OPERATOR ENTROPY INEQUALITIES

BY

M. S. MOSLEHIAN (Mashhad) F. MIRZAPOUR (Zanjan) and A. MORASSAEI (Zanjan)

Abstract. We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341–348]. For two finite sequences $A = (A_1, \ldots, A_n)$ and $B = (B_1, \ldots, B_n)$ of positive operators acting on a Hilbert space, a real number q and an operator monotone function f we extend the concept of entropy by setting

$$S_q^f(A | B) := \sum_{j=1}^n A_j^{1/2}(A_j^{-1/2}B_jA_j^{-1/2})^q f(A_j^{-1/2}B_jA_j^{-1/2})A_j^{1/2},$$

and then give upper and lower bounds for $S_q^f(A | B)$ as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004), 219–235] under certain conditions. As an application, some inequalities concerning the classical Shannon entropy are deduced.

1. Introduction and preliminaries. Throughout the paper, let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators acting on a complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ and I is the identity operator. When $\dim \mathcal{H} = n$, we identify $\mathcal{B}(\mathcal{H})$ with the full matrix algebra $\mathcal{M}_n(\mathbb{C})$ of $n \times n$ matrices with complex entries and denote its identity by I_n. A self-adjoint operator $A \in \mathcal{B}(\mathcal{H})$ is called positive, written $A \geq 0$, if $\langle Ax, x \rangle \geq 0$ for all $x \in \mathcal{H}$. An operator A is said to be strictly positive (denoted by $A > 0$) if it is positive and invertible. For self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$, we write $A \leq B$ if $B - A \geq 0$.

Let f be a continuous real valued function defined on an interval J. The function f is called operator decreasing if $B \leq A$ implies $f(A) \leq f(B)$ for all $A, B \in \mathcal{B}(\mathcal{H})$ with spectra in J. The function f is said to be operator concave on J if

$$\lambda f(A) + (1 - \lambda)f(B) \leq f(\lambda A + (1 - \lambda)B)$$

for all self-adjoint $A, B \in \mathcal{B}(\mathcal{H})$ with spectra in J and all $\lambda \in [0, 1]$.

2010 Mathematics Subject Classification: Primary 47A63; Secondary 15A42, 46L05, 47A30.

Key words and phrases: f-divergence functional, Jensen inequality, operator entropy, entropy inequality, operator concavity, perspective function, positive linear map.

DOI: 10.4064/cm130-2-2 [159] © Instytut Matematyczny PAN, 2013
In 1850 Clausius [Ann. Physik (2) 79 (1850), 368–397, 500–524] introduced the notion of entropy in thermodynamics. Since then several extensions and reformulations have been developed in various disciplines (cf. [ME, LR, L, NU]). The so-called entropy inequalities have been investigated by several authors (see [BLP, BS, F2] and references therein).

A relative operator entropy of strictly positive operators A, B was introduced in noncommutative information theory by Fujii and Kamei [FK] by

$$S(A \mid B) = A^{1/2} \log(A^{-1/2}BA^{-1/2})A^{1/2}. $$

When A is positive, one may set $S(A \mid B) := \lim_{\epsilon \to 0^+} S(A+\epsilon I \mid B)$ if the limit exists in the strong operator topology. In the same paper, it is shown that $S(A \mid B) \leq 0$ if $A \geq B$. There is an analogous notion called the perspective function (see [E, CK]) If $f : [0, \infty) \to \mathbb{R}$ is an operator convex function, then the perspective function g associated to f is defined by

$$g(B, A) = A^{1/2} f(A^{-1/2}BA^{-1/2})A^{1/2}$$

for any self-adjoint operator B and any strictly positive operator A.

