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ON AN INTEGRAL OF FRACTIONAL POWER OPERATORS

BY

NICK DUNGEY (Sydney)

Abstract. For a bounded and sectorial linear operator V in a Banach space, with

spectrum in the open unit disc, we study the operator eV =
	∞
0
dαV α. We show, for ex-

ample, that eV is sectorial, and asymptotically of type 0. If V has single-point spectrum {0},
then eV is of type 0 with a single-point spectrum, and the operator I− eV satisfies the Ritt
resolvent condition. These results generalize an example of Lyubich, who studied the case
where V is a classical Volterra operator.

1. Introduction. Consider the classical Volterra operator J which acts
in the Banach spaces Lp([0, 1]), 1 ≤ p ≤ ∞, by (Jf)(x) =

	x
0 dy f(y). It

is well known that J is a bounded operator in Lp with single-point spec-
trum {0}, and it can be proved that J is sectorial of type π/2. See, for
example, the arguments of [4, Section 8.5]; more refined estimates for J are
given in [8] and in [10, Theorem 1.2]. Here we use a standard definition of
sectoriality: a closed linear operator V acting in the complex Banach space
X is said to be sectorial, of type ω ∈ [0, π), if its spectrum σ(V ) is contained
in the closed sector Λω := {0} ∪ {z ∈ C : |arg z| ≤ ω} and if

sup
λ∈Λπ−θ

‖λ(λ+ V )−1‖ <∞

for any θ ∈ (ω, π) (where Λω denotes the open sector {z ∈ C : z 6= 0,
|arg z| < ω}).

Note that there is a well developed theory for the fractional powers V α,
α > 0, of any sectorial operator V ; see, for example, [9] or [4]. For example,
a classical result states that if V is of type ω then V α is of type αω for
α ∈ (0, 1).

In [8] Lyubich considered the interesting example of the operator

(1) J̃ :=
∞�

0

dαJα,

and showed that it is bounded and sectorial of type 0, with spectrum {0}.
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One can wonder if similar results are true if in (1) the Volterra operator J
is replaced by a more general sectorial operator V in a Banach space. In
this note we will show that this is indeed the case under some additional
conditions on V , namely, V should be bounded with spectrum contained in
the open unit disc D := {z ∈ C : |z| < 1}.

For such operators V we will see that although the operator Ṽ :=	∞
0 dαV α is not necessarily of type 0, it is of asymptotic type 0. This state-

ment uses the notion of asymptotic type introduced in [3]: a closed linear
operator V is said to be of asymptotic type ω ∈ [0, π) if for every θ ∈ (ω, π)
there exists an ε > 0 such that σ(V ) ∩D(0; ε) ⊆ Λθ and

sup
λ∈Λπ−θ∩D(0;ε)

‖λ(λ+ V )−1‖ <∞

(where D(a; r) := {z ∈ C : |z−a| ≤ r} for a ∈ C, r ≥ 0). Clearly an operator
of type ω is also of asymptotic type ω, but the converse is not true.

It was actually shown in [3] that the operator
1�

0

dαV α

is of asymptotic type 0, for a general sectorial operator V . (See also [5, p. 466]
for a related example when V is a modified Volterra operator.) In the present
paper our proof of the asymptotic type property for the operator

	∞
0 dαV α

is rather different from the approaches in [3] and in Lyubich’s paper [8]. In
fact, our proof depends essentially on the fact that the operator semigroup
α 7→ V α ∈ L(X) extends to a holomorphic semigroup on the half plane
Λπ/2, which is exponentially bounded on proper subsectors of Λπ/2. Here,
L(X) denotes the space of all bounded linear operators T : X → X.

It is interesting to point out the formal identity

(2)
∞�

0

dαV α = −1/log V

obtained by substituting V α = eα log V . This identity is actually valid within
the usual bounded Dunford functional calculus for the operator V ∈ L(X)
if one assumes that σ(V ) ⊆ D \ (−1, 0]; in that case log V , (log V )−1 are
elements of L(X). However, we wish to allow operators V with 0 ∈ σ(V )
and which are possibly non-injective, whereas the operator log V can gen-
erally only be defined for injective sectorial operators (see [4, Section 3.5]).
Nevertheless, it might be possible to make sense of (2) even for non-injective
V by considering a multi-valued operator log V (compare [4, Remark 3.5.4]).
We do not pursue this here.

