pi−pi−1 · · ·αi,1w), X0(α−1
i−1,pi−1−pi−2

αi,pi−pi−1 · · ·αi,1w), . . . ,

and it is easy to see that

HomXM (X0(ww),X0(w1w)) ∼=
{
K if l(w) ≤ l(w1),

0 otherwise.
Furthermore, X0(w′′ww) ∈ C0(A)∩XM provided that X0(ww) ∈ C0(A)∩XM
and w is as above. Then

HomXM (X0(w′′ww),X0(w′′1w1w)) ∼=





K if l(w) < l(w1),

K if l(w) = l(w1) and

HomA(X(w′′w),X(w′′1w1)) 6= 0,

0 otherwise.
Moreover, Y (ww) ∈ I(A) ∩ XM provided that

w = αi,1, αi,2αi,1, . . . , αi,pi−pi−1 · · ·αi,1,
α−1
i−1,1 · · ·α−1

i−1,pi−1−pi−2
αi,pi−pi−1 · · ·αi,1, . . .

Then it is easy to see that

HomXM (Y (ww), Y (w1w)) ∼=
{
K if l(w) ≤ l(w1),

0 otherwise.
Furthermore, Y (w′′ww) ∈ I(A) ∩ XM provided that Y (ww) ∈ I(A) ∩ XM
and w is as above. Then

HomXM (Y (w′′ww), Y (w′′1w1w)) ∼=





K if l(w) < l(w1),

K if l(w) = l(w1) and

HomA(Y (w′′w), Y (w′′1w1)) 6= 0,

0 otherwise.
Moreover, all indecomposable modules Z(w′) in XM for the walks w′ of the
form w′ = w̃τ−1εa · · · ε1 with a > i such that w′ is disjoint from Q(p,l) form
a linear vector space category by [12], and

HomXM (Z(w′),X0(w′′ww)) ∼= K ∼= HomXM (Z(w′), Y (w′′1w1w)),

HomXM (X0(w′′ww), Z(w′)) = 0 = HomXM (Y (w′′1w1w), Z(w′)).

Likewise, the indecomposable modules Z(w′) in XM for the walks w′ of the
form w′ = w̃τ−1εb · · · ε1 with b < i such that w′ is disjoint from Q(p,l) form
a linear vector space category and

HomXM (X0(w′′ww), Z(w′)) ∼= K ∼= HomXM (Y (w′′1w1w), Z(w′)).

Finally, the indecomposable modules Z(w1) in XM for w1 = w′1δ
−1εi · · · ε1

disjoint from Q(p,l) also form a linear vector space category. Next, for every
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walk w1 it is easy to see that either

HomXM (Z(w1),X0(w′′ww)) ∼= K ∼= HomXM (Z(w1), Y (w′′1w1w))
and

HomXM (X0(w′′ww), Z(w1)) = 0 = HomXM (Y (w′′1w1w), Z(w1)),

or vice versa.
In view of the above remarks the vector space category XM is linear.
Now consider the case y 6= 0, p2, p4, . . . , pq−1. Then y is a vertex of a max-

imal counter-clockwise oriented path in Q(p,l), and y is neither the starting
nor the ending point of this path. To simplify notation assume that y is the
target of the arrow α0,i, i 6= l. Then X0(ww) ∈ C0(A) ∩ XM provided that
w is one of the following walks:

ey, α
−1
0,i , α

−1
0,i−1α

−1
0,i , . . . , α

−1
0,2 · · ·α−1

0,i , α1,p1 · · ·α1,1α
−1
0,1 · · ·α−1

0,i , . . .

It is easy to see that

HomXM (X0(ww),X0(w1w)) ∼=
{
K if l(w) ≤ l(w1),

0 otherwise.
Furthermore, X0(w′′ww) ∈ C0(A) ∩ XM if w is as above. Then

HomXM (X0(w′′ww),X0(w′′1w1w))

∼=





K if l(w) < l(w1),

K if l(w) = l(w1) and

HomA(X0(w′′w),X0(w′′1w1)) ∼= K,

0 otherwise.
Moreover, Y (ww) ∈ XM ∩ I(A) provided that w is one of the following
walks:

α−1
0,1 · · ·α−1

0,i , α1,1α
−1
0,1 · · ·α−1

0,i · α1,2α1,1α
−1
0,1 · · ·α−1

0,i , . . .

Then it is easy to see that

HomXM (Y (ww), Y (w1w)) ∼=
{
K if l(w1) ≤ l(w),

0 if l(w1) > l(w).

Furthermore, Y (w′′ww) ∈ XM ∩ I(A) if w is as above. Then

HomXM (Y (w′′ww), Y (w′′1w1w)) ∼=





K if l(w1) < l(w),

K if l(w1) = l(w) and

HomA(Y (w′′w), Y (w1w)) ∼= K,

0 otherwise.
Additionally, for every X0(ww) ∈ XM ∩ C0(A) and every Y (w1w) ∈ XM ∩
I(A) we obviously have

HomXM (X0(ww), Y (w1w)) ∼= K, HomXM (Y (w1w),X0(ww)) = 0.
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Thus for every X0(w′′ww) ∈ XM ∩C0(A) and every Y (w′′1w1w) ∈ XM ∩I(A)
we have

HomXM (X0(w′′ww), Y (w′′1w1w)) ∼= K,

HomXM (Y (w′′1w1w),X0(w′′ww)) = 0.

Next, the indecomposable modules Z(w′) in XM for w′ = w̃τ−1εa · · · ε1
with a > i such that w′ is disjoint from Q(p,l) form a linear vector space
category by [12], and

HomXM (Z(w′),X0(w′′ww)) ∼= K ∼= HomXM (Z(w′), Y (w′′1w1w)),

HomXM (X0(w′′ww), Z(w′)) = 0 = HomXM (Y (w′′1w1w), Z(w′)).

The indecomposable modules Z(w′) for w′ = w̃τ−1εb · · · ε1 with b < i such
that w′ is disjoint from Q(p,l) also form a linear vector space category, and

HomXM (Z(w′),X0(w′′ww)) = 0 = HomXM (Z(w′), Y (w′′1w1w)),

HomXM (X0(w′′ww), Z(w′)) ∼= K ∼= HomXM (Y (w′′1w1w), Z(w′)).

Finally, the indecomposable modules Z(w1) for w1 = w′1δ
−1εi · · · ε1 or w1 =

εi · · · ε1 such that w1 is disjoint from Q(p,l) also form a linear vector space
category. Furthermore, either

HomXM (Z(w1),X0(w′′ww)) ∼= K ∼= HomXM (Z(w1), Y (w′′1w1w))

and

HomXM (X0(w′′ww), Z(w1)) = 0 = HomXM (Y (w′′1w1w), Z(w1)),

or vice versa.
Consequently, the vector space category XM is linear.
The case when XM ⊂ C∞(A) ∪ I(A) is similar.
If w = η−1w̃1δ

−1εi · · · ε1, i = 1, . . . , n, or w = η−1w̃1δ
−1, then a sim-

ilar analysis shows that XM is linear; here the indecomposable modules
Z(w′′ww) belong to P(A) t C0(A) or to P(A) t C∞(A).

Now Lemma 2.3 shows that the indecomposable A′-modules which are
not A-modules can be identified with the following objects of the subspace
category U(XM): (K, 0, 0), (K,Z, id) for all indecomposable Z ∈ XM . Since
every indecomposable Z ∈ XM is of the form Z ∼= Z(w) for some walk
w in (QA, IA) which starts at x, (K, 0, 0) is in fact the simple A′-module
S0′ . However every object (K,Z(w), id) is in fact an A′-module of the form
Z(wκ). Therefore we obtain condition (4) for the algebra A′.

If there is no walk connecting x to Q(p,l) in (QA, IA) then XM is a finite
vector space category whose indecomposable objects are Z(w) for the walks
w of the form ex, w

′τ−1, w′1σ
−1εi · · · ε1, i ∈ {1, . . . , n}, disjoint from Q(p,l).

