the generalized monotonicity class and Integrability of POWER SERIES

BY
SERGEY VOLOSIVETS and VALERY KRIVOBOK (Saratov)

Abstract

The aim of this paper is to obtain a generalization of W. A. Woyczyński and B. Ram results concerning integrability of power series in terms of their coefficients for the class GM of general monotonic sequences.

1. Introduction. Let Φ be a nondecreasing continuous real valued function defined on $\mathbb{R}_{+}=[0 ;+\infty)$ and vanishing only at the origin. If Φ is convex and $\lim _{u \rightarrow 0} \Phi(u) / u=0, \lim _{u \rightarrow \infty} \Phi(u) / u=\infty$, then Φ is called an N-function ([KR]). It is well known that every N-function Φ admits a representation $\Phi(u)=\int_{0}^{u} \phi(t) d t$, where $\phi(t)$ is a positive, right-continuous nondecreasing function with $\phi(0)=0$ and $\lim _{t \rightarrow \infty} \phi(t)=+\infty$. In particular, Φ is absolutely continuous on every finite interval of \mathbb{R}_{+}and
(a) $\Phi(x) / x$ is increasing on $(0 ; \infty)$.

Further we also require
(b) there exists $c>1$ such that $\Phi(x) / x^{c}$ is decreasing on $(0 ; \infty)$.

Generalizing several results on L^{p}-integrability with weight $x^{-\gamma}$ (see [Bo, §4]), Y.-M. Chen [Ch1 proved

THEOREM 1.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence decreasing to zero and $g(t)=$ $\sum_{n=1}^{\infty} a_{n} \sin n t$. If $0<\gamma<1$ and Φ satisfies conditions (a) and (b) above, then a necessary and sufficient condition for $x^{-\gamma} \Phi(g(x))$ to belong to $L[0 ; \pi]$ is the convergence of the series $\sum_{n=1}^{\infty} n^{\gamma-2} \Phi\left(n a_{n}\right)$.

Note that Lemma 3 in Ch1, applied in the proof of Theorem 1.1, was proved with the help of integration by parts. Therefore, it seems that Theorem 1.1 also requires the assumption Φ is absolutely continuous.

[^0]Let $L_{\Phi}(X, d \mu)$ be the Orlicz class, i.e. the set of all complex valued measurable functions f on a measure space (X, μ) such that the modular $\int_{X} \Phi(|f(x)|) d \mu$ is finite. The Hardy-Orlicz class $H_{\Phi}[0 ; 2 \pi]$ is the closed subset of $L_{\Phi}([0 ; 2 \pi], d x)$ spanned by all trigonometric polynomials of the form

$$
f(t)=\sum_{n=0}^{N} a_{n} e^{i n t} .
$$

W. Woyczyński Wo proved

Theorem 1.2. Let $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k},|z|<1$, and let Φ be an N function satisfying the Δ_{2}-condition. Also, suppose that for some $\alpha \in(0 ; 1)$ and a convex function Λ the function Φ satisfies $\Lambda(u) \leq \Phi^{\alpha}(u) \leq c \Lambda(u)$ for all $u \in[0 ; \infty)$. If $a_{k} \downarrow 0$, then the following four statements are equivalent:
(i) $f \in L_{\Phi}([0 ; 1), d \mu)$;
(ii) $g(t)=f\left(e^{i t}\right) \in H_{\Phi}[0 ; 2 \pi]$;
(iii) $\sum_{n=1}^{\infty} n^{-2} \Phi\left(n a_{n}\right)<\infty$;
(iv) $\sum_{n=1}^{\infty} n^{-2} \Phi\left(A_{n}\right)<\infty$,
where $A_{n}=\sum_{i=1}^{n} a_{i}$.
If for $\left\{a_{n}\right\}_{n=1}^{\infty}$ there exists $\tau \geq 0$ such that $\left\{a_{n} n^{-\tau}\right\}_{n=1}^{\infty}$ is decreasing, then $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called quasi monotone (written $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{QM}$). If for all $n \in \mathbb{N}$ we have