In [8] Lyubich applied his results on the operator (1) to give a new
example of an operator satisfying the well known Ritt condition. Recall
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that T ∈ L(X) is said to be a Ritt operator if σ(T ) is contained in the closed
disc D = {z ∈ C : |z| ≤ 1} and if

‖(λ− T )−1‖ ≤ c|λ− 1|−1

for some constant c > 0 and all λ ∈ C\D. It is a standard theorem that
T ∈ L(X) is a Ritt operator if and only if σ(T ) ⊆ D ∪ {1} and I − T is of
type ω for some ω ∈ [0, π/2); or alternatively, if and only if

sup
n∈N

(‖Tn‖+ n‖Tn − Tn+1‖) <∞

where N := {1, 2, 3, . . .} (see [1, 2, 7, 11, 12]). In particular, the properties
of J̃ mentioned above imply that the operator

T := I − J̃ ,
acting in Lp([0, 1]), is a Ritt operator with spectrum equal to {1}. Thus
Lyubich answered affirmatively a question of J. Zemánek as to whether
there exist Ritt operators T with single-point spectrum {1}.

We will obtain a similar conclusion for the operator T := I −
	∞
0 dαV α,

for any bounded sectorial operator V such that σ(V ) = {0}.
Finally, let us speculate on possible generalizations. For a positive mea-

sure µ on (0,∞) and a suitable sectorial operator V one could consider an
integral

Ṽµ :=
∞�

0

dµ(α)V α.

It seems reasonable to conjecture that Ṽµ is of asymptotic type 0 when the
measure µ is non-vanishing near 0 in the sense that µ((0, ε)) > 0 for all ε > 0.
Note that measures of the form µ =

∑∞
k=1 akδαk with ak, αk > 0,

∑
k ak <∞

and limk→∞ αk = 0 satisfy this hypothesis. We shall not, however, develop
these ideas here.

In what follows we always use the principal branch of the logarithm
z 7→ log z and of the power function z 7→ zα = eα log z (α ∈ C), so that these
functions are holomorphic on the domain C \ (−∞, 0].

2. Proof of the main result. Before stating and proving our main
result, let us recall some essential facts about fractional powers of operators
(see [4] or [9]).

For a sectorial operator V in the complex Banach space X, one can define
the fractional power V α for every α ∈ Λπ/2 ⊆ C. If V is also injective one
can define V α for all α ∈ C, but we will avoid any injectivity assumption in
what follows. Here are a few standard properties, in which we assume that
V ∈ L(X) is a bounded sectorial operator. (For further details and complete
proofs see [9] or [4].)
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(i) V α ∈ L(X), and V αV β = V α+β for all α, β ∈ Λπ/2.
(ii) For 0 < Reα < 1 one has the Balakrishnan formula

(3) V α =
sinαπ
π

∞�

0

dt tα−1(t+ V )−1V.

(iii) The mapping α ∈ Λπ/2 7→ V α ∈ L(X) is holomorphic.

(It is not difficult to derive (iii) from (i) and (ii)).

Observe that V α is uniquely determined for all α ∈ Λπ/2 by properties
(i) and (ii). We mention that V α is also given by a Dunford integral

(2πi)−1
�

γ

dz zα(z − V )−1

where γ is the positively oriented boundary of a truncated sector Λθ ∩
D(0;R), for large enough θ ∈ (0, π) and R > ‖V ‖.

Here is our main result.

Theorem 2.1. Let V ∈ L(X) be a bounded sectorial operator such that
σ(V ) ⊆ D. Define the operator

(4) Ṽ :=
∞�

0

dαV α.

Then Ṽ ∈ L(X), and

(5) σ(Ṽ ) = {−1/log λ : λ ∈ σ(V )}

with the convention that 1/log 0 := 0. Moreover , Ṽ is of asymptotic type 0:
more precisely , if M0 > 0, M1 ≥ 1 are such that

(6) ‖V ‖ ≤M0, sup
λ>0
‖λ(λ+ V )−1‖ ≤M1,

then for each θ ∈ (0, π) there exist c, δ > 0 depending only on θ,M0,M1

such that
‖λ(λ+ Ṽ )−1‖ ≤ c

for all λ ∈ Λπ−θ ∩D(0; δ).
The operator Ṽ is sectorial. More precisely , if r0 ∈ (0, 1) and ω0 ∈ [0, π)

are chosen with

(7) σ(V ) ⊆ D(0; r0) ∩ Λω0 ,

then Ṽ is of type ω̃, where

(8) ω̃ := arg(− log r0 + iω0) ∈ [0, π/2).