Then the indecomposable A′-modules which are not A-modules are of the
form Z(wκ) for the above w. Moreover, if there is an irreducible morphism
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f : Z(w) → Z1 in mod(A) then either there are irreducible morphisms

Z(w)
g→ Z(wκ) h→ Z1 in mod(A′) or f is also irreducible in mod(A′). Hence

Z(wκ) and Z(w) belong to the same component and so passing from ΓA
to ΓA′ we have no gluing of components. Therefore ΓA′ = P(A′) t C0(A′) t⊔
λ∈K∗ Cλ(A′) t C∞(A′) t I(A′) and conditions (1)–(5) are satisfied.
If there is a walk in (QA, IA) which connects x to Q(p,l) then let w be

such a walk of minimal length. By the first part of the proof the vector
space category XM is linear, and the indecomposable A-modules of the form
Z(w′′ww′) which belong to XM are contained in C0(A)tI(A), C∞(A)tI(A),
P(A) t C0(A), P(A) t C∞(A).

If XM ⊂ C0(A) t I(A) then P(A′) = P(A), C∞(A′) = C∞(A) and
Cλ(A′) = Cλ(A), λ ∈ K∗. Hence conditions (1), (3), (4) hold for ΓA′ .

In order to check (2), (5), notice that the new walks in (QA′ , IA′) are of
the form wκ. Thus if f : Z(w)→ Z1 is an irreducible morphism in mod(A)
then either it is irreducible in mod(A′), or there are irreducible morphisms

Z(w)
g→ Z(wκ) h→ Z1. Hence passing from ΓA to ΓA′ we do not glue any

different components, and so ΓA′ = P(A′)tC0(A′)t⊔λ∈K∗ Cλ(A′)tC∞(A′)t
I(A′). Furthermore, it is obvious that if (2) (resp. (5)) is satisfied for w then
it is also satisfied for wκ.

The other cases can be checked similarly. We omit the details.
Consequently, Ar0+1 is a one-point extension of Ar0 , and conditions

(1)–(5) hold for Ar0+1.
The case when Ar0+1 is a one-point coextension of Ar0 is similar.

4.5. Proposition. Let A be a fundamental algebra. Then C0(A) t⊔
λ∈K∗ Cλ(A) t C∞(A) separates P(A) from I(A) in ΓA.

Proof. We keep the notation of the previous proof and again argue by
induction on r. If r = 1 then the assertion holds by Lemmas 3.2 and 3.3.

Assume that the assertion is true for a fixed r0. Let A be such that the
above r for A is r0 + 1. Set Ar0 = A′ for A ∼= Ar0+1. By the inductive
assumption, the required condition holds for A′.

Suppose that A is a one-point extension of A′ by a uniserialA′-moduleM .
Then a bound quiver (QA, IA) is obtained from (QA′ , IA′) by adding one
vertex 0′ and one arrow κ with source 0′ and target x ∈ QA′ . Furthermore,
the two-sided ideal IA contains IA′ and possibly some new paths starting
with κ.

Consider the uniserial A′-module M ∼= rad(P0′). There exists a nonzero
path εn · · · ε1 in (QA′ , IA′) starting at x such that M ∼= M(εn · · · ε1).

First we check that C0(A)t⊔λ∈K∗ Cλ(A)tC∞(A) is a family of pairwise
orthogonal components. Notice that if Z, U are indecomposable A′-modules
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which belong to different components then

HomA(Z,U) = 0 = HomA(U,Z)

by the inductive assumption. Let X0(wκ) ∈ C0(A) and Xλ ∈ Cλ, λ ∈ K∗.
Then by Proposition 4.4, Xλ is an A′-module. If f : X0(wκ) → Xλ is
a homomorphism of A-modules then fι is a homomorphism of A′-modules,
where ι : X0(w)→ X0(wκ) is the inclusion. But ι is an irreducible morphism
by the Skowroński–Waschbüsch algorithm. Hence fι = 0 by the inductive
assumption, and so f = 0. If g : Xλ → X0(wκ) is a homomorphism of
A-modules then g = ιg1 for some homomorphism g1 : Xλ → X0(w). Since
g1 is a homomorphism of A′-modules, g1 = 0 by the inductive assumption.
Thus g = 0. Consequently, C0(A) is orthogonal to all components Cλ(A),
λ ∈ K∗.

One shows similarly that C∞(A) is orthogonal to all Cλ(A), λ ∈ K∗. More-
over, the inductive assumption and Proposition 4.4 imply that the Cλ(A),
λ ∈ K∗, are pairwise orthogonal.

Let X0(w) ∈ C0(A) and X∞(w1) ∈ C∞(A). Consider the case w = w′κ
and w1 6= w′1κ. Then X0(w′κ) is not an A′-module and X∞(w1) is an
A′-module. Suppose that f : X0(w′κ) → X∞(w1) is a homomorphism of
A-modules. Then fι is a homomorphism of A′-modules, where ι : X0(w′)→
X0(w′κ) is the inclusion. By the inductive assumption, fι = 0. Hence f = 0.
If g : X∞(w1) → X0(w′κ) is a homomorphism of A-modules then g = ιg1
for some homomorphism g1 : X∞(w1) → X0(w′) of A′-modules. But the
inductive assumption yields g1 = 0. Thus g = 0.

If w1 = w′1κ and w 6= w′κ then similar arguments show that

HomA(X0(w),X∞(w1)) = 0 = HomA(X∞(w1),X0(w)).

Now suppose that w1 = w′1κ and w = w′κ. Let f : X0(w′κ)→ X∞(w′1κ)
be a homomorphism of A-modules. Then it is clear that X0(w′) 6⊂ ker(f)
provided that f 6= 0. Thus fι 6= 0 for the irreducible monomorphism
ι : X0(w′) → X0(w′κ). But by the above considerations fι = 0, because
X0(w′) is an A′-module from C0(A). Thus f = 0. One shows similarly that
HomA(X∞(w′1κ),X0(w′κ)) = 0. Consequently, C0(A) and C∞(A) are orthog-
onal, which finishes the proof that C0(A)t⊔λ∈K∗ Cλ(A)tC∞(A) is a family
of pairwise orthogonal components in ΓA.

Let X(w) ∈ P(A) and Xλ ∈ Cλ(A), λ ∈ K∗. If w 6= w′κ then X(w)
is an A′-module and so HomA(Xλ,X(w)) = 0 by Proposition 4.4 and the
inductive assumption. If w = w′κ then the Skowroński–Waschbüsch algo-
rithm yields an irreducible monomorphism ι : X(w′) → X(w′κ) such that
any homomorphism g : Xλ → X(w′κ) is of the form ιg1 = g for some ho-
momorphism g1 : Xλ → X(w′) of A′-modules. But g1 = 0 by the inductive
assumption. Hence g = 0.
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Let X(w) ∈ P(A) and X0(w1) ∈ C0(A). If w 6= w′κ and w1 6= w′1κ then
both modules are A′-modules and HomA(X0(w1),X(w)) = 0 by the induc-
tive assumption. If w = w′κ and w1 6= w′1κ then any homomorphism f :
X0(w1)→ X(w) of A-modules is of the form f = ιf1, where f1 : X0(w1)→
X(w′) is a homomorphism of A′-modules and ι : X(w′) → X(w′κ) is irre-
ducible. But f1 = 0 by the inductive assumption, and so f = 0. If w 6= w′κ
and w1 = w′1κ then for a nonzero homomorphism f : X0(w′1κ) → X(w) of
A-modules we have f% 6= 0, where % : X0(w′1) → X0(w′1κ) is irreducible.
But f% = 0 by the inductive assumption. Thus f = 0. If w = w′κ and
w1 = w′1κ then for any nonzero homomorphism f : X0(w′1κ) → X(w′κ)
we have f% 6= 0, where % : X0(w′1) → X0(w′1κ) is irreducible. But from
the above considerations we deduce that f% = 0, which shows that f = 0.
Consequently, HomA(C0(A) t⊔λ∈K∗ Cλ(A),P(A)) = 0.

A similar analysis shows that HomA(C∞(A),P(A)) = 0, which implies
that HomA(C0 t

⊔
λ∈K∗ Cλ(A) t C∞(A),P(A)) = 0.