$$
\sum_{k=n}^{2 n-1}\left|a_{k}-a_{k+1}\right| \leq C a_{n}
$$

then we write $\left\{a_{n}\right\}_{n=1}^{\infty} \in$ GM. Finally, if for all $n \in \mathbb{N}$ we have

$$
\sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right| \leq C a_{n}
$$

then $\left\{a_{n}\right\}_{n=1}^{\infty} \in$ RBVS. These classes were introduced by A. A. Konyushkov [K0, S. Tikhonov [T2] and L. Leindler [Le] respectively.

In [T2] it is proved that $\mathrm{QM} \subset \mathrm{GM}$, and the embedding RBVS $\subset \mathrm{GM}$ is obvious. The example of a positive GM sequence belonging neither to QM nor to RBVS can be found in [LT]. P. Jain [Ja generalized Theorem 1.2 to the case of weighted Orlicz classes with power weight and $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{QM}$ with additional restriction $0<B_{1} \leq n^{\beta} a_{n} \leq B_{2}$ for some $\beta>0$. A more general result was obtained by B. Ram Ra].

Let $\psi(x)$ be a nondecreasing positive function on $(0 ; \infty)$ such that $\psi(x) / x^{\delta}$ decreases on $(0 ; \infty)$ for some $\delta \in(0 ; 1)$ (we then write $\psi \in M_{1}$). Under these assumptions Φ and ψ satisfy the Δ_{2}-condition: $\Phi(2 x) \leq C \Phi(x)$ and $\psi(2 x) \leq C \psi(x)$.

Theorem 1.3. Let Φ and $f(z)$ be as in Theorem 1.2, and ψ be as above. If $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{QM} \cap \mathrm{RBVS}$, then the following four statements are equivalent:

$$
\begin{align*}
& \Phi(|f(x)|) / \psi(1-x) \in L(0 ; 1) \tag{1.1}\\
& \Phi\left(\left|f\left(e^{i x}\right)\right|\right) / \psi(x) \in L(0 ; \pi) \tag{1.2}\\
& \sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \psi(1 / n)}<\infty \tag{1.3}\\
& \sum_{n=1}^{\infty} \frac{\Phi\left(A_{n}\right)}{n^{2} \psi(1 / n)}<\infty \tag{1.4}
\end{align*}
$$

The aim of our paper is to extend Theorem 1.3 to the case $\left\{a_{n}\right\}_{n=1}^{\infty} \in$ GM whenever Φ is an N-function satisfying condition (b).
2. Auxiliary results. A function f is called almost increasing on the interval P if there exists $C>0$ such that for any $x, y \in P, x<y$, we have $f(x) \leq C f(y)$.

Lemma 2.1 may be found in Ch2 without proof. For the convenience of the reader we provide a proof.

Lemma 2.1. Let Φ be an N-function satisfying condition (b) for some $c>1$, and let $\psi \in M_{1}, a_{n} \geq 0, A_{n}=\sum_{i=1}^{n} a_{i}$ for all $n \in \mathbb{N}$. Then

$$
\sum_{n=1}^{\infty}\left(n^{2} \psi(1 / n)\right)^{-1} \Phi\left(A_{n}\right) \leq C \sum_{n=1}^{\infty}\left(n^{2} \psi(1 / n)\right)^{-1} \Phi\left(n a_{n}\right) .
$$

