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OPTIMAL WEIGHTED HARMONIC INTERPOLATIONS
BETWEEN SEIFFERT MEANS

BY

ALFRED WITKOWSKI (Bydgoszcz)

Abstract. We provide a set of optimal estimates of the form

1− µ
A(x, y) +

µ

M(x, y)
≤ 1

B(x, y) ≤
1− ν
A(x, y) +

ν

M(x, y)

where A < B are two of the Seiffert means L,P,M, T , whileM is another mean greater
than the two.

1. Introduction. The two means introduced by Seiffert, in [5]:

P (x, y) =

{ x− y
2 arcsin x−y

x+y

, x 6= y,

x, x = y,

and in [6]:

T (x, y) =

{ x− y
2 arctan x−y

x+y

, x 6= y,

x, x = y,

are being currently investigated by many mathematicians. Especially inter-
esting is finding optimal bounds of Seiffert means in terms of weighted arith-
metic ([1, 3, 8]), geometric ([7, 8]) or harmonic ([2, 8]) means of two other
means. Interesting inequalities between P , T , arithmetic, geometric, loga-
rithmic, identric and power means were obtained by many authors (see the
references in the cited literature) using an analytic approach or properties
of the Schwab–Borchardt algorithm.

It is worth recording two other Seiffert means involving the inverse hy-
perbolic function:

M(x, y) =

{ x− y
2 arsinh x−y

x+y

, x 6= y,

x, x = y,
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introduced in [4] and the well known logarithmic mean

L(x, y) =

{ x− y
2 artanh x−y

x+y

=
x− y

log x− log y
, x 6= y,

x, x = y.
The four means satisfy the inequalities L < P < M < T if x 6= y. The goal
of this paper is to provide optimal bounds of the form

(1.1)
1− µ
A(x, y)

+
µ

M(x, y)
≤ 1

B(x, y)
≤ 1− ν
A(x, y)

+
ν

M(x, y)

where A < B are two of the means L,P,M, T , while M is another mean
greater than the two. Note that in this approach we find best bounds for the
Seiffert mean B in terms of the weighted harmonic mean of A andM, so we
call them harmonic interpolations.

In [8] we developed a geometric method to obtain interpolations for means

of the form SBM,N (x, y) =

√
N2(x,y)−M2(x,y)

arccos(M(x,y)/N(x,y)) . This method proves to be
very efficient in reaching our goal.

2. Notation and definitions. We shall be using the following notation:
x, y are always positive. We shall be considering the geometric, arithmetic,
root-mean square and contraharmonic means defined respectively by

G(x, y) =
√
xy, A(x, y) =

x+ y

2
,

R(x, y) =

√
x2 + y2

2
, C(x, y) =

x2 + y2

x+ y
.

In most cases we shall omit the arguments to simplify notation.
We use the symbol a ∼= b to indicate that a and b are of the same sign.
We denote by βP the radial measure of the angle ∠ABC in the P-triangle

in the figure below, while βT denotes the same angle in the T-triangle.

B
√
xy C

|x−y|
2

A

x+
y

2

P

P-triangle

βP

B x+y
2

C

|x−y|
2

A

√ x
2 +
y
2

2

P

T-triangle

βT

Definition of βP and βT
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Note that as x, y vary, the angle βP assumes all values between (0, π/2), while
βT does not exceed π/4. This follows from the fact that in the T-triangle
|AC| < |BC|, and makes an essential difference between the two figures.

Thanks to this geometric interpretation we can express the means to
be considered as functions of the variables βP and βT respectively. In the
P-triangle we have

(2.1)
P =

|AC|
βP

, G =
|AC|
tanβP

, A =
|AC|
sinβP

,

L =
|AC|

artanh(sinβP )
, M =

|AC|
arsinh(sinβP )

.

while in the T-triangle

(2.2)
P =

|AC|
βT

, A =
|AC|
tanβT

, R =
|AC|
sinβT

,

L =
|AC|

artanh(tanβT )
, M =

|AC|
arsinh(tanβT )

.