Dually one shows that HomA(I(A), C0(A) t⊔λ∈K∗ Cλ(A) t C∞(A)) = 0.
Now consider X(w) ∈ P(A) and Y (w1) ∈ I(A). Let f : X(w) → Y (w1)

be a nonzero homomorphism of A-modules. If w 6= w′κ and w1 6= w′1κ then
X(w), Y (w1) are A′-modules and by the inductive assumption there are A′-
modules Xi ∈ add(Ci(A)), i ∈ K ∪ {∞}, and homomorphisms hi : X → Xi,
gi : Xi → Y , i ∈ K ∪ {∞}, such that f = gihi. Thus the required condition
is satisfied.

If w = w′κ and w1 6= w′1κ then w′ = w′′εi · · · ε1κ for i ∈ {1, . . . , n} and
w′′ = w′′′δ−1 or w′′ is trivial, or else w′ = w′′δ−1, or w′ is trivial.

If w = κ then there is no nonzero homomorphism from X(w) to any
A′-module. If w = εi · · · ε1κ then there is no nonzero homomorphism from
X(w) to any A′-module. Therefore w = w′′′δ−1εi · · · ε1κ or w = w′′δ−1κ. But
the Skowroński–Waschbüsch algorithm yields an irreducible homomorphism
ι1 : X(w)→ X(w′′′) or ι2 : X(w)→ X(w′). Since Y (w1) is an A′-module, we
have ker(ι1) ⊂ ker(f) and ker(ι2) ⊂ ker(f) for any nonzero homomorphism
f : X(w) → Y (w1). Thus f = f1ιj , j = 1, 2, for some homomorphism
f1 : X(w′) → Y (w1) or f1 : X(w′′′) → Y (w1) of A′-modules. Since the
required condition holds for f1, it also holds for f .

If w1 = w′1κ and w 6= w′κ then any homomorphism f : X(w)→ Y (w1) is
of the form %f1, where % : Y (w′1)→ Y (w′1κ) is irreducible and f1 : X(w)→
Y (w′1) is a homomorphism of A′-modules. Since the required condition holds
for f1, it also holds for f .

If w = w′κ and w1 = w′1κ then we consider an irreducible homomor-
phism % : Y (w′1) → Y (w′1κ). If f = %f1 for some f1 : X(w) → Y (w′1) then
we deduce from the above analysis that f1 satisfies the required condition,
and hence so does f . If f 6= %f1 then either fι 6= 0 for some irreducible
ι : X(w′) → X(w′κ) or Y (w1) ∼= S0′ . First consider the case fι 6= 0. Then
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the above considerations show that the required condition holds for fι.
In particular fι factorizes through a module Xλ ∈ add(Cλ(A)) for some
λ ∈ K∗. Thus im(fι) is an A(p,l)-module. But x ∈ supp(im(fι)). Hence
x ∈ Q(p,l). Then by Proposition 4.4(1), either X(w′) is an A(p,l)-module, or
X(w′) = X(w′′w) with X(w) ∈ P(A(p,l)), or else w′ does not contain any
±-arrow from Q(p,l). In the last case we have no factorization of fι through
any module Xλ ∈ add(Cλ(A)), for λ ∈ K∗. Thus the last case is impossible.
If X(w′) is an A(p,l)-module from P(A(p,l)) then X(w) is not an indecompos-
able A-module by Lemma 3.3. If X(w′) ∼= X(w′′w) with X(w) ∈ P(A(p,l))
then X(w′′wκ) is not an indecomposable A-module from P(A) by Proposi-
tion 4.4(1).

If Y (w1) ∼= S0′ then f factorizes through the indecomposable injective
A-module Ex and a similar analysis shows that X(w) cannot be an indecom-
posable A-module from P(A). Therefore f = %f1 and the required condition
holds for f1, and so for f .

Consequently, C0(A) t⊔λ∈K∗ Cλ(A) t C∞(A) separates P(A) from I(A)
if A ∼= Ar0+1 is a one-point extension of Ar0 . If A ∼= Ar0+1 is a one-point
coextension of Ar0 we proceed dually. Thus, the proof is finished.

5. 2-fundamental algebras

5.1. Let n be a fixed positive integer. A triangular string Ãm-separated
algebra A is defined to be n-fundamental if A ∼= KQA/IA is connected and
the following conditions are satisfied:

(1) There exist exactly n full subquivers Q′1, . . . , Q
′
n of type Ãm in

(QA, IA) which are pairwise disjoint and such that KQ′j ∩ IA = 0
and the quiver QA, obtained from QA by removing the arrows from
Q′j , j = 1, . . . , n, and identifying the vertices of Q′j with vertex 0j ,
j = 1, . . . , n, is a tree.

(2) For any vertex 0j in QA there exists either a maximal path v in QA

starting at 0j such that v 6∈ IA, or a maximal path u in QA ending
at 0j such that u 6∈ IA. If v (treated as a path in QA) starts at some
vertex x in Q′j which is the ending point of two maximal paths v1, v2
in Q′j then vv1 6∈ IA or vv2 6∈ IA. If u (treated as a path in QA) ends
at some vertex y in Q′j which is the starting point of two maximal
paths u1, u2 in Q′j then u1u 6∈ IA or u2u 6∈ IA.

It is clear that any 1-fundamental algebra is fundamental.
In this section we shall study Auslander–Reiten quivers of 2-fundamental

algebras.
A 2-fundamental algebra A is defined to be minimal if the quiver QA is

of type Am.
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5.2. Lemma. Let A be a minimal 2-fundamental algebra. If QA is a
path w such that w 6∈ IA then ΓA has only one starting component P(A)
and only one ending component I(A); both are generalized standard.

Proof. Since A is 2-fundamental, there are exactly two disjoint subquiv-
ers Q(p,l) and Q′(p′,l′) in (QA, IA). Moreover, QA is a path w = βm · · ·β1 by
assumption. Assume that the source of β1 belongs to Q(p,l) and the target
of βm belongs to Q′(p′,l′).

We start by studying the component P(A) which contains the simple pro-
jective A-modules Si′ for i′ = p′1, p

′
3, . . . , p

′
q′ . By the Skowroński–Waschbüsch

algorithm, P(A) = P(A′(p′,l′)) for A′(p′,l′) = KQ′(p′,l′). Thus P(A) consists of

the indecomposable A′(p′,l′)-modules X(w) such that X(w) ∈ P(A′(p′,l′)). If

there is a nonzero homomorphism f : Y → X(w), where X(w) ∈ P(A)
and Y is an indecomposable A-module which is not an A′(p′,l′)-module,

then Y ∼= X(vw′) for some walk w′ in Q′(p′,l′) and some nontrivial walk

v = v′β−1
m . But then fg 6= 0 for the inclusion g : X(w′) → X(vw′). There-

fore X(w′) ∈ P(A) by the above considerations. Thus X(β−1
m w′) ∈ P(A),

which is impossible, because P(A) = P(A′(p′,l′)). Hence P(A) is a starting
component in ΓA, and it is generalized standard.

Dual arguments show that the component I(A) which contains the simple
injective A-modules Si for i = 0, p2, p4, . . . , pq−1 is ending and generalized
standard. We omit the details.

The fact that P(A) is the only starting component and I(A) the only
ending component in ΓA is a direct consequence of Propositions 4.4 and 4.5.

5.3. Lemma. Let A be a minimal 2-fundamental algebra. If QA contains
a path v ∈ IA then ΓA has a starting component P(A) which is generalized
standard and an ending component I(A) which is generalized standard.

Proof. If QA is a path then the arguments from the proof of Lemma 5.2
yield the desired components.

Suppose QA is not a path. Let v = βm · · ·β1 be a path in QA such that
v ∈ IA. Again, there are exactly two disjoint subquivers Q(p,l) and Q′(p′,l′) in
(QA, IA). Let QA be a walk of the form w2βm · · ·β1w1, where the starting
point of w1 belongs to Q(p,l) and the ending point of w2 belongs to Q′(p′,l′).