Proof. Let $b_{n}=\left(n^{2} \psi(1 / n)\right)^{-1}, \sigma_{n}=\sum_{i=n}^{\infty} b_{i}, n \in \mathbb{N}$, and $A_{0}=0$. For a continuous increasing function ω on $[0 ; 1]$ with $\omega(0)=0$, N. K. Bari and S. B. Stechkin [BS] established that the condition

$$
\sum_{i=n}^{\infty} i^{-1} \omega(1 / i)=O(\omega(1 / n)), \quad n \in \mathbb{N},
$$

is equivalent to $\omega(t) / t^{\alpha}$ being almost increasing for some $\alpha \in(0 ; 1)$. If $\omega(t)=$ $t / \psi(t)$, then $\psi \in M_{1}$ implies that for all $\delta \in(0 ; 1)$ the function $\omega(t) / t^{\alpha}$ is increasing for any $\alpha \in(0 ; 1-\delta)$. Therefore

$$
\begin{equation*}
\sigma_{n}=\sum_{i=n}^{\infty}\left(i^{2} \psi(1 / i)\right)^{-1}=O\left(n^{-1} \psi(1 / n)^{-1}\right)=O\left(n b_{n}\right), \quad n \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Using Abel's transform, we obtain, for $N \in \mathbb{N}$,

$$
\sum_{n=1}^{N} \Phi\left(A_{n}\right) b_{n}=\sum_{n=1}^{N} \Phi\left(A_{n}\right)\left(\sigma_{n}-\sigma_{n+1}\right) \leq \sum_{n=1}^{N}\left(\Phi\left(A_{n}\right)-\Phi\left(A_{n-1}\right)\right) \sigma_{n} .
$$

Since $\kappa(x)=\Phi(x) / x^{c}$ is decreasing and $c>1$, in virtue of (2.1) and Lagrange's mean value theorem we have

$$
\begin{aligned}
\sum_{n=1}^{N} \Phi\left(A_{n}\right) b_{n} & \leq \sum_{n=1}^{N}\left(A_{n}^{c} \kappa\left(A_{n}\right)-A_{n-1}^{c} \kappa\left(A_{n-1}\right)\right) \sigma_{n} \leq \sum_{n=1}^{N} \kappa\left(A_{n}\right)\left(A_{n}^{c}-A_{n-1}^{c}\right) \sigma_{n} \\
& \leq c \sum_{n=1}^{N} \kappa\left(A_{n}\right) A_{n}^{c-1}\left(A_{n}-A_{n-1}\right) \sigma_{n} \leq C_{1} \sum_{n=1}^{N} \varphi\left(A_{n}\right) n a_{n} b_{n},
\end{aligned}
$$

where $\varphi(x)=\Phi(x) / x$. Applying the idea of H. P. Mulholland [Mu] and using the fact that $\varphi(x)$ is increasing, we obtain

$$
\begin{aligned}
\varphi\left(A_{n}\right) n a_{n} & =t^{-1}\left(\operatorname{tna_{n}} \varphi\left(A_{n}\right)\right) \leq t^{-1} \max \left(\operatorname{tna_{n}\varphi }\left(\operatorname{tna}_{n}\right), A_{n} \varphi\left(A_{n}\right)\right) \\
& \leq t^{-1}\left(\Phi\left(t n a_{n}\right)+\Phi\left(A_{n}\right)\right) .
\end{aligned}
$$

But $\Phi(x) / x^{c}$ is decreasing and for $t>1$ we have $\Phi(t x) \leq t^{c} \Phi(x)$. Thus, $\varphi\left(A_{n}\right) n a_{n} \leq t^{c-1} \Phi\left(n a_{n}\right)+t^{-1} \Phi\left(A_{n}\right)$ and

$$
\sum_{n=1}^{N} \Phi\left(A_{n}\right) b_{n} \leq C_{1}\left(\sum_{n=1}^{N} t^{c-1} \Phi\left(n a_{n}\right) b_{n}+t^{-1} \sum_{n=1}^{N} \Phi\left(A_{n}\right) b_{n}\right)
$$

whence $\left(1-t^{-1} C_{1}\right) \sum_{n=1}^{N} \Phi\left(A_{n}\right) b_{n} \leq C_{1} t^{c-1} \sum_{n=1}^{N} \Phi\left(n a_{n}\right) b_{n}$. Taking sufficiently large t and letting N tend to ∞, we get the inequality of the lemma.