In particular , if σ(V ) ⊆ [0, 1) then Ṽ is of type 0.
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In the special case where σ(V ) = {0}, then (5) gives σ(Ṽ ) = {0}, and
Ṽ is of type 0. Thus one obtains the following corollary, which generalizes
Lyubich’s example of a single-point spectrum Ritt operator discussed in
Section 1.

Corollary 2.2. Let V ∈ L(X) be a bounded sectorial operator with
σ(V ) = {0}, and define Ṽ as in Theorem 2.1. Then the operator T :=
I − Ṽ = I −

	∞
0 dαV α is a Ritt operator with spectrum σ(T ) = {1}, and the

operator I − T = Ṽ is of type 0.

In the rest of this section we prove Theorem 2.1. Let V satisfy the hy-
potheses of the theorem.

Lemma 2.3. Given any ϕ ∈ (0, π/2), there exist c, ρ > 0 depending only
on ϕ and on M0,M1 in (6) such that

(9) ‖V α‖ ≤ ceρ|α|, α ∈ Λϕ.
Moreover , there exist C, σ > 0 such that

(10) ‖V α‖ ≤ Ce−σα, α > 0.

Proof. Given ϕ ∈ (0, π/2), we first claim that there is a c0 ≥ 1 depending
only on ϕ,M0,M1 such that

(11) sup{‖V α‖ : α ∈ Λϕ ∩D(0; 1/2)} ≤ c0.
This can be seen from (3): apply the bounds

‖tα−1(t+ V )−1V ‖ = tRe(α)−1‖I − t(t+ V )−1‖ ≤ tRe(α)−1(1 +M1)

for t ∈ (0, 1] and

||tα−1(t+ V )−1V ‖ ≤ tRe(α)−2M1M0

for t ≥ 1, noting also that |(Reα)−1 sin(απ)| is uniformly bounded for α ∈
Λϕ ∩D(0; 1/2). We leave the reader to check the details.

Next, for any α ∈ Λϕ, take an integer n ∈ (|α|, |α| + 1] and use (11) to
write ‖V α‖ ≤ (‖V α/2n‖)2n ≤ cn0 ≤ c0c

|α|
0 . Then (9) follows.

Finally, the hypothesis σ(T ) ⊆ D means that limn∈N, n→∞ ‖V n‖1/n < 1,
hence there exists a σ > 0 with sup{eσn‖V n‖ : n ∈ N} < ∞. Because
sup{‖V α‖ : α ∈ (0, 1]} <∞, it is easy to deduce (10).

By (10), the integral (4) converges and defines an element Ṽ ∈ L(X).
To study the resolvent of Ṽ we require the following lemma.

Lemma 2.4. One has

(12) (λ+ Ṽ )−1 = λ−1 − λ−2
∞�

0

dα e−λ
−1αV α

for all λ ∈ Λπ/2.
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Heuristically, one derives (12) by writing Ṽ = −(log V )−1 (recall (2)) so
that

(λ+ Ṽ )−1 = λ−1 − λ−2(λ−1 − log V )−1,

which equals the right side of (12) by writing V α = eα log V .

Proof of Lemma 2.4. Let R(λ) denote the operator on the right hand side
of (12). It is clear from (10) that R(λ) ∈ L(X) and that R(λ)Ṽ = Ṽ R(λ),
so the lemma will follow if we show that (λ+ Ṽ )R(λ) = I. Now

(λ+ Ṽ )R(λ) =
(
λ+

∞�

0

dβ V β
)(
λ−1 − λ−2

∞�

0

dα e−λ
−1αV α

)
= I + λ−1

∞�

0

dβ V β − λ−1
∞�

0

dα e−λ
−1αV α

− λ−2
∞�

0

dβ

∞�

0

dα e−λ
−1αV α+β.