Consider the full subquiver Q′ in QA which contains the arrows of Q(p,l)

and of βm−1 · · ·β1w1. Let I ′ = IA ∩ KQ′. Then the algebra A′ = KQ′/I ′

is obviously fundamental. Denote by Q′′ the full subquiver in QA which
contains the arrows of Q′(p′,l′) and of w2βm · · ·β2. We put I ′′ = IA ∩KQ′′.
Then A′′ = KQ′′/I ′′ is fundamental. Moreover, ΓA = ΓA′ ∪ ΓA′′ , where
ΓA′∩ΓA′′ = ΓB forB = KQB/IB given by the full subquiverQB ofQA which



STARTING AND ENDING COMPONENTS 131

contains the arrows β2, . . . , βm−1, and the two-sided ideal IB = KQB ∩ IA.
Now Propositions 4.4 and 4.5 show that ΓA′ contains the starting component
P(A′) and the ending component I(A′). Similarly, ΓA′′ contains the starting
component P(A′′) and the ending component I(A′′). It is clear that P(A′),
P(A′′) are starting components in ΓA provided that P(A′)∩P(A′′) = ∅, and
P(A′) ∪ P(A′′) is a starting component in ΓA otherwise. Moreover, I(A′),
I(A′′) are ending components in ΓA provided that I(A′) ∩ I(A′′) = ∅, and
I(A′) ∪ I(A′′) is an ending component in ΓA otherwise.

Now we show that if P(A′) ∩ P(A′′) 6= ∅ then P(A′) ∪ P(A′′) is gener-
alized standard. Let X1(v1),X2(v2) ∈ P(A′) ∪ P(A′′). Suppose that there
is a nonzero homomorphism f ∈ rad∞(X1(v1),X2(v2)). If X1(v1),X2(v2) ∈
P(A′) and both are A(p,l)-modules, then rad∞(X1(v1),X2(v2)) = 0, because
P(A′) contains P(A(p,l)) and P(A(p,l)) is a generalized standard compo-
nent of ΓA(p,l) . If X1(v1) is an A(p,l)-module and X2(v2) is not, then there
exists a nonzero homomorphism f : X1(v1) → X2(v2) provided that v2

is of the form v2 = w2α
−1w′2 by Proposition 4.4(1), where α is an ar-

row whose source belongs to Q(p,l) and is different from 0, p2, p4, . . . , pq−1

and w2 is a walk in Q(p,l) such that X(w2) ∈ P(A(p,l)). But in this case
there is a nonzero homomorphism g : X2(v2) → X(w2) and gf 6= 0. Thus
gf ∈ rad∞(X1(v1),X(w2)), which is impossible.

If X2(v2) is an A(p,l)-module and X1(v1) is not, then Proposition 4.4(1)
implies that v1 = w1α

−1w′1, where α is an arrow with source in Q(p,l) dif-
ferent from 0, p2, p4, . . . , pq−1, and w1 is a walk in Q(p,l) such that X(w1) ∈
P(A(p,l)). Then w1 = w′1δ, where δ is an arrow in Q(p,l) whose source coin-
cides with that of α. Hence we have a monomorphism h : X(w′1)→ X1(v1)
and X(w′1) ∈ P(A(p,l)). If f 6= 0 then fh ∈ rad∞(X(w′1),X2(v2)), which is
impossible. Thus fh = 0. But in this case im(h) ⊂ ker(f). Thus f factorizes
through X(α−1w′1) 6∈ P(A′), which is impossible, because P(A′) is a starting
component in ΓA′ .

If X1(v1) and X2(v2) are not A(p,l)-modules then by Proposition 4.4(1),
v1 = w1α

−1w′1 and v2 = w2α
−1w′2. Moreover, we have an epimorphism

g : X2(v2) → X(w2). We infer that gf = 0. Hence im(f) ⊂ X(w′2). But
there is a monomorphism h : X(w′1) → X1(v1) and fh 6= 0 by the last
inclusion. Thus fh ∈ rad∞(X(w′1),X2(v2)). Furthermore, gfh 6= 0 is in
rad∞(X(w′1),X(w′2)). Since it is easily seen that no homomorphism from
X(w′1) to X(w′2) can factorize through an A-module which is not a KQA/IA-
module for IA = KQA ∩ IA, we have gfh = 0, and so f is zero.

Similar considerations in the cases X1(v1),X2(v2) ∈ P(A′′), or X1(v1) ∈
P(A′), X2(v2) ∈ P(A′′), or else X1(v1) ∈ P(A′′), X2(v2) ∈ P(A′) show that
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P(A′) ∪ P(A′′) is a generalized standard component. In particular, when
P(A′) ∩ P(A′′) = ∅, both P(A′), P(A′′) are generalized standard.

Dual arguments show that I(A′) ∪ I(A′′) is generalized standard when
I(A′) ∩ I(A′′) 6= ∅, and both I(A′), I(A′′) are generalized standard if
I(A′) ∩ I(A′′) = ∅. This finishes the proof of the lemma.

5.4. Proposition. Let A be a minimal 2-fundamental algebra. If QA

is a quiver of type An which is not a path and there is no subpath v in QA

such that v ∈ IA then ΓA has at least one starting component P(A) and at
least one ending component I(A). Moreover , the total number of starting
and ending components in ΓA is not greater than 3.

Proof. The assumptions imply that there exists a vertex r in QA which
is either the source of no arrow in QA, or the target of no arrow in QA. If r
is not the target of any arrow in QA then there are fundamental subalgebras
A1, A2 in A such that

A =
(
K rad(Pr)

0 A1 × A2

)

and rad(Pr) ∼= M ⊕N for some uniserial A1-module M and some uniserial
A2-module N . Since there is no subpath v ∈ IA in QA, the A1-module M
is either projective, or simple, or else simple regular, and similarly for the
A2-module N . Moreover, QA is obtained from QA1 and QA2 by adding the
vertex r and two arrows: an arrow ε with source r and target x ∈ QA1 , and an
arrow τ with source r and target y ∈ QA2 . Then the proof of Proposition 4.4
shows that the vector space categories XM , XN are linear. Since XM consists
of A1-modules and XN consists of A2-modules, XM⊕N = XMtXN is a vector
space category which satisfies the assumptions of Lemma 2.4. Furthermore,
by Proposition 4.4,

ΓA1 = P(A1) t C0(A1) t
⊔

λ∈K∗
Cλ(A1) t C∞(A1) t I(A1),

ΓA2 = P(A2) t C0(A2) t
⊔

λ∈K∗
Cλ(A2) t C∞(A2) t I(A2).

By the proof of Proposition 4.4, XM is contained either in P(A1) t C0(A1),
or in P(A1)t C∞(A1), or in C0(A1)t I(A1), or else in C∞(A1)t I(A1), and
similarly for XN .

If XM ⊂ P(A1)tC0(A1) and XN ⊂ P(A2)tC0(A2) then Proposition 4.4
shows that any X ∈ XM is of the form X ∼= X(w) for some walk w in
(QA1 , IA1) which starts at x. Moreover, if X(w) ∈ P(A1) then either w
is a walk in QA or w = ww′, where w′ is a walk in QA and w is a walk
without ±-arrows which belong to QA and w′ = α−1w′′ for some arrow α.
If X(w) ∈ C0(A1) then either w is a walk in QA or w = ww′ for some walk
w′ in QA and some walk w without ±-arrows from QA.
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Similarly, any Y ∈ XN is of the form Y ∼= Y (u) for some walk u in
(QA2 , IA2) which starts at y. Furthermore, u is either contained in QA or
u = uu′, where u′ is a walk contained in QA which does not contain any
±-arrow from QA.

By Lemma 2.4 the indecomposable A-modules which are not A1 × A2-
modules are in 1-1 correspondence with the following objects of the subspace
category U(XM⊕N): (K, 0, 0), (K,X, id) for all indecomposable X ∈ XM ,
(K,Y, id) for all indecomposable Y ∈ XN and (K,X ⊕ Y,∆) for all in-
decomposable X ∈ XM , Y ∈ XN . But (K, 0, 0) corresponds to the simple
A-module Sr; (K,X(w), id) corresponds toX(wε); (K,Y (u), id) corresponds
to Y (uτ); and (K,X(w)⊕ Y (u),∆) corresponds to XY (wετ−1u−1).