Lemma 2.2 below contains the main properties of $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{GM}$ proved by S. Tikhonov T2].

Lemma 2.2.
(i) Suppose $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{GM}$ and $\sum_{i=n}^{\infty} i^{-1} a_{i}<\infty$. Then

$$
\sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right| \leq C\left(a_{n}+\sum_{k=n}^{\infty} a_{k} / k\right), \quad n \in \mathbb{N} .
$$

(ii) Let $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{GM}$. Then $a_{k} \leq C_{1} a_{n}$ for $n \leq k \leq 2 n$.

Corollary 2.3. If $\left\{a_{i}\right\}_{i=1}^{\infty} \in \mathrm{GM}$, then there exists $\beta>0$ such that

$$
\sum_{i=k n}^{(k+1) n-1} a_{i}=O\left(k^{\beta} A_{n}\right), \quad k, n \in \mathbb{N} .
$$

Proof. Let $\left[\log _{2} k\right]=j, k \geq 2$. If $i \in[k n,(k+1) n-1)$, then $i \leq 2^{j+1} n$ and $a_{i} \leq C_{1}^{j+1} a_{n}$, where C_{1} is the constant from Lemma 2.2(ii). Thus,

$$
\sum_{i=k n}^{(k+1) n-1} a_{i} \leq n 2^{(j+1) \log _{2} C_{1}} a_{n} \leq C_{2} \cdot 2^{2 \log _{2} k \cdot \log _{2} C_{1}} \sum_{i=[n / 2]}^{n} a_{i} \leq C_{2} k^{\beta} A_{n}
$$

where $\beta=2 \log _{2} C_{1}$. For $k=1$ one can use similar arguments.

Lemma 2.4 is a generalization of the classical Hardy inequality (see HLP, Theorem 330]). It can be found in [Ch2] without proof and in [Ra] in the case when Φ satisfies the assumptions of Theorem B (with proof).

Lemma 2.4. Let Φ and ψ be as in Lemma 2.1, and suppose that f is a nonnegative measurable function on $(0, a)$. Then

$$
\int_{0}^{a} \Phi\left(x^{-1} \int_{0}^{x} f(t) d t\right) \psi(x)^{-1} d x \leq C(a) \int_{0}^{a} \Phi(f(x)) \psi(x)^{-1} d x .
$$

3. Main result

Main Theorem 3.1. Let Φ be an N-function satisfying condition (b), and let $\psi \in M_{1},\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathrm{GM}$, and $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$. Then the statements (1.1), (1.3) and (1.4) are equivalent. If, in addition,

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k} / k=O\left(a_{n}\right) \tag{3.1}
\end{equation*}
$$

then all four statements (1.1)-(1.4) are equivalent.
Proof. We first prove $(1.1) \Rightarrow(1.4),(1.4) \Rightarrow(1.1)$ and $(1.3) \Leftrightarrow(1.4)$, and then $(1.4) \Rightarrow(1.2)$ and $(1.2) \Rightarrow(1.3)$.
$(1.1) \Rightarrow(1.4)$. If $1-x=y$ and $y \in\left((n+1)^{-1} ; n^{-1}\right]=I_{n}, n \in\{2,3, \ldots\}$, then

$$
f(1-y) \geq \sum_{k=0}^{n} a_{k}(1-y)^{k} \geq(1-1 / n)^{n} \sum_{k=1}^{n} a_{k} \geq 4^{-1} A_{n} .
$$