One can consider a more general case. Let $\tilde{B} = (B_1, \ldots, B_n)$ and $\tilde{A} = (A_1, \ldots, A_n)$ be n-tuples of self-adjoint and strictly positive operators, respectively. Then the noncommutative f-divergence functional Θ is defined by

$$\Theta(\tilde{B}, \tilde{A}) = \sum_{i=1}^{n} A_i^{1/2} f(A_i^{-1/2}B_iA_i^{-1/2})A_i^{1/2}. $$

Next, recall that $X \sharp_q Y$ is defined by $X^{1/2}(X^{-1/2}YX^{-1/2})^q X^{1/2}$ for any real q and any strictly positive operators X and Y. For $p \in [0, 1]$, the operator $X \sharp_p Y$ coincides with the well-known p-power mean of X,Y.

Furuta [F1] defined a parametric extension of the operator entropy by

$$S_p(A \mid B) = A^{1/2} (A^{-1/2}BA^{-1/2})^p \log(A^{-1/2}BA^{-1/2})A^{1/2}, $$

where $p \in [0, 1]$ and A, B are strictly positive operators on a Hilbert space \mathcal{H}, and proved some operator entropy inequalities: if $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_n\}$ are two sequences of strictly positive operators on a Hilbert space \mathcal{H} such that $\sum_{j=1}^{n} A_j \sharp_p B_j \leq I$, then

$$\log \left[\sum_{j=1}^{n} (A_j \sharp_{p+1} B_j) + t_0 \left(I - \sum_{j=1}^{n} A_j \sharp_p B_j \right) \right]$$

$$- (\log t_0) \left(I - \sum_{j=1}^{n} A_j \sharp_p B_j \right)$$

for any $t_0 > 0$. This is an important result in the theory of operator entropies and inequalities.
for any fixed real number \(t_0 > 0 \).

The object of this paper is to state an operator entropy inequality parallel to the main result of [F1] and refine some known operator entropy inequalities.

2. Operator entropy inequality. The following notion is basic in our work.

Definition 2.1. Assume that \(A = (A_1, \ldots, A_n) \) and \(B = (B_1, \ldots, B_n) \) are finite sequences of strictly positive operators on a Hilbert space \(\mathcal{H} \). For \(q \in \mathbb{R} \) and an operator monotone function \(f : (0, \infty) \to [0, \infty) \) the **generalized operator Shannon entropy** is defined by

\[
S^f_q(A \mid B) := \sum_{j=1}^{n} S^f_q(A_j \mid B_j),
\]

where

\[
S^f_q(A_j \mid B_j) = A_j^{1/2}(A_j^{-1/2}B_jA_j^{-1/2})^q f(A_j^{-1/2}B_jA_j^{-1/2})A_j^{1/2}.
\]

We recall that for \(q = 0, f(t) = \log t \) and \(A, B > 0 \), we get the relative operator entropy \(S^f_0(A \mid B) = A^{1/2} \log(A^{-1/2}BA^{-1/2})A^{1/2} = S(A \mid B) \). It is interesting to point out that \(S_q(A \mid B) = -S_{1-q}(B \mid A) \) for any real \(q \), in particular, \(S_1(A \mid B) = -S(B \mid A) \). In fact, since \(X f(X^*X) = f(XX^*)X \) for every \(X \in \mathbb{B}(\mathcal{H}) \) and every continuous function \(f \) on \([0, \|X\|^2] \), considering \(X = B^{1/2}A^{-1/2} \) and \(f(t) = \log t \) we get

\[
S_q(A \mid B) = A^{1/2}(A^{-1/2}BA^{-1/2})^q \log(A^{-1/2}BA^{-1/2})A^{1/2}
\]

\[
= B^{1/2}B^{-1/2}A^{1/2}(A^{-1/2}BA^{-1/2})^q \log(A^{-1/2}BA^{-1/2})A^{1/2}B^{-1/2}B^{1/2}
\]

\[
= B^{1/2}X^{*-1}(X^*X)^q \log(X^*X)X^{-1}B^{1/2}
\]

\[
= B^{1/2}X^{-1}(X^*X)^{-q} \log(X^*X)X^{-1}B^{1/2}
\]

\[
= B^{1/2}(X^{-1}X^*X^{-1})^{-1}q(X^{-1}X^{-1})^{-1}X^{-1}X^{-1} \log(X^*X)X^{-1}B^{1/2}
\]

\[
= B^{1/2}(X^{-1}X^*X^{-1})^{-1}q X \log(X^*X)X^{-1}B^{1/2}
\]

\[
= B^{1/2}(X^{-1}X^*X^{-1})^{-1}q \log(XX^*)X^{-1}B^{1/2}
\]

\[
= -B^{1/2}(X^{-1}X^*X^{-1})^{-1}q \log(X^{-1}X^{-1})B^{1/2}
\]

\[
= -B^{1/2}(X^*X^{-1})^{-1}q \log(X^*X^{-1})B^{1/2}
\]

