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ON AN INTEGRAL OF FRACTIONAL POWER OPERATORS

BY

[NICK DUNGEY]| (Sydney)

Abstract. For a bounded and sectorial linear operator V in a Banach space, with
spectrum in the open unit disc, we study the operator V= S;C da V*. We show, for ex-
ample, that Vis sectorial, and asymptotically of type 0. If V has single-point spectrum {0},
then V is of type 0 with a single-point spectrum, and the operator I — V satisfies the Ritt
resolvent condition. These results generalize an example of Lyubich, who studied the case
where V' is a classical Volterra operator.

1. Introduction. Consider the classical Volterra operator J which acts
in the Banach spaces LP([0,1]), 1 < p < oo, by (Jf)(z) = {;dy f(y). It
is well known that J is a bounded operator in LP with single-point spec-
trum {0}, and it can be proved that .J is sectorial of type m/2. See, for
example, the arguments of [4, Section 8.5]; more refined estimates for J are
given in [8] and in [10, Theorem 1.2]. Here we use a standard definition of
sectoriality: a closed linear operator V acting in the complex Banach space
X is said to be sectorial, of type w € [0, ), if its spectrum o (V) is contained
in the closed sector A, := {0} U{z € C: |arg z| < w} and if

sup [AA+ V)7 < 0
AEA,_g
for any 6 € (w,m) (where A, denotes the open sector {z € C: z # 0,
larg z| < w}).

Note that there is a well developed theory for the fractional powers V¢,
a > 0, of any sectorial operator V; see, for example, [9] or [4]. For example,
a classical result states that if V' is of type w then V¢ is of type aw for
aec(0,1).

In [8] Lyubich considered the interesting example of the operator

(0.)
(1) J =\ daJ",
0
and showed that it is bounded and sectorial of type 0, with spectrum {0}.
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One can wonder if similar results are true if in (1) the Volterra operator J
is replaced by a more general sectorial operator V in a Banach space. In
this note we will show that this is indeed the case under some additional
conditions on V', namely, V' should be bounded with spectrum contained in
the open unit disc D := {z € C: |z| < 1}.
For such operators V we will see that although the operator Vo=
Sgo da V'® is not necessarily of type 0, it is of asymptotic type 0. This state-
ment uses the notion of asymptotic type introduced in [3]: a closed linear
operator V' is said to be of asymptotic type w € [0, 7) if for every 6 € (w, )
there exists an ¢ > 0 such that o(V) N D(0;¢) C Ay and
sup IAA+ V) < o0
AeA_gND(0s¢)
(where D(a;r) := {z € C: |z—a| < r} fora € C,r > 0). Clearly an operator
of type w is also of asymptotic type w, but the converse is not true.
It was actually shown in [3] that the operator
1
{dave
0
is of asymptotic type 0, for a general sectorial operator V. (See also [5, p. 466]
for a related example when V' is a modified Volterra operator.) In the present
paper our proof of the asymptotic type property for the operator SSO da'V®
is rather different from the approaches in [3] and in Lyubich’s paper [8]. In
fact, our proof depends essentially on the fact that the operator semigroup
a — Ve e L(X) extends to a holomorphic semigroup on the half plane
Ay 2, which is exponentially bounded on proper subsectors of A /. Here,
L(X) denotes the space of all bounded linear operators T: X — X.
It is interesting to point out the formal identity

[e.e]
(2) | dave =—1/logV

0
obtained by substituting V* = e*1°¢V_ This identity is actually valid within
the usual bounded Dunford functional calculus for the operator V € L£L(X)
if one assumes that o(V) C D\ (—1,0]; in that case logV, (logV)~! are
elements of £(X). However, we wish to allow operators V with 0 € o(V)
and which are possibly non-injective, whereas the operator log V' can gen-
erally only be defined for injective sectorial operators (see [4, Section 3.5]).
Nevertheless, it might be possible to make sense of (2) even for non-injective
V' by considering a multi-valued operator log V' (compare [4, Remark 3.5.4]).
We do not pursue this here.

In [8] Lyubich applied his results on the operator (1) to give a new

example of an operator satisfying the well known Ritt condition. Recall
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that T' € £L(X) is said to be a Ritt operator if o(T) is contained in the closed
disc D ={z € C: |z| <1} and if

1A =)~ < el -1

for some constant ¢ > 0 and all A € C\D. It is a standard theorem that
T € L(X) is a Ritt operator if and only if ¢(7T') C DU {1} and I — T is of
type w for some w € [0,7/2); or alternatively, if and only if

sup([ 77| +n[|T" = T" ™) < oo
neN

where N := {1,2,3,...} (see [1, 2, 7, 11, 12]). In particular, the properties
of J mentioned above imply that the operator

T::I—j,

acting in LP([0,1]), is a Ritt operator with spectrum equal to {1}. Thus
Lyubich answered affirmatively a question of J. Zemének as to whether
there exist Ritt operators 7' with single-point spectrum {1}.