Since f is increasing, and since Φ and ψ satisfy the Δ_{2}-condition and $\Phi\left(A_{n}\right)$ $\leq \Phi(4 f(1-u))$ for $u \in I_{n}, n \geq 2$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\Phi\left(A_{n}\right)}{n^{2} \psi(1 / n)} & \leq C_{1} \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{t^{-2} \Phi\left(A_{n}\right)}{\psi(1 / t)} d t \\
& =C_{1} \sum_{n=1}^{\infty} \int_{1 /(n+1)}^{1 / n} \frac{\Phi\left(A_{n}\right)}{\psi(u)} d u \\
& \leq C_{1} \int_{1 / 2}^{1} \frac{\Phi\left(a_{1}\right)}{\psi(u)} d u+C_{2} \sum_{n=2}^{\infty} \int_{1 /(n+1)}^{1 / n} \frac{\Phi(f(1-u))}{\psi(u)} d u \\
& \leq C_{3}\left(1+\int_{0}^{1} \frac{\Phi(f(x))}{\psi(1-x)} d x\right)<\infty .
\end{aligned}
$$

$(1.4) \Rightarrow(1.1)$. It is easy to see that $(1-1 / n)^{i} \leq(1-1 / n)^{n k} \leq e^{-k}$ for $n k \leq i \leq n(k+1)-1$. Using Corollary 2.3 and the Δ_{2}-condition on Φ, we
have

$$
\begin{aligned}
\int_{0}^{1} \frac{\Phi(f(x))}{\psi(1-x)} d x & =\sum_{n=2}^{\infty} \int_{1 / n}^{1 /(n-1)} \frac{\Phi(f(1-x))}{\psi(x)} d x \\
& \leq \sum_{n=2}^{\infty} \int_{1 / n}^{1 /(n-1)} \frac{\Phi\left(\sum_{k=1}^{\infty} a_{k}(1-1 / n)^{k}\right)}{\psi(x)} d x \\
& \leq \sum_{n=2}^{\infty} \int_{1 / n}^{1 /(n-1)} \Phi\left(\sum_{k=1}^{n-1} a_{k}+\sum_{k=1}^{\infty} \sum_{i=k n}^{(k+1) n-1} a_{k} e^{-k}\right) \psi(1 / n)^{-1} d x \\
& \leq C_{4} \sum_{n=2}^{\infty} n^{-2} \Phi\left(A_{n}+C_{5} \sum_{k=1}^{\infty} k^{\beta} e^{-k} A_{n}\right) \psi(n)^{-1} \\
& \leq C_{6} \sum_{n=2}^{\infty} \frac{\Phi\left(A_{n}\right)}{n^{2} \psi(1 / n)}<\infty
\end{aligned}
$$

$(1.4) \Leftrightarrow(1.3)$. By Lemma 2.2(ii) we have

$$
\begin{equation*}
n a_{n} \leq C_{7} \sum_{k=[n / 2]}^{n} a_{k} \leq C_{7} A_{n} \tag{3.2}
\end{equation*}
$$

proving $(1.4) \Rightarrow(1.3)$. The inverse implication follows from Lemma 2.1.
$(1.4) \Rightarrow(1.2)$. If $D_{k}(x)=1 / 2+\sum_{i=1}^{k} \cos i x$, then it is well known that $\left|D_{k}(x)\right| \leq \pi / x$. Using Abel's transform and Lemma 2.2(i), we obtain

$$
\begin{align*}
\left|\Re f\left(e^{i x}\right)\right| & =\left|\sum_{k=1}^{\infty} a_{k} \cos k x\right| \tag{3.3}\\
& \leq \sum_{k=1}^{n} a_{k}+\left|\sum_{k=n}^{\infty}\left(a_{k}-a_{k+1}\right) D_{k}(x)\right|+\left|a_{n} D_{n}(x)\right| \\
& \leq A_{n}+\pi a_{n} x^{-1}+\pi x^{-1} \sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right| \\
& \leq A_{n}+C_{8} x^{-1}\left(a_{n}+\sum_{k=n}^{\infty} a_{k} / k\right) \\
& \leq A_{n}+C_{9} n a_{n} \leq C_{10} A_{n}, \quad x \in(\pi /(n+1) ; \pi / n]
\end{align*}
$$

by (3.1) and (3.2). Using (3.3) and the Δ_{2}-condition on Φ and ψ, we conclude

$$
\int_{0}^{\pi} \frac{\Phi\left(\left|\Re f\left(e^{i x}\right)\right|\right)}{\psi(x)} d x \leq \sum_{n=1}^{\infty} \int_{\pi / n+1}^{\pi / n} \frac{\Phi\left(C_{10} A_{n}\right)}{\psi(x)} d x \leq C_{11} \sum_{n=1}^{\infty} \frac{\Phi\left(A_{n}\right)}{n^{2} \psi(1 / n)}<\infty
$$