Notice that in passing from ΓA1×A2 = ΓA1 t ΓA2 to ΓA the components
Cλ(A1), Cλ(A2), λ ∈ K∗, remain components in ΓA. Similarly, for C∞(A1),
C∞(A2), I(A1), I(A2) the Skowroński–Waschbüsch algorithm acts identi-
cally in mod(A) and in mod(A1×A2). Thus they too are components in ΓA.
We now show that P(A1), P(A2), C0(A1), C0(A2) are glued into a common
component P(A) in ΓA.

Since A is a minimal 2-fundamental algebra and QA is of type An, is not
a path and is relation-free, it follows that QA1 contains a subquiver Q(p,l)

and a subquiver QA1 = QA1 ∩QA. The arrows of QA1 which belong to Q(p,l)

will be denoted by αij (as in 1.8). By Proposition 4.4(1), QA1 is of the form

z
%1,1−→ · · · %1,s1−→%2,s2←− · · · %2,1←− · · · %t,1−→ · · · %t,st−→ εm←− · · · ε1←− x

with t ≥ 1, si ≥ 0, m ≥ 0, where m = 0 denotes that x is the target of the
arrow %t,st , and z is the only vertex of QA1 which belongs to Q(p,l). Sim-

ilarly QA2 contains a subquiver Q′(p′,l′) and a subquiver QA2 = QA2 ∩QA.

The arrows in QA2 which belong to Q′(p′,l′) will be denoted by α′i′,j′ . Propo-

sition 4.4(1) implies that QA2 is of the form

y
τ1−→ · · · τn−→ηc,ac←− · · · ηc,1←− · · · η2,1−→ · · · η2,a2−→η1,a1←− · · · η1,1←− z′

with c ≥ 1, ai ≥ 0, n ≥ 0, where n = 0 denotes that y is the target of the
arrow ηc,ac , and z′ is the only vertex of QA2 which belongs to Q′(p′,l′).

In the above notation, M ∼= X(εm · · · ε1) and N ∼= Y (τ−1
1 · · · τ−1

n ). Then
Proposition 4.4(1iii), (2iii) shows that M ∈ P(A1) and N ∈ P(A2). Further-
more, we have irreducible morphisms M → XY (εm · · · ε1ετ

−1τ−1
1 · · · τ−1

n )
∼= Pr and N → Pr in mod(A). Then applying the Skowroński–Waschbüsch
algorithm, we find that if X(w) ∈ XM ∩ P(A1) then we have an irre-
ducible morphism X(w) → XY (wετ−1τ−1

1 · · · τ−1
n ) in mod(A). Similarly,

if Y (u) ∈ XN ∩ P(A2) then there is an irreducible morphism Y (u) →
XY (εm · · · ε1ετ

−1u−1) in mod(A). It is easy to see, applying the Skowroński–
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Waschbüsch algorithm, that if X(w) ∈ XM ∩P(A1) and Y (u) ∈ XN ∩P(A2)
then XY (wετ−1u−1) ∈ P(A), where P(A) is the component in ΓA which
contains the projective module Pr.

Now notice that we have the chain of irreducible morphisms

M→X(%−1
t,stεm · · · ε1)→ · · · → X(%−1

1,2 · · · %−1
1,s1 · · · %

−1
t,1 · · · %−1

t,stεm · · · ε1)→X

in mod(A), where X ∼= X(%−1
1,1%
−1
1,2 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε1) in case
z is the end point of a maximal path in Q(p,l). Furthermore, again by the
Skowroński–Waschbüsch algorithm, there is a chain of irreducible morphisms
of the form Sz → · · · → X in mod(A) in case z is the end point of a max-
imal path in Q(p,l), and a chain X(αi,pi−pi−1 · · ·αi,j)→ · · · → X otherwise.
Further in the respective cases we have the following chains of irreducible
morphisms in mod(A):

X(%−1
1,1 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε1ε)→ · · · → X(%−1
1,1)→ Sz,

X(αi,pi−pi−1 · · ·αi,j%−1
1,1 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε1ε)→ · · ·
→ X(αi,pi−pi−1 · · ·αi,j%−1

1,1)→ X(αi,pi−pi−1 · · ·αi,j).
In both cases the sources of the chains correspond to the objects (K,X(w), id)
for X(w) ∈ XM ∩ P(A1). Repeating the above arguments for any X(w) ∈
XM ∩ P(A1), we obtain X(wε) ∈ P(A). Symmetrically one shows that
Y (τ−1u−1) ∈ P(A) for any Y (u) ∈ XN ∩ P(A2).

Further it is easy to see that for any X(w) ∈ XM ∩ P(A1) we have
the following chain of irreducible morphisms in mod(A): XY (wετ−1u−1)→
· · · → XY (wετ−1) → X(wε), where Y (u) ∈ XN ∩ C0(A2). Hence the ob-
jects (K,X(w)⊕ Y (u),∆) belong to P(A), where X(w) ∈ XM ∩P(A1) and
Y (u) ∈ XN ∩ C0(A2). Symmetrically, (K,X(w) ⊕ Y (u),∆) ∈ P(A), where
X(w) ∈ XM ∩ C0(A1) and Y (u) ∈ XN ∩ P(A2). Since the above considera-
tions show that for any X(w) ∈ XM ∩ C0(A1) and Y (u) ∈ XN ∩ P(A2) we
have XY (wετ−1u−1) ∈ P(A), in particular XY (ετ−1τ−1

1 · · · τ−1
n ) ∈ P(A).

But there is an irreducible morphism Sx → XY (ετ−1τ−1
1 · · · τ−1

n ). Thus
Sx ∈ P(A). Similarly, Sy ∈ P(A). Consequently, the objects of XM∩C0(A1)∪
XN ∩ C0(A2) belong to P(A).

Furthermore, the Skowroński–Waschbüsch algorithm shows that for Sz
nonprojective there exists the following chain of irreducible morphisms in
mod(A):

X(%−1
1,1 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε1)→ · · · → X(ε2ε1)→ X(ε1)→ Sx

when z is not the end point of a maximal path in Q(p,l), and

X(α−1
i,1 · · ·α−1

i,pi−pi−1
%−1

1,1 · · · %−1
t,1 · · · %−1

t,stεm · · · ε1)→ · · ·
→ X(ε2ε1)→ X(ε1)→ Sx
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when z is the end point of the maximal path αi,pi−pi−1 · · ·αi,1 in Q(p,l).
Applying the algorithm again, we obtain the chains

Sz → · · · → X(%−1
1,1 · · · %−1

1,s1)→ · · · → X(%−1
1,1 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε2)

→ X(%−1
1,1 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε1)
and

X(α−1
i,1 · · ·α−1

i,pi−pi−1
)→ · · ·

→ X(α−1
i,1 · · ·α−1

i,pi−pi−1
%−1

1,1 · · · %−1
1,s1 · · · %

−1
t,1 · · · %−1

t,stεm · · · ε1)

in the respective cases.
Moreover, we have the chains

X(%−1
1,1 · · · %−1

1,s1 · · · %
−1
t,1 · · · %−1

t,stεm · · · ε1ε)→ · · · → X(%−1
1,1)→ Sz

and

X(α−1
i,1 · · ·α−1

i,pi−pi−1
%−1

1,1 · · · %−1
1,s1 · · · %

−1
t,1 · · · %−1

t,stεm · · · ε1ε)→ · · ·
→ X(α−1

i,1 · · ·α−1
i,pi−pi−1

%−1
1,1)→ X(α−1

i,1 · · ·α−1
i,pi−pi−1

)

in the same cases. Thus by the Skowroński–Waschbüsch algorithm, for any
X(w) ∈ XM ∩C0(A1) the A-module X(wε) belongs to P(A). Symmetrically,
for any Y (u) ∈ XN ∩ C0(A2) the A-module Y (τ−1u−1) belongs to P(A).
Moreover, XY (wετ−1) ∈ P(A) for any X(w) ∈ C0(A1) ∩ XM , since we
have an irreducible morphism XY (wετ−1) → X(wε) in mod(A). There-
fore, XY (wετ−1u−1) ∈ P(A) for any X(w) ∈ XM ∩ C0(A1) and Y (u) ∈
XN ∩ C0(A2).