We need the following useful lemma.
Lemma 2.2 ([F1 Proposition 3.1]). If \(f \) is a continuous real function on an interval \(J \), then the following conditions are equivalent:

(i) \(f \) is operator concave.
(ii) \(f(C^*XC + t_0(I-C^*C)) \geq C^*f(X)C + f(t_0)(I-C^*C) \) for any operator \(C \) with \(\|C\| \leq 1 \) and any self-adjoint operator \(X \) with \(\text{sp}(X) \subseteq J \), and for any fixed \(t_0 \in J \).
(iii) \(f(\sum_{j=1}^n C_j^*X_jC_j + t_0(I-\sum_{j=1}^n C_j^*C_j)) \geq \sum_{j=1}^n C_j^*f(X_j)C_j + f(t_0)(I-\sum_{j=1}^n C_j^*C_j) \) for any operators \(C_j \) with \(\sum_{j=1}^n C_j^*C_j \leq I \) and self-adjoint operators \(X_j \) with \(\text{sp}(X_j) \subseteq J \) for \(j = 1, \ldots, n \), and for any fixed \(t_0 \in J \).

For other equivalent conditions the reader may consult [FMPS] and references therein. Using an idea of [F1] we prove the following result.

Theorem 2.3. Assume that \(f, A \) and \(B \) are as in Definition 2.1. Let \(\sum_{j=1}^n A_j = \sum_{j=1}^n B_j = I \) and let \(f \) be operator concave. Then

\[
\begin{align*}
&f\left[\sum_{j=1}^n (A_j z_{p+1} B_j) + t_0 \left(I - \sum_{j=1}^n A_j z_p B_j \right) \right] - f(t_0) \left(I - \sum_{j=1}^n A_j z_p B_j \right) \geq S_p^f(A | B)
\end{align*}
\]

for all \(p \in [0, 1] \) and for any fixed \(t_0 > 0 \), and

\[
\begin{align*}
&-f\left[\sum_{j=1}^n (A_j z_{p-1} B_j) + t_0 \left(I - \sum_{j=1}^n A_j z_p B_j \right) \right] + f(t_0) \left(I - \sum_{j=1}^n A_j z_p B_j \right) \leq S_p^f(A | B)
\end{align*}
\]

for all \(p \in [2, 3] \) and for any fixed \(t_0 > 0 \).

Proof. Since \(\sum_{j=1}^n A_j z_q B_j \leq (\sum_{j=1}^n A_j) z_q (\sum_{j=1}^n B_j) \) (see [FMPS Theorem 5.7]) for every \(q \in [0, 1] \), and \(\sum_{j=1}^n A_j = \sum_{j=1}^n B_j = I \), we have

\[
\sum_{j=1}^n A_j z_p B_j \leq I.
\]

Fix a positive real number \(t_0 \). Since \(f \) is operator concave, we get

\[
\begin{align*}
&f\left[\sum_{j=1}^n (A_j z_{p+1} B_j) + t_0 \left(I - \sum_{j=1}^n A_j z_p B_j \right) \right] \\
= &f\left[\sum_{j=1}^n ((A_j^{-1/2} B_j A_j^{-1/2})^{p/2} A_j^{1/2}) (A_j^{-1/2} B_j A_j^{-1/2}) ((A_j^{-1/2} B_j A_j^{-1/2})^{p/2} A_j^{1/2}) \right] \\
&+ t_0 \left(I - \sum_{j=1}^n A_j z_p B_j \right)
\end{align*}
\]
Following a similar argument, we obtain
\[
\frac{1}{n} \sum_{j=1}^{n} S^f_p(A_j | B_j) \geq \frac{1}{n} \sum_{j=1}^{n} S^f_{p-2}(A_j | B_j) + f(t_0) \left(I - \sum_{j=1}^{n} A_j \sharp_p B_j \right) \]