Similarly we can prove that $\int_{0}^{\pi} \Phi\left(\left|\Im f\left(e^{i x}\right)\right|\right) \psi(x)^{-1} d x<\infty$.
$(1.2) \Rightarrow(1.3)$. Since $\psi(x)^{-1}$ is decreasing and not vanishing on $(0 ; \pi)$, we have $\int_{0}^{\pi} \Phi\left(\left|f\left(e^{i x}\right)\right|\right) d x<\infty$, whence $f\left(e^{i x}\right) \in L[0 ; \pi]$. Using the standard method of double integration and (3.2), we obtain for $r(t)=\Re f\left(e^{i t}\right), r_{1}(t)=$ $\int_{0}^{t} r(u) d u$ and $r_{2}(t)=\int_{0}^{t} r_{1}(u) d u$,

$$
\begin{aligned}
r_{2}(t) & =\sum_{j=1}^{\infty} a_{j}(1-\cos j t) j^{-2} \geq 2 \sum_{j=1}^{n} j^{-2} a_{j} \sin ^{2}(j t / 2) \\
& \geq 2 \sum_{j=1}^{n} j^{-2} a_{j}(j t / \pi)^{2} \geq t^{2} C_{12} \sum_{j=1}^{n} a_{j} \\
& \geq C_{13} t^{2} n a_{n}, \quad t \in(\pi /(n+1) ; \pi / n] .
\end{aligned}
$$

Using Lemma 2.4 similarly to the paper [AW], where $\Phi(x)=x^{p}, p>1$, $\psi(x)=x^{c}$, we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \psi(1 / n)} & \leq C_{14} \sum_{n=1}^{\infty} \int_{\pi /(n+1)}^{\pi / n} \frac{\Phi\left(x^{-2} r_{2}(x)\right)}{\psi(x)} d x \\
& =C_{14} \int_{0}^{\pi} \frac{\Phi\left(x^{-2} r_{2}(x)\right)}{\psi(x)} d x \leq C_{14} \int_{0}^{\pi} \frac{\Phi\left(x^{-1} \int_{0}^{x}\left|r_{1}(t)\right| t^{-1} d t\right)}{\psi(x)} d x \\
& \leq C_{15} \int_{0}^{\pi} \frac{\Phi\left(x^{-1} \int_{0}^{x}|r(t)| d t\right)}{\psi(x)} d x \leq C_{16} \int_{0}^{\pi} \frac{\Phi\left(\left|f\left(e^{i x}\right)\right|\right)}{\psi(x)} d x<\infty
\end{aligned}
$$

Corollary 3.2. If the conditions of Theorem 3.1 hold and, in addition, $\left\{a_{n}\right\}_{n=1}^{\infty} \in$ RBVS, then all statements (1.1)-(1.4) are equivalent.

Proof. The inequality (3.1) was used in the implication $(1.4) \Rightarrow(1.2)$ only. In this case instead of (3.3) we have

$$
\left|\Re f\left(e^{i x}\right)\right| \leq A_{n}+C_{1} x^{-1} \sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right| \leq A_{n}+C_{2} x^{-1} a_{n}
$$

and further we proceed as in the proof of Theorem 3.1.
REmark. Let us note that the part $(1.3) \Rightarrow(1.4) \Rightarrow(1.2)$ of Corollary 3.2 was shown in [T1] for a very general function Φ. A necessary and sufficient conditions for (1.2) in terms of summability properties of $\left\{a_{n}\right\}$ in the case $\Phi(t)=t^{p}, \psi(t)=t^{\alpha}$, can be found in [Bo, and the sharp result for $\left\{a_{n}\right\} \in$ GM in [T2]. Many interesting results for (1.1) in the case $\Phi(t)=t^{p}, \psi(t)=t^{\alpha}$ are in [MP].