If Sx is a simple projective A-module then the above arguments can be
applied for X(%−1

t,1 · · · %−1
t,st) instead for Sx to conclude that for any X(w) ∈

XM ∩ C0(A1) and Y (u) ∈ XN ∩ C0(A2) the modules X(wε), Y (τ−1u−1),
XY (wετ−1u−1) belong to P(A).

Consequently, P(A) is the only component of ΓA which contains the
A-modules from P(A1) ∪ P(A2) ∪ C0(A1) ∪ C0(A2) and the indecomposable
A-modules which are not A1 × A2-modules. Therefore

ΓA = P(A) t C∞(A1) t C∞(A2) t
⊔

λ∈K∗
(Cλ(A1) t Cλ(A2)) t I(A1) t I(A2).

The arguments from the proof of Proposition 4.5 imply that C∞(A1) t
C∞(A2)t⊔λ∈K∗(Cλ(A1)t Cλ(A2)) separates P(A) from I(A1)t I(A2). By
the arguments from the proof of Lemma 5.2, P(A) is a starting component
in ΓA, and I(A1), I(A2) are ending components in ΓA. Moreover, I(A1),
I(A2) are generalized standard.

If either XM ⊂ P(A1) t C∞(A1) and XN ⊂ P(A2) t C0(A2), or XM ⊂
P(A1) t C∞(A1) and XN ⊂ P(A2) t C∞(A2), or else XM ⊂ P(A1) t C0(A1)
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and XN ⊂ P(A2) t C∞(A2), then similar arguments yields respectively

ΓA = P(A) t C0(A1) t C∞(A2) t
⊔

λ∈K∗
(Cλ(A1) t Cλ(A2)) t I(A1) t I(A2)

or

ΓA = P(A) t C0(A1) t C0(A2) t
⊔

λ∈K∗
(Cλ(A1) t Cλ(A2)) t I(A1) t I(A2)

or else

ΓA = P(A) t C∞(A1) t C0(A2) t
⊔

λ∈K∗
(Cλ(A1) t Cλ(A2)) t I(A1) t I(A2).

Moreover, in each case P(A) is a starting component and I(A1), I(A2) are
generalized standard ending components.

Dual arguments show that if XM ⊂ Ci1(A1) t I(A1) and XN ⊂ Ci2(A2)
t I(A2) then ΓA = P(A1) t P(A2) t Cj1(A1) t Cj2(A2) t ⊔λ∈K∗(Cλ(A1) t
Cλ(A2)) t I(A), where i1, j1 ∈ {0,∞} are different and i2, j2 ∈ {0,∞} are
different. Moreover, Cj1(A1) t Cj2(A2) t⊔λ∈K∗(Cλ(A1) t Cλ(A2)) separates
P(A1) t P(A2) from I(A). Further P(A1), P(A2) are generalized standard
starting components in ΓA, and I(A) is an ending component.

A similar analysis to that in the first part of the proof shows that if
XM ⊂ P(A1)tCi1(A1) and XN ⊂ Ci2(A2)tI(A2) then ΓA = P(A2)tC(A)t
Cj1(A1)tCj2(A2)t⊔λ∈K∗(Cλ(A1)tCλ(A2))tI(A1), where i1, j1 ∈ {0,∞} are
different, i2, j2 ∈ {0,∞} are different, and C(A) is a component which con-
tains Ci1(A1)tP(A1)tCi2(A2)tI(A2) and the indecomposable A-modules
which are not A1 × A2-modules. Furthermore, P(A2) is a starting compo-
nent, I(A1) is an ending component, and both are generalized standard.

Consequently, the assertion is shown in the case when r is not the target
of any arrow in QA. If r is not the source of any arrow in QA then A is a
one-point coextension of A1×A2 and a similar analysis yields the assertion.

5.5. Corollary. Let A be a minimal 2-fundamental algebra. If QA is
a quiver of type An which is not a path and there is no path v in QA such
that v ∈ IA, and ΓA contains exactly one starting component , and exactly
one ending component , then these components are generalized standard.

Proof. This is a direct consequence of the proof of Proposition 5.4.

5.6. Lemma. Let A be a minimal 2-fundamental algebra for which the
quiver QA is of type An, is not a path, and there is no path v in QA with
v ∈ IA.

(1) If ΓA has exactly one starting component P(A) and two ending com-
ponents I1(A), I2(A) then P(A) is not generalized standard.

(2) If ΓA has exactly one ending component I(A) and two starting com-
ponents P1(A), P2(A) then I(A) is not generalized standard.
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Proof. For (1) notice that QA has the form

z1
%1,1−→ · · · %1,s1−→%2,s2←− · · · %2,1←− %3,1−→ · · · %3,s3−→ · · · %t,st←− · · · %t,1←− z2,

t ≥ 2, from the proof of Proposition 5.4, because by Proposition 4.4 this
is the only case when we obtain exactly one starting component P(A) and
exactly two ending components I1(A), I2(A). It is easy to see that in this
case the indecomposable projective A-modules belong to P(A). Further-
more, QA is of the form QA ∪ Q(p,l) ∪ QA ∪ Q′(p′,l′), where Q(p,l) ∩ QA =

{z1} and Q′(p′,l′) ∩ QA = {z2}. Consider the simple A-module Sz1 if z1

is not the end point of a maximal path in Q(p,l), and the indecompos-

able A-module X(α−1
i,1 · · ·α−1

i,pi−pi−1
) if z1 is the end point of the maxi-

mal path αi,pi−pi−1 · · ·αi,1 in Q(p,l) such that %1,s1 · · · %1,1αi,pi−pi−1 · · ·αi,1
6∈ IA. Then by the Skowroński–Waschbüsch algorithm, τ(Sz1) ∼= N(αi,j%−1

1,1),
τ2(Sz1) ∼= N(αi,j+1αi,j%

−1
1,1%

−1
1,2), . . . Therefore for any positive integer n we

obtain τn(Sz1) ∼= M(wn), τn+1(Sz1) ∼= M(wn+1) and the length l(wn+1)
is greater than l(wn). Thus Sz1 does not belong to the τ -orbit of any in-
decomposable projective A-module. Further it is easy to see that for any
indecomposable M ∼= M(v) such that there exists a chain of irreducible
morphisms M(v) → · · · → Sz1 , the module M(v) is not projective. Thus
there is no nonzero morphism f : P → Sz1 such that f 6∈ rad∞(P, Sz1)
and P is a projective A-module. But there exists a nonzero homomorphism
g : Pz1 → Sz1 . Hence g ∈ rad∞(Pz1 , Sz1). Consequently, the component
P(A) is not generalized standard.

In the case of the module X(α−1
i,1 · · ·α−1

i,pi−pi−1
) similar arguments show

that P(A) is not generalized standard, which finishes the proof of (1).
Dual arguments yield (2).

5.7. Theorem. Let A be a minimal 2-fundamental algebra.

(1) ΓA contains a starting component and an ending component.
(2) If QA is a path or contains a subpath v which belongs to IA then the

starting components and the ending components in ΓA are generalized
standard.

(3) If QA is not a path and does not contain a subpath which belongs to
IA then ΓA contains at most three components which are starting or
ending and the following conditions are satisfied :

(3a) If ΓA contains exactly two components which are starting or
ending then both are generalized standard and one of them is
starting , and the other ending.

(3b) If ΓA contains one starting component P(A) and two ending
components I1(A), I2(A) then P(A) is not generalized standard ,
but I1(A), I2(A) are generalized standard.
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(3c) If ΓA contains two starting components P1(A), P2(A) and one
ending component I(A) then I(A) is not generalized standard
and P1(A), P2(A) are generalized standard.

Proof. (1) follows from Lemmas 5.2, 5.3 and Proposition 5.4; (2) can be
deduced from Lemmas 5.2 and 5.3; (3) is a consequence of Proposition 5.4,
in particular, (3a) can be deduced from Corollary 5.5, and (3b), (3c) are
consequences of Lemma 5.6.