In the last line, make a change of variable u = α+ β to see that
∞�

0

dβ

∞�

0

dα e−λ
−1αV α+β =

∞�

0

dβ

∞�

β

du e−λ
−1ueλ

−1βV u

=
∞�

0

du e−λ
−1uV u

[ u�
0

dβ eλ
−1β
]

= λ

∞�

0

duV u − λ
∞�

0

du e−λ
−1uV u.

Thus after cancellation we obtain (λ+ Ṽ )R(λ) = I.

We remark that (12) and the bound ‖V α‖ ≤ C from (10) yield

‖(λ+ Ṽ )−1‖ ≤ |λ|−1 + C|λ|−2(Re(λ−1))−1

for all λ ∈ Λπ/2. It follows easily that Ṽ is sectorial of type π/2; however,
the value π/2 will later be improved.

We will establish (5) by an approximation argument. Because σ(V ) ⊆ D
we may choose an ε0 > 0 such that σ(ε + V ) ⊆ D for all ε ∈ (0, ε0). For
such ε the operators log(ε+ V ) ∈ L(X) and Ṽε := −(log(ε+ V ))−1 ∈ L(X)
are defined by the Dunford functional calculus for V , and the usual spectral
mapping theorem for that calculus yields

(13) σ(Ṽε) = {−1/log(ε+ λ) : λ ∈ σ(V )}.
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Note that

Ṽε =
∞�

0

dα eα log(ε+V ) =
∞�

0

dα (ε+ V )α.

It is a standard fact, derivable from the above properties (i) and (ii) of
fractional powers, that limε↓0 ‖(ε + V )α − V α‖ = 0 for each α > 0. Using
the Lebesgue dominated convergence theorem one finds that

lim
ε↓0
‖Ṽε − Ṽ ‖ ≤ lim

ε↓0

∞�

0

dα ‖(ε+ V )α − V α‖ = 0.

By standard results in spectral theory it follows that σ(Ṽ ) is the limit of the
sets σ(Ṽε) as ε ↓ 0, in the Hausdorff metric for compact subsets of C; see for
example [6, Theorem IV.3.6]. But (13) shows that the sets σ(Ṽε) converge
to {−1/log λ : λ ∈ σ(V )}. Thus (5) follows.

That Ṽ is of asymptotic type 0 is really a consequence of the resolvent
identity (12) and the fact that the semigroup α 7→ V α is exponentially
bounded on any proper subsector of the half plane Λπ/2. The details are as
follows.

Given any ϕ ∈ (0, π/2), choose c, ρ as in (9). In (12), we may shift the
integration to a complex contour {reiθ : r ≥ 0}, where θ ∈ (−ϕ,ϕ), and then
analytically continue in the variable λ. In this way one sees that

(14) (λ+ Ṽ )−1 = λ−1 − λ−2eiθ
∞�

0

dr e−λ
−1reiθV reiθ

whenever λ ∈ C with λ = |λ|ei(θ+τ) where θ, τ ∈ (−ϕ,ϕ) and 0 < |λ| <
ρ−1 cosϕ. These conditions on λ ensure that

Re(λ−1reiθ) ≥ |λ|−1r cosϕ > ρr

so that the integral in (14) converges, thanks to (9). Choosing τ = θ we
obtain

‖λ(λ+ Ṽ )−1‖ ≤ 1 + c|λ|−1
∞�

0

dr e−|λ|
−1r cosϕ+ρr

≤ 1 + c|λ|−1(|λ|−1 cosϕ− ρ)−1

≤ 1 + 2c(cosϕ)−1

valid for all λ ∈ Λ2ϕ such that |λ| < 2−1ρ−1 cosϕ. This proves that Ṽ is of
asymptotic type 0 with resolvent estimates of the required form.

Let us prove the final statement of the theorem. It follows straightfor-
wardly from (7) and (5) that σ(Ṽ ) ⊆ Λeω where ω̃ is defined by (8). Then,
since Ṽ ∈ L(X), one must have

sup{‖λ(λ+ Ṽ )−1‖ : λ ∈ Λπ−θ, |λ| ≥ ε} <∞
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for every θ ∈ (ω̃, π) and ε > 0. Because Ṽ is of asymptotic type 0 it follows
that Ṽ is actually of type ω̃. The proof of Theorem 2.1 is complete.
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