Corollary 3.3. If the conditions of Theorem 3.1 hold and $\left\{a_{n}\right\}_{n=1}^{\infty} \in$ QM, then (1.1), (1.3), (1.4) are equivalent. If, in addition, (3.1) holds, then all statements (1.1)-(1.4) are equivalent.

Remark. It would be of interest to prove the equivalence of (1.1)-(1.4) without condition (3.1). Note that the inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Phi\left(\sum_{k=n}^{\infty} a_{k}\right) \psi(n)^{-1} \leq C \sum_{n=1}^{\infty} \psi(n)^{-1} \Phi\left(n a_{n}\right) \tag{3.4}
\end{equation*}
$$

in the classical case $\Phi(x)=x^{p}, 1<p<\infty, \psi(x)=x^{c}$, is valid only for $c<1$ [HLP, Th. 346]. Since $n^{2} \psi(1 / n) / n \rightarrow \infty$ as $n \rightarrow \infty$, the inequality (3.4) with $\left(n^{2} \psi(1 / n)\right)^{-1}$ instead of $\psi(n)^{-1}$ seems to be false.

REFERENCES

[AW] R. Askey and S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223-228.
[BS] N. K. Bari and S. B. Stechkin, Best approximation and differential properties of two conjugate functions, Trudy Moskov. Mat. Obshch. 5 (1956), 483-522 (in Russian).
[Bo] R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer, Berlin, 1967.
[Ch1] Y.-M. Chen, Some asymptotic properties of Fourier constants and integrability theorems, Math. Z. 68 (1957), 227-244.
[Ch2] Y.-M. Chen, Some further asymptotic properties of Fourier constants, Math. Z. 69 (1958), 105-120.
[HLP] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
[Ja] P. Jain, On the integrability of power series, Proc. Amer. Math. Soc. 42 (1974), 569-574.
[Ko] A. A. Konyushkov, Best approximation by trigonometric polynomials and Fourier coefficients, Mat. Sb. 44 (1958), 53-84 (in Russian).
[KR] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[Le] L. Leindler, On the uniform convergence and boundedness of a certain class of sine series, Analysis Math. 27 (2001), 279-285.
[LT] E. Liflyand and S. Tikhonov, A concept of general monotonicity and applications, Math. Nachr. 284 (2011), 1083-1098.
[MP] M. Mateljević and M. Pavlović, L^{p}-behaviour of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309-316.
$[\mathrm{Mu}]$ H. P. Mulholland, Concerning the generalization of the Young-Hausdorff theorem and the Hardy-Littlewood theorems on Fourier constants, Proc. London Math. Soc. 35 (1933), 257-293.
[Ra] B. Ram, Integrability of power series, Proc. Amer. Math. Soc. 93 (1985), 255-261.
[T1] S. Tikhonov, On belonging of trigonometric series to Orlicz space, J. Inequal. Pure Appl. Math. 5 (2004), art. 22, 7 pp.
[T2] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (2007), 721-735.
[Wo] W. A. Woyczyński, Positive-coefficient elements of Hardy-Orlicz spaces, Colloq. Math. 21 (1970), 103-110.

Sergey Volosivets, Valery Krivobok
Saratov State Unversity
410012 Saratov, Russia
E-mail: VolosivetsSS@mail.ru unikross@mail.ru

Received 30 June 2012; revised 25 January 2013

[^0]: 2010 Mathematics Subject Classification: Primary 41A58; Secondary 30B10.
 Key words and phrases: power series, N-function, weighted Orlicz space, general monotone coefficients.