In many cases the bounds obtained in (1.1) are absolute (i.e. valid for all
arguments (x, y)), while some bounds will be trivial. For example, if A = L,
the only possible left-hand side bound is µ = 1. This is a consequence of the
fact that limx→0 L(x, 1) = 0, while limx→0 P (x, 1) = 1/π. In such a case we
shall provide additional bounds assuming (x, y) vary over a restricted area.

Definition 2.1. For 0 < α < π/2 we say that (x, y) satisfy the Pα
condition if

(2.3)
1− sinα

1 + sinα
≤ x

y
≤ 1 + sinα

1− sinα
.

Definition 2.2. For 0 < α < π/2 we say that (x, y) satisfy the Tα
condition if

(2.4)
1− tanα

1 + tanα
≤ x

y
≤ 1 + tanα

1− tanα
.

Geometrically the Pα condition is equivalent to |x−y|
x+y ≤ sinα, which

means the angle β in the P-triangle varies over the interval [0, α] only. The
Tα condition means the same in the T-triangle.

For the convenience of the reader, in the Appendix we provide functions
corresponding to the reciprocals of the means used (see (2.1) and (2.2)), and
their respective second derivatives.

3. Main tool. If A < B < M, and τ varies from 0 to 1, then the
expression

(3.1)
1

B(x, y)
− 1− τ
A(x, y)

− τ

M(x, y)
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is negative at τ = 0 and strictly increases, to become positive at the other
end. We shall be looking for those values of τ where (3.1) is negative while the
angle βP or βT varies over its maximal range (or over (0, α) if we consider
the Pα/Tα condition), and for values where it is always positive. In most
cases we face a situation described in the following lemma.

Lemma 3.1. Suppose uτ : [0, a] → R, τ ∈ [0, 1], is a family of functions
satisfying the following assumptions:

• uτ increases with τ ,
• uτ (0) = u′τ (0) = 0 for every τ ,
• there exists τ0 such that uτ is strictly concave for every τ ≤ τ0,
• if τ > τ0, then uτ is strictly convex for small x and u′′τ changes sign at
most once.

Let 0 < α ≤ a. Then

• uτ (x) ≤ 0 for all x ∈ [0, α] if and only if τ ≤ τ0,
• uτ (x) ≥ 0 for all x ∈ [0, α] if and only if uτ (α) ≥ 0.

In particular, if uτ(α)(α) = 0, then uτ is nonnegative for all τ ≥ τ(α).

Proof. If τ ≤ τ0, the function uτ is concave, thus negative. Otherwise it
is convex, thus positive for small arguments, so we are done with the first
part.

In case τ > τ0 the function uτ is initially convex and positive, then it
may reach a local maximum and become decreasing, which yields the second
part.

4. Harmonic interpolations with P and L. In this section we deal
with approximations of the form

(4.1)
1− µ
L(x, y)

+
µ

M(x, y)
≤ 1

P (x, y)
≤ 1− ν
L(x, y)

+
ν

M(x, y)
,

whereM is a mean bounding P from above.
For the arithmetic mean we have

Theorem 4.1. The inequalities
1− µ
L(x, y)

+
µ

A(x, y)
≤ 1

P (x, y)
≤ 1− ν
L(x, y)

+
ν

A(x, y)

hold if and only if ν ≤ 1/2 and µ = 1. If the Pα condition is satisfied, then

1− µ
L(x, y)

+
µ

A(x, y)
≤ 1

P (x, y)
⇔ µ ≥ artanh(sinα)− α

artanh(sinα)− sinα
.
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Proof. Using (2.1) we can write
1

P
− 1− τ

L
− τ

A
∼= βP − (1− τ) artanh(sinβP )− τ sinβP .

The functions uτ (x) = x − (1 − τ) artanh(sinx) − τsinx satisfy uτ (0) =
u′τ (0) = 0 and

u′′τ (x) = − sinx

(
1− τ
cos2 x

− τ
)
.

The expression in brackets increases from 1 − 2τ to infinity, so Lemma 3.1
applies with τ0 = 1/2. Since for τ < 1 we have limx→π/2 uτ (x) = −∞, our
functions cannot be globally positive. Thus the only global left bound is
µ = 1. Solving in τ the inequality uτ (α) ≥ 0 leads us to optimal µ in case
the variables satisfy the Pα condition.