We will obtain a similar conclusion for the operator T := 1 — Sgo da'Ve,
for any bounded sectorial operator V' such that o(V') = {0}.

Finally, let us speculate on possible generalizations. For a positive mea-
sure p on (0,00) and a suitable sectorial operator V' one could consider an

integral
o

17”, = S du(a) V.
0

It seems reasonable to conjecture that YN/M is of asymptotic type 0 when the
measure /4 is non-vanishing near 0 in the sense that ;((0,¢)) > 0 for alle > 0.
Note that measures of the form p = 3 77 | agda, with ag, ar >0, >, ar < 00
and limy .., ag = 0 satisfy this hypothesis. We shall not, however, develop
these ideas here.

In what follows we always use the principal branch of the logarithm
z + log z and of the power function z — 2 = e*!°6% (q € C), so that these
functions are holomorphic on the domain C\ (—o0, 0].

2. Proof of the main result. Before stating and proving our main
result, let us recall some essential facts about fractional powers of operators
(see [4] or [9]).

For a sectorial operator V' in the complex Banach space X, one can define
the fractional power V* for every a € A/, C C. If V is also injective one
can define V¢ for all a € C, but we will avoid any injectivity assumption in
what follows. Here are a few standard properties, in which we assume that
V € L(X) is a bounded sectorial operator. (For further details and complete
proofs see [9] or [4].)
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(i) V* € L(X), and VOVF = VHF for all o, B € Ay o.
(ii) For 0 < Rea < 1 one has the Balakrishnan formula

(3) ve =" (gt + V)

™
0

(iii) The mapping a € A, /9 — V€ L(X) is holomorphic.

(It is not difficult to derive (iii) from (i) and (ii)).
Observe that V* is uniquely determined for all o € A,/ by properties
(i) and (ii). We mention that V¢ is also given by a Dunford integral
(2mi) ! S dz2%(z —V)~!
g

where 7 is the positively oriented boundary of a truncated sector Ag N
D(0; R), for large enough 6 € (0,7) and R > ||V]|.
Here is our main result.

THEOREM 2.1. Let V € L(X) be a bounded sectorial operator such that
(V) C D. Define the operator

(4) V= Ogodoz Ve
0
Then V € L(X), and
(5) o(V) ={=1/logX: A € o(V)}

with the convention that 1/log0 := 0. Moreover, V s of asymptotic type O:
more precisely, if My > 0, My > 1 are such that

(6) IV < Mo, sup IMNA+V)H| < M,
>

then for each 6 € (0,m) there exist ¢,6 > 0 depending only on 6, My, M,
such that

INA+V) T < e
for all X € Ax_g N D(0;96).

The operator V' is sectorial. More precisely, if ro € (0,1) and wy € [0,7)
are chosen with

(7) (V) C D(0;70) N Ay,
then V is of type W, where

(8) w := arg(—logro + iwp) € [0,7/2).
In particular, if o(V) C[0,1) then V is of type 0.
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In the special case where o(V) = {0}, then (5) gives o(V) = {0}, and
V is of type 0. Thus one obtains the following corollary, which generalizes
Lyubich’s example of a single-point spectrum Ritt operator discussed in
Section 1.

COROLLARY 2.2. Let V € L(X) be a bounded sectorial operator with
o(V) = {0}, and define V as in Theorem 2.1. Then the operator T :=
I-V=1I- §o_ daV* is a Ritt operator with spectrum o(T) = {1}, and the
operator I — T = Vs of type 0.

In the rest of this section we prove Theorem 2.1. Let V satisfy the hy-
potheses of the theorem.

LEMMA 2.3. Given any ¢ € (0,7/2), there exist ¢, p > 0 depending only
on ¢ and on My, My in (6) such that

(9) Ve < ceflol,  ae A,
Moreover, there exist C,o > 0 such that
(10) Vel < Ce @, a>0.

Proof. Given ¢ € (0,7/2), we first claim that there is a ¢g > 1 depending
only on ¢, My, M such that

(11) sup{[|[V¥||: @ € A, N D(0;1/2)} < co.
This can be seen from (3): apply the bounds
1+ V)TV = RO T =g+ V)T < 4R L 4 M)
for ¢t € (0,1] and
o+ V)V < R-20r 0y

for ¢ > 1, noting also that |(Re a)~!sin(an)| is uniformly bounded for a €
A, N D(0;1/2). We leave the reader to check the details.