6. Multifundamental algebras

6.1. Let A be an n-fundamental algebra for some positive integer n.
If n ≥ 2 then we just say that A is multifundamental whenever n is not
essential.

We say that a multifundamental algebra A contains a lower minimal
2-fundamental subalgebra A′ if:

(i) A′ = KQA′/IA′ is a minimal 2-fundamental algebra.
(ii) The bound quiver (QA′ , IA′) has the property: QA′ is of the form
→ · · · ← and contains no subpath which belongs to IA′ .

(iii) QA′ is a full subquiver of QA and KQA′ ∩ IA = IA′ .

(iv) Let Q(p,l), Q′(p′,l′) be two different subquivers of QA′ of type Ãm.

If Q′′(p′′,l′′) is a subquiver of QA of type Ãm which is different from

Q′(p′,l′), Q(p,l) then no walk of the form u1w1u2γ
−1w2β

−1u3 in

(QA, IA) satisfies the following conditions:

(a) u1 is either a walk in Q(p,l) whose end point is not the source
of any arrow in Q(p,l), or a trivial walk attached to a vertex in
Q(p,l) which is not the source of any arrow in Q(p,l).

(b) w1 is a walk in (QA′ , IA′) which contains every arrow of QA′ or
its formal inverse.

(c) u2 is a walk in Q′(p′,l′) passing through a vertex which is not the
source of any arrow in Q′(p′,l′).

(d) γ is an arrow in QA with source in Q′(p′,l′) and target not in
Q′(p′,l′).

(e) w2 is a walk in (QA, IA); if w2 is trivial then possibly γ = β.
(f) β is an arrow with target in Q′′(p′′,l′′) and source not in Q′′(p′′,l′′).

(g) u3 is either a walk in Q′′(p′′,l′′) whose start point is not the target

of any arrow in Q′′(p′′,l′′), or a trivial walk attached to a vertex in

Q′′(p′′,l′′) which is not the target of any arrow in Q′′(p′′,l′′).
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Dually we say that a multifundamental algebra A contains an upper
minimal 2-fundamental subalgebra A′ if:

(i0) A′ = KQA′/IA′ is a minimal 2-fundamental algebra.
(ii0) The bound quiver (QA′ , IA′) has the property: QA′ is of the form

← · · · → and contains no subpath belonging to IA′ .
(iii0) QA′ is a full subquiver of QA and KQA′ ∩ IA = IA′ .
(iv0) Let Q(p,l), Q′(p′,l′) be two different subquivers of QA′ of type Ãm.

If Q′′(p′′,l′′) is a subquiver of QA of type Ãm which is different from

Q(p,l), Q′(p′,l′) then no walk u1w1u2γw2βu3 in (QA, IA) satisfies the
following conditions:

(a0) u1 is either a walk in Q(p,l) whose end point is not the target
of any arrow in Q(p,l), or a trivial walk attached to a vertex in
Q(p,l) which is not the target of any arrow in Q(p,l).

(b0) w1 is a walk in (QA′ , IA′) which contains every arrow of QA′

or its formal inverse.
(c0) u2 is a walk in Q′(p′,l′) passing through a vertex which is not

the target of any arrow in Q′(p′,l′).

(d0) γ is an arrow in QA with target in Q′(p′,l′) and source not in
Q′(p′,l′).

(e0) w2 is a walk in (QA, IA); if w2 is trivial then possibly γ = β.
(f0) β is an arrow with source in Q′′(p′′,l′′) and target not in Q′′(p′′,l′′).
(g0) u3 is either a walk in Q′′(p′′,l′′) whose start point is not the source

of any arrow in Q′′(p′′,l′′), or a trivial walk attached to a vertex
of Q′′(p′′,l′′) which is not the source of any arrow in Q′′(p′′,l′′).

6.2. An n-fundamental algebra A is defined to be minimal provided that
the quiver QA is a tree such that Qj1,j2 is of type Am or empty for any two
j1, j2 ∈ {1, . . . , n}, where Qj1,j2 is the full subquiver of QA formed by the
vertices x ∈ QA such that if there is a walk in QA from 0j1 to x which does
not pass through any 0j , j ∈ {1, . . . , n}, then there is a walk in QA from x
to 0j2 which does not pass through any 0j , j ∈ {1, . . . , n}.

6.3. Lemma. Let n be a fixed positive integer. For any n-fundamental
algebra A there exists a sequence of n-fundamental algebras A0, A1, . . . , At,
t ≥ 0, such that :

(1) A0 is a minimal n-fundamental algebra.
(2) For each i = 1, . . . , t the algebra Ai is a one-point extension or coex-

tension of Ai−1 by a uniserial Ai−1-module.
(3) At ∼= A.
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Proof. If n = 1 then the assertion holds by Lemma 4.2. Now assume that
n ≥ 2. Then A ∼= KQA/IA and there are exactly n disjoint subquivers Q′j
of type Ãm in QA such that KQ′j ∩ IA = 0. If A is a minimal n-fundamental
algebra then t = 0 and A0 = A.

If A is not minimal then there are j1, j2 ∈ {1, . . . , n} such that Qj1,j2 is
not of type Am. On the other hand, Qj1,j2 is a tree. Hence there is a vertex
x ∈ Qj1,j2 such that x 6= 0j1 , 0j2 and either x is not the target of any arrow
in Qj1,j2 or x is not the source of any arrow in Qj1,j2 . Since x 6= 0j1 , 0j2 , it
is neither the target nor the source of any arrow in QA. Since QA is a tree,
we can choose x in such a way that either it is not the target of any arrow
in QA and the source of exactly one arrow α, or it is not the source of any
arrow in QA and the target of exactly one arrow β. Then let Q′ be the quiver
obtained from QA by removing x and either α or β. Let I ′ = KQ′ ∩ IA. It
is clear that A′ = KQ′/I ′ is an n-fundamental algebra by its construction.
If we have removed α then

A ∼=
(
K rad(Px)

0 A′

)

and rad(Px) is a uniserial A′-module, while if we have removed β then

A ∼=
(

A′ 0

Ex/soc(Ex) K

)

and Ex/soc(Ex) is a uniserial A′-module.
Proceeding similarly with A′, after finitely many steps we obtain a min-

imal n-fundamental algebra A0.

6.4. Lemma. Let A be a multifundamental algebra whose Auslander–
Reten quiver ΓA contains a starting component P(A) which is not general-
ized standard.

(1) If a multifundamental algebra A1 is a one-point extension of A by a
uniserial A-module then there exists a starting component P(A1) in
ΓA1 which is not generalized standard.

(2) If a multifundamental algebra A1 is a one-point coextension of A by
a uniserial A-module then there exists a starting component P(A1)
in ΓA1 which is not generalized standard.

Proof. Let A1 be a multifundamental algebra which is a one-point ex-
tension of A by a uniserial A-module M . Then QA1 is obtained from QA

by adding one vertex z and one arrow ε from z to x ∈ QA. Moreover,
M ∼= M(εm · · · ε1) for some path εm · · · ε1 starting at x. This path may be
trivial.

If XM ∩ P(A) = ∅ then there is no walk w in (QA, IA) starting at x
and such that X(w) ∈ P(A). Then for any indecomposable A1-module
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X(uε) there is an irreducible morphism X(u)→ X(uε) by the Skowroński–
Waschbüsch algorithm. IfX(uε) belongs to the component in ΓA1 which con-
tains the A-modules from P(A) then so does X(u). Thus X(u) ∈ XM ∩P(A)
contrary to our assumption. Therefore P(A) is also a component in ΓA1 ,
which will be denoted by P(A1). A routine verification shows that P(A1) is
a starting component which is not generalized standard.

If XM ∩ P(A) 6= ∅ then there exists a walk w in (QA, IA) starting at
x and such that X(w) ∈ P(A). Every such walk has one of the following
forms: w = wjεj · · · ε1, where wj = wjδ

−1 or wj is a trivial walk, w = w0ex,
where w0 = w0δ

−1 or w0 is a trivial walk.
Furthermore, by the properties of string algebras, the indecomposable

A1-modules which are not A-modules are of the form X(wjεj · · · ε1ε),
X(w0ε) or Sz. Then the Skowroński–Waschbüsch algorithm yields the chain
X(wjεj · · · ε1) → X(wjεj · · · ε1ε) → X(wj) of irreducible morphisms in
mod(A1). Hence there exists a component P(A1) which contains the A-
modules from P(A). A routine verification shows that P(A1) is a start-
ing component which is not generalized standard. Thus condition (1) is
proved.