Note: the concluding statement in the above proof applies to all theorems
in all sections where the logarithmic mean is involved.

For the M mean we have

Theorem 4.2. The inequalities
1− µ
L(x, y)

+
µ

M(x, y)
≤ 1

P (x, y)
≤ 1− ν
L(x, y)

+
ν

M(x, y)

hold if and only if ν ≤ 1/3 and µ = 1. If the Pα condition is satisfied, then
1− µ
L(x, y)

+
µ

M(x, y)
≤ 1

P (x, y)
⇔ µ ≥ artanh(sinα)− α

artanh(sinα)− arsinh(sinα)
.

Proof. We have
1

P
− 1− τ

L
− τ

M
∼= βP − (1− τ) artanh(sinβP )− τ arsinh(sinβP ).

The functions uτ (x) = x − (1 − τ) artanh(sinx) − τ arsinh(sinx) satisfy
uτ (0) = u′τ (0) = 0 and

u′′τ (x) = −
sinx

cos2 x

(
1− τ − 2τ

cos2 x

(2− cos2 x)3/2

)
.

The expression in brackets increases from 1 − 3τ to 1 − τ , so Lemma 3.1
applies with τ0 = 1/3.

Theorem 4.3. The inequalities
1− µ
L(x, y)

+
µ

T (x, y)
≤ 1

P (x, y)
≤ 1− ν
L(x, y)

+
ν

T (x, y)

hold if and only if ν ≤ 1/4 and µ = 1. If the Pα condition is satisfied, then
1− µ
L(x, y)

+
µ

T (x, y)
≤ 1

P (x, y)
⇔ µ ≥ artanh(sinα)− α

artanh(sinα)− arctan(sinα)
.
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Proof. We have
1

P
− 1− τ

L
− τ

T
∼= βP − (1− τ) artanh(sinβP )− τ arctan(sinβP ).

The functions uτ (x) = x − (1 − τ) artanh(sinx) − τ arctan(sinx) satisfy
uτ (0) = u′τ (0) = 0 and

(4.2) u′′τ (x) = − sinx
4(1− τ)− 2(2− τ) cos2 x+ (1− 2τ) cos4 x

cos2 x (1 + sin2 x)2
.

The critical point of the function p(z) = 4(1−τ)−2(2−τ)z+(1−2τ)z2 lies
outside the interval (0, 1) thus we conclude the numerator in (4.2) increases
from 1− 4τ to 4− 4τ . Again Lemma 3.1 applies with τ0 = 1/4.

The root-mean square mean can be written in the language of the P-
triangle as

R =
√
2A2 −G2 =

√
|AB|2 + |AC|2 = |AC|

√
1 + sin2 βP
sinβP

.

Theorem 4.4. The inequalities
1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

P (x, y)
≤ 1− ν
L(x, y)

+
ν

R(x, y)

hold if and only if ν ≤ 1/5 and µ = 1. If the Pα condition is satisfied, then
1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

P (x, y)
⇔ µ ≥ artanh(sinα)− α

artanh(sinα)− sinα√
1+sin2 α

.

Proof. We have
1

P
− 1− τ

L
− τ

R
∼= βP − (1− τ) artanh(sinβP )− τ

sinβp√
1 + sin2 βP

.

The functions uτ (x) = x− (1− τ) artanh(sinx)− τ sinx√
1+sin2 x

satisfy uτ (0) =

u′τ (0) = 0 and

u′′τ (x) = −
sinx

cos2 x

(
1− τ − 2τ

cos2 x(cos2 x+ 1)

(1 + sin2 x)5/2

)
.

The expression in brackets strictly increases from 1 − 5τ to 1 − τ and the
reasoning as before permits us to end the proof.

The contraharmonic mean can be written as

C = 2A− G2

A
= |AC|1 + sin2 βP

sinβP
.

Theorem 4.5. The inequalities
1− µ
L(x, y)

+
µ

C(x, y)
≤ 1

P (x, y)
≤ 1− ν
L(x, y)

+
ν

C(x, y)
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hold if and only if ν ≤ 1/8 and µ = 1. If the Pα condition is satisfied, then

1− µ
L(x, y)

+
µ

C(x, y)
≤ 1

P (x, y)
⇔ µ ≥ artanh(sinα)− α

artanh(sinα)− sinα
1+sin2 α

.