Thus
\[
-f \left[\sum_{j=1}^{n} (A_j \sharp_{p-1} B_j) + t_0 \left(I - \sum_{j=1}^{n} A_j \sharp_p B_j \right) \right] + f(t_0) \left(I - \sum_{j=1}^{n} A_j \sharp_p B_j \right) \leq -S^f_{p-2}(A | B).
\]

Since \(f \) is a continuous nonnegative function, \(X^q f(X) \geq 0 \) for every \(X \geq 0 \) and \(q \in \mathbb{R} \). Hence
\[
(A^{-1/2}_j B_j A^{-1/2}_j)^q f(A^{-1/2}_j B_j A^{-1/2}_j) \geq 0.
\]
Consequently, \(S^f_q(A_j | B_j) \geq 0 \). Thus
\[
S^f_p(A_j | B_j) + S^f_{p-2}(A_j | B_j) \geq 0 \quad (j = 1, \ldots, n),
\]
whence \(-S^f_{p-2}(A | B) \leq S^f_p(A | B) \), which yields the required result.

Remark 2.4. By taking \(f(t) = \log t \) in Theorem 2.3, we get (1.1).

Corollary 2.5. Let \(A = (A_1, \ldots, A_n) \) and \(B = (B_1, \ldots, B_n) \) be two sequences of strictly positive operators on a Hilbert space \(\mathcal{H} \) such that
\[
\sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j = I. \text{ If } f : (0, \infty) \to [0, \infty) \text{ is a function which is both operator monotone and operator concave, then }
\]

(i) \(f(\sum_{j=1}^{n} B_j A_j^{-1} B_j) \geq S_1^f(A \mid B) \),

(ii) \(f(I) \geq S_0^f(A \mid B) \).

Proof. (i) Setting \(p = 1 \) in Theorem 2.3 and applying \(\sum_{j=1}^{n} A_j z_1 B_j = \sum_{j=1}^{n} B_j = I \), we obtain

\[
f\left(\sum_{j=1}^{n} B_j A_j^{-1} B_j\right) = f\left(\sum_{j=1}^{n} A_j z_2 B_j\right) \geq S_1^f(A \mid B).
\]

(ii) Putting \(p = 0 \) in Theorem 2.3 and using \(\sum_{j=1}^{n} A_j z_0 B_j = \sum_{j=1}^{n} A_j = I \), we get

\[
f(I) = f\left(\sum_{j=1}^{n} B_j\right) = f\left(\sum_{j=1}^{n} A_j z_1 B_j\right) \geq S_0^f(A \mid B). \]

Next we extend the operator entropy to \(n \) strictly positive operators \(A_1, \ldots, A_n \in \mathbb{B}(\mathcal{H}) \) and refine the operator entropy inequality.

Corollary 2.6. Let \(A_1, \ldots, A_n \in \mathbb{B}(\mathcal{H}) \) be a sequence of strictly positive operators on a Hilbert space \(\mathcal{H} \) such that \(\sum_{j=1}^{n} A_j = I \). Then

\[
\log\left(\sum_{j=1}^{n} A_j^{-1}\right) \geq (\log n) I - \frac{1}{n} \sum_{j=1}^{n} \log A_j.
\]