Condition (2) can be proved dually; we omit the details.

6.5. Lemma. Let A be a multifundamental algebra whose Auslander–
Reiten quiver ΓA contains an ending component I(A) which is not general-
ized standard.

(1) If a multifundamental algebra A1 is a one-point extension of A by a
uniserial A-module then there exists an ending component I(A1) in
ΓA1 which is not generalized standard.

(2) If a multifundamental algebra A1 is a one-point coextension of A by
a uniserial A-module then there exists an ending component I(A1)
in ΓA1 which is not generalized standard.

Proof. Apply dual arguments to those in the proof of Lemma 6.4.

6.6. Proposition. Let A be a minimal multifundamental algebra which
contains a lower minimal 2-fundamental subalgebra A′. Then there exists a
starting component P(A) in ΓA which is not generalized standard.

Proof. By assumption A is n-fundamental for some n ≥ 2. We argue by
induction on n.

If n = 2 then A′ = A. By the definition of a lower minimal 2-fundamental
subalgebra and by Theorem 5.7, ΓA contains exactly one starting component
P(A) which is not generalized standard.

Assume that the assertion holds for any integer n with 2 ≤ n ≤ n0
and a starting component P(A) containing the A′-modules from P(A′) is
as required. Moreover, assume that if X(w) ∈ P(A) then there is a walk w′
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such that w′w = w0κu1w1u2γ
−1w2, where u1 is a walk in Q′1 and u2 is a

walk in Q′2.
Now let A be a minimal (n0 + 1)-fundamental algebra which contains

a lower minimal 2-fundamental subalgebra A′. Then QA contains n0 + 1
pairwise disjoint subquivers Q′j, j = 1, . . . , n0 + 1, of type Ãm such that
KQ′j ∩ IA = 0. Two of them, say Q′1, Q′2, are subquivers of QA′ . Since A
is multifundamental, QA is a tree. Since A is minimal, there exists a vertex
0j0 in QA which is different from 01, 02 and either is not the source of any
arrow in QA, or is not the target of any arrow in QA.

Consider the case when 0j0 is not the target of any arrow in QA. Then
0j0 is the source of an arrow β. Let A1 be a subalgebra of A such that QA1

is obtained from QA by removing the vertices in Q′j0 except the source x
of β (treated as an arrow in QA), and by removing the arrows from Q′j0 .
We have IA1 = KQA1 ∩ IA and A1 = KQA1/IA1 . It is obvious that A1
contains A′ as a lower minimal 2-fundamental subalgebra. We shall show
that the component in ΓA which contains the A′-modules from P(A′) is a
starting component. By the inductive assumption the component P(A1) of
ΓA1 containing the A′-modules from P(A′) is a starting component in ΓA1

which is not generalized standard.
Suppose X(wβ) 6∈ P(A1) for any walk wβ in (QA1, IA1). Then by the

Skowroński–Waschbüsch algorithm P(A1) is a component in ΓA. Moreover,
it is obviously a starting component in ΓA. Hence it is as required.

Suppose now that there is a walk wβ in (QA1 , IA1) such that X(wβ) ∈
P(A1). Since P(A1) is a starting component in ΓA1 , we have X(w) ∈ P(A1).
But we have an irreducible morphism X(w) → X(wβα−1

i,j · · ·α−1
i,pi−pi−1

) in
mod(A), where αi,pi−pi−1 · · ·αi,j is a path in Q′j0 which starts at x. Let
βr · · ·β1β be a maximal path in (QA1 , IA1). Then HomA1(X(βr · · ·β1β),
X(wβ)) 6= 0, hence X(βr · · ·β1β) ∈ P(A1), because P(A1) is a starting
component in ΓA1 . Similarly X(βr · · ·β1) ∈ P(A1). But there are irreducible
morphisms X(βr · · ·β1)→ Px and X(α−1

i,j+1 · · ·α−1
i,pi−pi−1

)→ Px in mod(A).

Therefore the A-modules Px,X(α−1
i,j+1 · · ·α−1

i,pi−pi−1
) belong to the same com-

ponent P(A). Then by the Skowroński–Waschbüsch algorithm the indecom-
posable projective KQ′j0-modules belong to P(A), and P(A) contains the
A1-modules from P(A1). Consequently, P(A) is a starting component in
ΓA. Since P(A1) is not generalized standard, neither is P(A). Moreover, if
X(wβ) ∈ P(A) then there is a walk w′ such that w′wβ = w0κu1w1u2γ

−1w2.
Now consider the case when 0j0 is not the source of any arrow inQA. Then

0j0 is the target of an arrow β. Again let A1 be a subalgebra of A such that
QA1 is obtained from QA by removing the vertices of Q′j0 except the target
x of β (treated as an arrow in QA), and by removing the arrows from Q′j0 .
We have IA1 = KQA1 ∩ IA and A1 = KQA1/IA1 . Then A1 contains A′ as a
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lower minimal 2-fundamental subalgebra. We shall show that the component
in ΓA which contains the A′-modules from P(A′) is a starting component.
By the inductive assumption the component P(A1) in ΓA1 which contains
the A′-modules from P(A′) is a starting component which is not generalized
standard.

If X(wβ−1) 6∈ P(A1) for any walk wβ−1 in (QA1 , IA1) then P(A1) is a
component in ΓA by the Skowroński–Waschbüsch algorithm. Furthermore,
it is a starting component in ΓA which is not generalized standard. It is
also clear that for every X(w) ∈ P(A1) there is a walk w′ such that w′w =
w0κu1w1u2γ

−1w2.
Now suppose that there exists a walk wβ−1 in (QA1, IA1) such that

X(wβ−1) ∈ P(A1). Then HomA1(Sx,X(wβ−1)) 6= 0, hence Sx ∈ P(A1),
because P(A1) is a starting component. Then by the inductive assumption
there is a walk u1w1u2γ

−1w2β
−1 such that u1 is a walk in Q′1 and u2 is a walk

in Q′2. It is easily seen that we can choose u1, u2 in such a way that they
satisfy the conditions of the definition of a lower minimal 2-fundamental
subalgebra. Then we have in (QA, IA) the walk u1w1u2γ

−1w2β
−1u3, where

u3 is a walk in Q′j0 starting at a vertex which is not the target of any arrow
in Q′j0 . Existence of the above walk contradicts the assumption that A′ is a
lower minimal 2-fundamental subalgebra of A. This completes the inductive
proof of the proposition.

6.7. Proposition. Let A be a minimal multifundamental algebra which
contains an upper minimal 2-fundamental subalgebra A′. Then there exists
an ending component I(A) in ΓA which is not generalized standard.

Proof. Apply Lemma 6.5 and dual arguments to those in the proof of
Proposition 6.6.

6.8. Theorem. Let A be a multifundamental algebra.

(1) If A contains an upper minimal 2-fundamental subalgebra A′ then
there exists an ending component I(A) in ΓA which is not generalized
standard.

(2) If A contains a lower minimal 2-fundamental subalgebra A′ then
there exists a starting component P(A) in ΓA which is not gener-
alized standard.

Proof. By Lemma 6.3 there exists a sequence of n-fundamental algebras
A0, . . . , At, t ≥ 0, such that A0 is a minimal n-fundamental algebra and
At ∼= A. Moreover, for each 0 ≤ i < t, Ai+1 is obtained from Ai by a
one-point extension or coextension by a uniserial Ai-module.

We argue by induction on t. If A′ is an upper (resp. lower) minimal
2-fundamental subalgebra in At then it is an upper (resp. lower) minimal
2-fundamental subalgebra in Ai, 0 ≤ i ≤ t, by definition.
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Furthermore, Propositions 6.6 and 6.7 yield the assertion for t = 0. The
inductive step is a consequence of Lemmas 6.4 and 6.5. This finishes the
proof.
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