Proof. We have

1

P
− 1− τ

L
− τ

C
∼= βP − (1− τ) artanh(sinβP )− τ

sinβp

1 + sin2 βP
.

The functions uτ (x) = x − (1 − τ) artanh(sinx) − τ sinx
1+sin2 x

satisfy uτ (0) =
u′τ (0) = 0 and

u′′τ (x) = −
sinx

cos2 x

(
1− τ − τ cos

4 x (cos2 x+ 6)

(1 + sin2 x)3

)
.

The expression in brackets strictly increases (the numerator decreases, the
denominator increases) from 1− 8τ to 1− τ etc.

5. Harmonic interpolations with M and L. In this section we deal
with approximations of the form

(5.1)
1− µ
L(x, y)

+
µ

M(x, y)
≤ 1

M(x, y)
≤ 1− ν
L(x, y)

+
ν

M(x, y)
,

whereM is a mean bounding M from above. Let us begin with the T mean.

Theorem 5.1. The inequalities

1− µ
L(x, y)

+
µ

T (x, y)
≤ 1

M(x, y)
≤ 1− ν
L(x, y)

+
ν

T (x, y)

hold if and only if ν ≤ 3/4 and µ = 1. If the Pα condition is satisfied, then

1− µ
L(x, y)

+
µ

T (x, y)
≤ 1

M(x, y)
⇔ µ ≥ artanh(sinα)− arsinh(sinα)

artanh(sinα)− arctan(sinα)
.

Proof. We have

1

M
− 1−τ

L
− τ

T
∼= arsinh(sinβP )− (1−τ) artanh(sinβP )−τ arctan(sinβP )

, uτ (sinβP ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

(5.2) u′′τ (x) = x

(
2(τ − 1)

(1− x2)2
+

2τ

(1 + x2)2
− 1

(1 + x2)3/2

)
∼= 2(τ −1)(1 + x2)2+2τ(1− x2)2− (1−x2)2

√
1 + x2 , p(x2).
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We shall show that p strictly decreases. Indeed,

p′(z) = (8τ − 4)z − 4 +
3 + 2z − 5z2

2
√
z + 1

≤ 4z − 4 +
3 + 2z − 5z2

2
√
z + 1

= h(z).

The function h is concave, attains its maximum at z0 ≈ 1.631 and h(1) = 0,
which means it is negative for z < 1. Therefore p decreases and so does
p(x2) (or (5.2)). Since p(0) = 4τ − 3, we are able to apply Lemma 3.1 with
τ0 = 3/4.

Now we turn to the R mean.

Theorem 5.2. The inequalities
1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

M(x, y)
≤ 1− ν
L(x, y)

+
ν

R(x, y)

hold if and only if ν ≤ 3/5 and µ = 1. If the Pα condition is satisfied, then

1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

M(x, y)
⇔ µ ≥ artanh(sinα)− arsinh(sinα)

artanh(sinα)− sinα√
1+sin2 α

.

Proof. We have
1

M
− 1− τ

L
− τ

R
∼= arsinh(sinβP )− (1− τ) artanh(sinβP )−

τ sinβp√
1 + sin2 βP

, uτ (sinβP ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = x

(
2(τ − 1)

(1− x2)2
− 1

(1 + x2)3/2
+

3τ

(1 + x2)5/2

)
∼= 2(τ − 1)(1 + x2)5/2 − (1− x2)2(1 + x2) + 3τ(1− x2)2 , p(x2).

We shall show that p decreases in (0, 1). We have −(3z2 − 2z − 1) ≤ 4/3,
5(z + 1)3/2 ≥ 5 and

p′(z) = τ(5(z + 1)3/2 + 6z − 6)− (3z2 − 2z − 1)− 5(z + 1)3/2.

If 5(z+1)3/2+6z−6 < 0, then p′(z) < −(3z2−2z−1)−5(z+1)3/2 < −11/5
< 0. Otherwise p′(z) ≤ 5(z + 1)3/2 + 6z − 6− (3z2 − 2z − 1)− 5(z + 1)3/2 =
−3z2 + 8z − 5 < 0 in (0, 1). Since p(0) = 5τ − 3, Lemma 3.1 applies with
τ0 = 3/5.