Proof. Taking \(A = (A_1, \ldots, A_n) \) and \(B = (\frac{1}{n} I, \ldots, \frac{1}{n} I) \) and \(f(t) = \log t \) in Corollary 2.5 (i), we get

\[
-2(\log n) I + \log\left(\sum_{j=1}^{n} A_j^{-1}\right) = \log\left(\frac{1}{n^2} \sum_{j=1}^{n} A_j^{-1}\right) \geq S_1^{\log}(A \mid B)
\]

\[
= \sum_{j=1}^{n} \frac{1}{n} A_j^{-1/2} \log\left(\frac{1}{n^2} A_j^{-1}\right) A_j^{1/2} = \sum_{j=1}^{n} \frac{1}{n} \log\left(\frac{1}{n} A_j^{-1}\right)
\]

\[
= -\sum_{j=1}^{n} \frac{1}{n} ((\log n) I + \log A_j) = -(\log n) I - \frac{1}{n} \sum_{j=1}^{n} \log A_j,
\]

which yields (2.1). ■

Corollary 2.7 (Operator entropy inequality). Assume that \(A_1, \ldots, A_n \in \mathbb{B}(\mathcal{H}) \) are positive invertible operators satisfying \(\sum_{j=1}^{n} A_j = I \). Then

\[
-\sum_{j=1}^{n} A_j \log A_j \leq (\log n) I.
\]
Proof. Letting $A = (A_1, \ldots, A_n)$, $B = (\frac{1}{n} I, \ldots, \frac{1}{n} I)$ and $f(t) = \log t$ in Corollary 2.5(ii), we get
\[
0 = \log I \geq c_0^{\log}(A | B)
\]
\[
= \sum_{j=1}^{n} A_j^{1/2} \log \left(\frac{1}{n} A_j^{-1} \right) A_j^{1/2} = \sum_{j=1}^{n} A_j^{1/2} (- (\log n) I - \log A_j) A_j^{1/2}
\]
\[
= - (\log n) \sum_{j=1}^{n} A_j - \sum_{j=1}^{n} A_j^{1/2} (\log A_j) A_j^{1/2}. \]

Remark 2.8. Let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ be n-tuples of positive numbers such that $\sum_{j=1}^{n} a_j = \sum_{j=1}^{n} b_j = 1$. Put $A_i = [a_i]_{1 \times 1} \in M_1(\mathbb{C})$ and $B_i = [b_i]_{1 \times 1} \in M_1(\mathbb{C})$. It follows from Corollary 2.5(ii) that $0 \geq \sum_{j=1}^{n} a_j \log (b_j/a_j)$, which is an entropy inequality related to the Kullback–Leibler relative entropy or information divergence $S(p, q) = \sum_{j=1}^{n} p_j \log (p_j/q_j)$ with the convention $x \log x = 0$ if $x = 0$, and $x \log y = +\infty$ if $y = 0$ and $x \neq 0$ (cf. [KL]).

Theorem 2.9. Let $p \in [0, 1]$ and let A, B be strictly positive operators on a Hilbert space \mathcal{H} such that $A \leq B \leq I$ and $B^2 \leq A^2$. If $f : (0, \infty) \to [0, \infty)$ is both operator monotone and operator concave, then
\[
f(A \hat{\circ} p+1 B + t_0 (I - A \hat{\circ} p B)) - f(t_0)(I - A \hat{\circ} p B)
\]
\[
\geq S_p^f(A | B) = - f(A \hat{\circ} p+1 B + t_0 (I - A \hat{\circ} p B)) + f(t_0)(I - A \hat{\circ} p B)
\]
for any fixed real number $t_0 > 0$.

Proof. It follows from $A \leq B \leq I$ that
\[
A^{1/2} (A^{-1/2} BA^{-1/2})^{p-2} A^{1/2} \leq I,
\]
\[
(A^{-1/2} BA^{-1/2})^{p-2} \leq A^{-1},
\]
\[
A^{-1/2} BA^{-1/2} \leq (A^{-1/2} BA^{-1/2}) A^{-1} (A^{-1/2} BA^{-1/2}),
\]
\[
A^{1/2} (A^{-1/2} BA^{-1/2})^p A^{1/2} \leq BA^{-2} B.
\]
Since $B^2 \leq A^2$ and the map $t \mapsto -1/t$ is operator monotone, we have
\[
A^{1/2} (A^{-1/2} BA^{-1/2})^p A^{1/2} \leq I,
\]
so that $A \hat{\circ} p B \leq I$. Now the same reasoning as in the proof of Theorem 2.3 (with $n = 1$ and using Lemma 2.2(ii)) yields the desired inequalities. ■