Next, for any o € Ay, take an integer n € (|al, |a] 4+ 1] and use (11) to
write [V < (V27 )20 < ¢ < cocl®!. Then (9) follows.

Finally, the hypothesis o(T) C D means that lim,ex o0 ||V < 1,
hence there exists a o > 0 with sup{e””||[V"||: n € N} < oco. Because
sup{||[V¥||: a € (0,1]} < o0, it is easy to deduce (10). m

By (10), the integral (4) converges and defines an element V € £(X).

To study the resolvent of V' we require the following lemma.

LEMMA 2.4. One has

(12) A+V) =2 = A2 [ dae™ Toye
0
for all X € Ay .
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Heuristically, one derives (12) by writing V = —(log V)™ (recall (2)) so
that

A+V) =2t A2 —log V),
which equals the right side of (12) by writing V* = e®18V

Proof of Lemma 2.4. Let R(\) denote the operator on the right hand side
of (12). It is clear from (10) that R(A) € £(X) and that RV = VR,
so the lemma will follow if we show that (A + V)R(A) = I. Now

7 _ T 3 -1 _ 7200 ae*)‘_la o
(A + V)R(N) ()\+§)dﬂv>(/\ A2 d V)

0
=1 +x71 [ apvP — a7t [ dae™ oye
0 0

-2 OSO g OSO doce™ayath,
0 0

In the last line, make a change of variable u = a + 3 to see that

Ogo g OSodoz e layath
0 0

S du e Tur T By

due “V“[ dse* lﬁ]

ju
I

Y S duV" — Aogodue Ahuyru
0 0

Thus after cancellation we obtain (A + V)R(A) = I. =
We remark that (12) and the bound ||[V¢|| < C from (10) yield
I+ )7 < AT+ O Re(A )7

for all A € A, /y. It follows easily that V is sectorial of type m/2; however,
the value 7/2 will later be improved.

We will establish (5) by an approximation argument. Because o(V) C D
we may choose an g9 > 0 such that o(e + V) C D for all ¢ € (0,&q). For
such ¢ the operators log(e + V) € £(X) and V. := —(log(e + V) € L(X)
are defined by the Dunford functional calculus for V', and the usual spectral
mapping theorem for that calculus yields

(13) o(Vo) = {—1/log(e + \): A€ o(V)}.
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Note that - -
V. = S doye®108(E4V) — S da (e + V).
0 0

It is a standard fact, derivable from the above properties (i) and (ii) of
fractional powers, that lim.|o||(e + V)* — V|| = 0 for each a > 0. Using
the Lebesgue dominated convergence theorem one finds that

lim ||V, — V|| < lim \ d oy =,
i |V Vll_sllrg(ﬂ) ale+V)* =V =0

By standard results in spectral theory it follows that o (V') is the limit of the
sets 0'(‘7:3) as € | 0, in the Hausdorff metric for compact subsets of C; see for
example [6, Theorem IV.3.6]. But (13) shows that the sets o(V.) converge
to {—1/logA\: A € o(V)}. Thus (5) follows.

That V is of asymptotic type 0 is really a consequence of the resolvent
identity (12) and the fact that the semigroup o — V¢ is exponentially
bounded on any proper subsector of the half plane Ay /5. The details are as
follows.

Given any ¢ € (0,7/2), choose ¢, p as in (9). In (12), we may shift the
integration to a complex contour {re?: r > 0}, where § € (—¢, ), and then
analytically continue in the variable A. In this way one sees that

(14) A+ ‘7)_1 =A% S dr e~ Tretlyre?

0
whenever A\ € C with A = |Ae?®*t7) where 0,7 € (—p,p) and 0 < |\ <
p~!cos . These conditions on A ensure that

Re(A"1re?) > |\ "lrcosp > pr

so that the integral in (14) converges, thanks to (9). Choosing 7 = 6 we

obtain
o

IMA+ V)T < T[T | dr e AT Treoseter
0
<14 efATH|A[ T cosp — p)
<1+ 2c(cos )™

valid for all A € Ag, such that [A| < 27!1p~! cos . This proves that V is of
asymptotic type 0 with resolvent estimates of the required form.
Let us prove the final statement of the theorem. It follows straightfor-

wardly from (7) and (5) that (V) C Az where @ is defined by (8). Then,
since V € L£(X), one must have

sup{|IAXA+ V)7 A€ Ar g, [N >} < 0
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for every 6 € (w, ) and e > 0. Because V is of asymptotic type 0 it follows
that V is actually of type @. The proof of Theorem 2.1 is complete.
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