For the contraharmonic mean we obtain

Theorem 5.3. The inequalities
1− µ
L(x, y)

+
µ

C(x, y)
≤ 1

M(x, y)
≤ 1− ν
L(x, y)

+
ν

C(x, y)
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hold if and only if ν ≤ 3/8 and µ = 1. If the Pα condition is satisfied, then
1− µ
L(x, y)

+
µ

C(x, y)
≤ 1

M(x, y)
⇔ µ ≥ artanh(sinα)− arsinh(sinα)

artanh(sinα)− sinα
1+sin2 α

.

Proof. We have
1

M
− 1− τ

L
− τ

C
∼= arsinh(sinβP )− (1− τ) artanh(sinβP )− τ

sinβp

1 + sin2 βP

, uτ (sinβP ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = x

(
2(τ − 1)

(1− x2)2
− 1

(1 + x2)3/2
− 2τ(x2 − 3)

(1 + x2)3

)
∼= 2(τ − 1)(1 + x2)3 − (1− x2)2(1 + x2)3/2 − 2τ(1− x2)2(x2 − 3)

, p(x2).

We shall show that p decreases in (0, 1). We have −(7z2 − 6z − 1)
√
z + 1 ≤

25
√
2/7 and 12(z + 1)2 ≥ 5 and

2p′(z) = 16τ(4z − 1)−
√
z + 1(7z2 − 6z − 1)− 12(z + 1)2.

If 4z − 1 < 0, then p′(z) < 25
√
2/7− 12 < 0. Otherwise p′(z) ≤ 48z − 16 +

25
√
2/7− 12(z+1)2 = −12(z− 1)2− 16+25

√
2/7 < 0. Since p(0) = 8τ − 3,

Lemma 3.1 applies with τ0 = 3/8.

6. Harmonic interpolations with T and L

Theorem 6.1. The inequalities
1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

T (x, y)
≤ 1− ν
L(x, y)

+
ν

R(x, y)

hold if and only if ν ≤ 4/5 and µ = 1. If the Tα condition is satisfied, then
1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

T (x, y)
⇔ µ ≥ artanh(tanα)− α

artanh(tanα)− sinα
.

Proof. We have
1

T
− 1− τ

L
− τ

R
∼= βT − (1− τ) artanh(tanβT )− τ sinβT .

The functions uτ (x) = x − (1 − τ) artanh(tanx) − τ sinx satisfy uτ (0) =
u′τ (0) = 0 and

u′′τ (x) = −
sinx

cos2 x
p(cosx),

where p(z) = 4(1− τ)z − τ(2z2 − 1)2. In the interval (
√
2/2, 1) the function

p is concave, p(
√
2/2) = 2

√
2(1− τ) ≥ 0, p(1) = 4− 5τ , so it is positive for
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τ ≤ 4/5 and changes sign once otherwise, thus the already known argument
applies.

In the T-triangle the contraharmonic mean is represented as

C =
R2

A
= |AC| 2

sin 2βT
.

Theorem 6.2. The inequalities
1− µ
L(x, y)

+
µ

C(x, y)
≤ 1

T (x, y)
≤ 1− ν
L(x, y)

+
ν

C(x, y)

hold if and only if ν ≤ 1/2 and µ = 1. If the Tα condition is satisfied, then

1− µ
L(x, y)

+
µ

R(x, y)
≤ 1

T (x, y)
⇔ µ ≥ artanh(tanα)− α

artanh(tanα)− 1
2 sin 2α

.

Proof. We have
1

T
− 1− τ

L
− τ

C
∼= βT − (1− τ) artanh(tanβT )−

τ

2
sin 2βT .

The functions uτ (x) = x − (1 − τ) artanh(tanx) − τ
2 sin 2x satisfy uτ (0) =

u′τ (0) = 0 and

u′′τ (x) = −2 sin 2x
(

1− τ
cos2 2x

− τ
)
.

The expression in brackets increases from 1− 2τ to infinity, which allows us
to complete the proof as usual.