Recall that a map $\Phi : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$, where \mathcal{H} and \mathcal{K} are Hilbert spaces, is called positive if $\Phi(A) \geq 0$ whenever $A \geq 0$, and it is said to be normalized if it preserves the identity. The paper [MMM, Lemma 5.2] includes the following refinement of the Jensen inequality for Hilbert space operators: Let $\mu = (\mu_1, \ldots, \mu_m)$ and $\lambda = (\lambda_1, \ldots, \lambda_n)$ be probability vectors. By a (discrete) weight function (with respect to μ and λ) we mean a mapping
\[\omega : \{(i, j) : 1 \leq i \leq m, 1 \leq j \leq n\} \to [0, \infty) \] such that \(\sum_{i=1}^{m} \omega(i, j) \mu_i = 1 \) \((j = 1, \ldots, n) \) and \(\sum_{j=1}^{n} \omega(i, j) \lambda_j = 1 \) \((i = 1, \ldots, m) \). If \(f \) is a real-valued operator concave function on an interval \(J \), \(A_1, \ldots, A_n \) are self-adjoint operators with spectra in \(J \) and \(\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K}) \) is a normalized positive map, then

\[
(2.2) \quad f\left(\sum_{j=1}^{n} \lambda_j \Phi(A_j) \right) \geq \sum_{i=1}^{m} \mu_i f\left(\sum_{j=1}^{n} \omega(i, j) \lambda_j \Phi(A_j) \right) \geq \sum_{j=1}^{n} \lambda_j \Phi(f(A_j)).
\]

A matrix \(A = [a_{ij}] \in \mathcal{M}_n(\mathbb{C}) \) is said to be doubly stochastic if \(a_{ij} \geq 0 \) \((i, j = 1, \ldots, n) \) and \(\sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ij} = 1 \). Now we introduce a refinement of the operator Jensen inequality.

Theorem 2.10. Suppose that \(f \) is a real-valued operator concave function on an interval \(J \) and \(A_1, \ldots, A_n \) are self-adjoint operators with spectra in \(J \). Assume that \(B = [b_{ij}] \) and \(C = [c_{ij}] \) are \(n \times n \) doubly stochastic matrices, \(\omega_1 \) and \(\omega_2 \) are weight functions with respect to the same probability vector, and \(\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K}) \) is a normalized positive map. If the operator-valued functions \(F_{\omega_1, \omega_2} \) and \(F_{B, C} \) are defined by

\[
F_{\omega_1, \omega_2}(t) := \sum_{i=1}^{m} \mu_i f\left(\sum_{j=1}^{n}\omega_1(i, j)(1-t)\lambda_j \Phi(A_j) + t \omega_2(i, j) \lambda_j \Phi(A_j) \right) \quad (0 \leq t \leq 1)
\]

and

\[
F_{B, C}(t) := \frac{1}{n} \sum_{i=1}^{n} f\left(\sum_{j=1}^{n}\omega_1(i, j)(1-t)b_{ij} + t c_{ij} \lambda_j \Phi(A_j) \right) \quad (0 \leq t \leq 1),
\]

then

(i)

\[
(2.4) \quad f\left(\sum_{j=1}^{n} \lambda_j \Phi(A_j) \right) = F_{\omega_1, \omega_2}(t) \geq \sum_{j=1}^{n} \lambda_j \Phi(f(A_j)) \quad (0 \leq t \leq 1).
\]

In particular,

\[
f\left(\frac{1}{n} \sum_{j=1}^{n} \Phi(A_j) \right) \geq F_{B, C}(t) \geq \frac{1}{n} \sum_{j=1}^{n} \Phi(f(A_j)) \quad (0 \leq t \leq 1).
\]

(ii) For any \(i = 1, \ldots, n \), the maps

\[
t \mapsto f\left(\sum_{j=1}^{n}\omega_1(i, j)(1-t)\lambda_j \Phi(A_j) + t \omega_2(i, j) \lambda_j \Phi(A_j) \right) \quad (0 \leq t \leq 1),
\]

as well as the function \(F_{\omega_1, \omega_2} \), are operator concave. In particular, \(F_{B, C} \) is concave on \([0, 1] \).
Proof. (i) Since for every \(t \) in \([0, 1]\), the map
\[
(i, j) \mapsto (1 - t)\omega_1(i, j) + t\omega_2(i, j) \quad (1 \leq i \leq m, 1 \leq j \leq n)
\]
is a weight function, (2.4) follows from (2.2). By taking \(m = n, \lambda_j = \mu_i = 1/n, \omega_1(i, j) = nb_{ij}, \omega_2(i, j) = nc_{ij} \) in \(F_{\omega_1, \omega_2}(t) \), we obtain the second part.

(ii) Let \(\eta_1, \eta_2 \geq 0 \) with \(\eta_1 + \eta_2 = 1 \) and let \(t_1, t_2 \in [0, 1] \). For every \(i \) with \(1 \leq i \leq m \), we have
\[
f\left(\sum_{j=1}^{n}[(1 - \eta_1 t_1 - \eta_2 t_2)\omega_1(i, j) + (\eta_1 t_1 + \eta_2 t_2)\omega_2(i, j)]\lambda_j \Phi(A_j)\right)
= f\left(\sum_{j=1}^{n}[(1 - t_1)\omega_1(i, j) + t_1\omega_2(i, j)]\lambda_j \Phi(A_j)\right)
+ \eta_2\sum_{j=1}^{n}[(1 - t_2)\omega_1(i, j) + t_2\omega_2(i, j)]\lambda_j \Phi(A_j)
\geq \eta_1 f\left(\sum_{j=1}^{n}[(1 - t_1)\omega_1(i, j) + t_1\omega_2(i, j)]\lambda_j \Phi(A_j)\right)
+ \eta_2 f\left(\sum_{j=1}^{n}[(1 - t_2)\omega_1(i, j) + t_2\omega_2(i, j)]\lambda_j \Phi(A_j)\right) \quad \text{(by concavity of } f),
\]
which implies (ii). The concavity of \(F_{B,C} \) over \([0, 1]\) is clear. □

By taking \(f(t) = -t \log t \) and \(\Phi(t) = t \) in (2.3) and by using Theorem 2.10, we obtain the following result:

Corollary 2.11 (Refinement of an operator entropy inequality). Assume that \(A_1, \ldots, A_n \) are positive self-adjoint invertible operators with spectra in an interval \(J \) and \(\sum_{j=1}^{n} A_j = I \). If \(B = [b_{ij}] \) and \(C = [c_{ij}] \) are \(n \times n \) doubly stochastic matrices, then
\[
(\log n)I \geq \sum_{i=1}^{n} \left[-\left(\sum_{j=1}^{n} [(1 - t)b_{ij} + tc_{ij}]A_j \right) \log \left(\sum_{j=1}^{n} [(1 - t)b_{ij} + tc_{ij}]A_j \right) \right]
\geq -\sum_{j=1}^{n} A_j \log A_j \quad (0 \leq t \leq 1).
\]

Acknowledgements. The authors would like to sincerely thank the anonymous referee for several useful comments improving the paper. The first author was supported by a grant from Ferdowsi University of Mashhad (No. MP90242MOS). The third author would like to thank the Tusi Mathematical Research Group (TMRG).
REFERENCES

M. S. Moslehian
Department of Pure Mathematics
Center of Excellence in Analysis on Algebraic Structures
Ferdowsi University of Mashhad
P.O. Box 1159
Mashhad 91775, Iran
E-mail: moslehian@um.ac.ir
moslehian@member.ams.org

F. Mirzapour, A. Morassaei
Department of Mathematics
Faculty of Sciences
University of Zanjan
P.O. Box 45195-313
Zanjan, Iran
E-mail: f.mirza@znu.ac.ir
morassaei@znu.ac.ir

Received 7 May 2012;
revised 10 August 2012