7. Harmonic interpolations with M and P . In this section we deal
with approximations of the form

(7.1)
1− µ
P (x, y)

+
µ

M(x, y)
≤ 1

M(x, y)
≤ 1− ν
P (x, y)

+
ν

M(x, y)
,

whereM is a mean bounding M from above. We go back to the P-triangle
and begin with the T mean. From now on we obtain absolute bounds.

Theorem 7.1. The inequalities
1− µ
P (x, y)

+
µ

T (x, y)
≤ 1

M(x, y)
≤ 1− ν
P (x, y)

+
ν

T (x, y)

hold if and only if ν ≤ 2/3 and µ ≥ (2π − 4 arsinh 1)/π.

Proof. We have
1

M
− 1− τ

P
− τ

T
∼= arsinh(sinβP )− (1− τ)βP − τ arctan(sinβP )

, uτ (βP ).
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The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = − sinx

(
2

(1 + sin2 x)3/2
− τ 3− sin2 x

(1 + sin2 x)2

)
∼= −sinx

(
2(1 + sin2 x)1/2

3− sin2 x
− τ
)
.

The expression in brackets increases from 2/3−τ , thus is positive for τ ≤ 2/3.
Applying Lemma 3.1 we see that uτ is positive on (0, π/2) if and only if
uτ (π/2) ≥ 0, which completes the proof.

Now we turn to the R mean.

Theorem 7.2. The inequalities

1− µ
P (x, y)

+
µ

R(x, y)
≤ 1

M(x, y)
≤ 1− ν
P (x, y)

+
ν

R(x, y)

hold if and only if ν ≤ 1/2 and µ ≥ (π − 2 arsinh 1)/(π −
√
2).

Proof. We have

1

M
− 1− τ

P
− τ

R
∼= arsinh(sinβP )− (1− τ)βP − τ

sinβP√
1 + sin2 βP

, uτ (βP ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = −2 sinx
(

1

(1 + sin2 x)3/2
− τ 2− sin2 x

(1 + sin2 x)5/2

)
∼= −sinx

(
1 + sin2 x

2− sin2 x
− τ
)
.

The expression in brackets increases from 1/2− τ , and application of Lem-
ma 3.1 completes the proof.

For the contraharmonic mean we obtain

Theorem 7.3. The inequalities

1− µ
P (x, y)

+
µ

C(x, y)
≤ 1

M(x, y)
≤ 1− ν
P (x, y)

+
ν

C(x, y)

hold if and only if ν ≤ 2/7 and µ ≥ (π − 2 arsinh 1)/(π − 1).

Proof. We have

1

M
− 1− τ

P
− τ

C
∼= arsinh(sinβP )− (1− τ)βP − τ

sinβP

1 + sin2 βP
, uτ (βP ).
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The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = − sinx

(
2

(1 + sin2 x)3/2
− τ cos

4 x+ 6 cos2 x

(1 + sin2 x)2

)
∼= −sinx

(
2(1 + sin2 x)1/2

cos4 x+ 6 cos2 x
− τ
)
.

The expression in brackets increases from 2/7− τ , and again application of
Lemma 3.1 completes the proof.

8. Harmonic interpolations with T and M . In this section we deal
with approximations of the form

(8.1)
1− µ
M(x, y)

+
µ

M(x, y)
≤ 1

T (x, y)
≤ 1− ν
M(x, y)

+
ν

M(x, y)
,

where M is a mean bounding T from above. We switch back to the T-
triangle.

The first upper bound for T is the root-mean square mean.

Theorem 8.1. The inequalities
1− µ
M(x, y)

+
µ

R(x, y)
≤ 1

T (x, y)
≤ 1− ν
M(x, y)

+
ν

R(x, y)

hold if and only if ν ≤ 1/2 and µ ≥ π/(2(π −
√
2)).

Proof. We have
1

T
− 1− τ

M
− τ

R
∼= βT − (1− τ) arsinh(tanβT )− τsinβT

, uτ (βT ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = −(1− τ)
sinx

cos2 x
+ τ sinx

∼= −(1− τ) sinx
(

1

cos2 x
− τ

1− τ

)
.

The expression in brackets increases from 1− τ
1−τ , and once more application

of Lemma 3.1 completes the proof.

For the contraharmonic mean we obtain

Theorem 8.2. The inequalities
1− µ
M(x, y)

+
µ

C(x, y)
≤ 1

T (x, y)
≤ 1− ν
M(x, y)

+
ν

C(x, y)

hold if and only if ν ≤ 1/5 and µ ≥ π/(2(π − 1)).
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Proof. We have
1

T
− 1− τ

M
− τ

C
∼= βT − (1− τ) arsinh(tanβT )− τ

sin 2βT
2

, uτ (βT ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = −(1− τ)
sinx

cos2 x
+ 4τ sinx cosx

= −4(1− τ) sinx cosx
(

1

4 cos3 x
− τ

1− τ

)
.

The expression in brackets increases from 1
4−

τ
1−τ and once more application

of Lemma 3.1 completes the proof.

9. Harmonic interpolations with T and P . In this section we deal
with approximations of the form

(9.1)
1− µ
P (x, y)

+
µ

M(x, y)
≤ 1

T (x, y)
≤ 1− ν
P (x, y)

+
ν

M(x, y)
,

where M is a mean bounding T from above. We switch back to the P-
triangle.

The first upper bound for T is the root-mean square mean.

Theorem 9.1. The inequalities
1− µ
P (x, y)

+
µ

R(x, y)
≤ 1

T (x, y)
≤ 1− ν
P (x, y)

+
ν

R(x, y)

hold if and only if ν ≤ 3/4 and µ ≥ π/(2(π −
√
2)).

Proof. We have
1

T
− 1− τ

P
− τ

R
∼= arctan(sinβP )− (1− τ)βP − τ

sinβP

(1 + sin2 βP )1/2

, uτ (βP ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = −
sinx (cos2 x+ 2)

(1 + sin2 x)2
+ τ

2 sinx(cos2 x+ 1)

(1 + sin2 x)5/2

= −2 sinx (cos2 x+ 1)

(1 + sin2 x)5/2

(
(cos2 x+ 2)(1 + sin2 x)1/2

2(cos2 x+ 1)
− τ
)
.

The expression in brackets increases from 3/4− τ (because both 1+ 1
1+cos2 x

and
√
1 + sin2 x increase), and once more application of Lemma 3.1 com-

pletes the proof.

For the contraharmonic mean we obtain
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Theorem 9.2. The inequalities
1− µ
P (x, y)

+
µ

C(x, y)
≤ 1

T (x, y)
≤ 1− ν
P (x, y)

+
ν

C(x, y)

hold if and only if ν ≤ 3/7 and µ ≥ π/(2(π − 1)).

Proof. We have
1

T
− 1− τ

P
− τ

C
∼= arctan(sinβP )− (1− τ)βP − τ

sinβP

1 + sin2 βP

, uτ (βP ).

The functions uτ (x) satisfy uτ (0) = u′τ (0) = 0 and

u′′τ (x) = −
sinx (cos2 x+ 2)

(1 + sin2 x)2
+ τ

sinx (cos4 x+ 6 cos2 x)

(1 + sin2 x)3

= −sinx (cos4 x+ 6 cos2 x)

(1 + sin2 x)3

(
4− cos4 x

cos4 x+ 6 cos2 x
− τ
)
.

The expression in brackets increases from 3/7− τ etc.

Appendix

P -Triangle T -Triangle

Mean f f ′′ f f ′′

1

L
artanh(sinx)

sinx

cos2 x
artanh(tanx)

2 sin 2x

cos2 2x
1

P
x 0

1

A
sinx − sinx tanx

2 sinx

cos3 x
1

M
arsinh(sinx) − 2 sinx

(1 + sin2 x)3/2
arsinh(tanx)

sinx

cos2 x

1

T
arctan(sinx) − sinx (cos2 x+ 2)

(1 + sin2 x)2
x 0

1

R

sinx

(1 + sin2 x)1/2
−2 sinx (cos2 x+ 1)

(1 + sin2 x)5/2
sinx −sinx

1

C

sinx

1 + sin2 x
− sinx (cos4 x+ 6 cos2 x)

(1 + sin2 x)3
1
2
sin 2x −2 sin 2x
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