ON AN INTEGRAL OF FRACTIONAL POWER OPERATORS

BY

NICK DUNGEY (Sydney)

Abstract. For a bounded and sectorial linear operator V in a Banach space, with spectrum in the open unit disc, we study the operator $\tilde{V} = \int_0^\infty d\alpha V^\alpha$. We show, for example, that \tilde{V} is sectorial, and asymptotically of type 0. If V has single-point spectrum $\{0\}$, then \tilde{V} is of type 0 with a single-point spectrum, and the operator $I - \tilde{V}$ satisfies the Ritt resolvent condition. These results generalize an example of Lyubich, who studied the case where V is a classical Volterra operator.

1. Introduction. Consider the classical Volterra operator J which acts in the Banach spaces $L^p([0,1])$, $1 \leq p \leq \infty$, by $(Jf)(x) = \int_0^x dy f(y)$. It is well known that J is a bounded operator in L^p with single-point spectrum $\{0\}$, and it can be proved that J is sectorial of type $\pi/2$. See, for example, the arguments of [4, Section 8.5]; more refined estimates for J are given in [8] and in [10, Theorem 1.2]. Here we use a standard definition of sectoriality: a closed linear operator V acting in the complex Banach space X is said to be sectorial, of type $\omega \in [0,\pi)$, if its spectrum $\sigma(V)$ is contained in the closed sector $\Lambda_\omega := \{0\} \cup \{z \in \mathbb{C} : |\arg z| \leq \omega\}$ and if

$$\sup_{\lambda \in \Lambda_\pi - \theta} \|\lambda(\lambda + V)^{-1}\| < \infty$$

for any $\theta \in (\omega,\pi)$ (where A_ω denotes the open sector $\{z \in \mathbb{C} : z \neq 0, |\arg z| < \omega\}$).

Note that there is a well developed theory for the fractional powers V^α, $\alpha > 0$, of any sectorial operator V; see, for example, [9] or [4]. For example, a classical result states that if V is of type ω then V^α is of type $\alpha \omega$ for $\alpha \in (0,1)$.

In [8] Lyubich considered the interesting example of the operator

$$\tilde{J} := \int_0^\infty d\alpha J^\alpha,$$

and showed that it is bounded and sectorial of type 0, with spectrum $\{0\}$.

2000 Mathematics Subject Classification: 47A60, 47A10.
Key words and phrases: fractional power, functional calculus, sectorial operator, Ritt resolvent condition, Volterra operator.

DOI: 10.4064/cm117-2-1
One can wonder if similar results are true if in (1) the Volterra operator \(J \) is replaced by a more general sectorial operator \(V \) in a Banach space. In this note we will show that this is indeed the case under some additional conditions on \(V \), namely, \(V \) should be bounded with spectrum contained in the open unit disc \(\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \} \).

For such operators \(V \) we will see that although the operator \(\tilde{V} := \int_0^\infty d\alpha \, V^\alpha \) is not necessarily of type 0, it is of asymptotic type 0. This statement uses the notion of asymptotic type introduced in [3]: a closed linear operator \(V \) is said to be of asymptotic type \(\omega \in [0, \pi) \) if for every \(\theta \in (\omega, \pi) \) there exists an \(\varepsilon > 0 \) such that \(\sigma(V) \cap \mathcal{D}(0; \varepsilon) \subseteq \Lambda_\theta \) and

\[
\sup_{\lambda \in \Lambda_{\pi-\theta} \cap \mathcal{D}(0; \varepsilon)} \| \lambda(\lambda + V)^{-1} \| < \infty
\]

(where \(\mathcal{D}(a; r) := \{ z \in \mathbb{C} : |z-a| \leq r \} \) for \(a \in \mathbb{C}, r \geq 0 \)). Clearly an operator of type \(\omega \) is also of asymptotic type \(\omega \), but the converse is not true.

It was actually shown in [3] that the operator

\[
\int_0^1 d\alpha \, V^\alpha
\]

is of asymptotic type 0, for a general sectorial operator \(V \). (See also [5, p. 466] for a related example when \(V \) is a modified Volterra operator.) In the present paper our proof of the asymptotic type property for the operator \(\int_0^\infty d\alpha \, V^\alpha \) is rather different from the approaches in [3] and in Lyubich’s paper [8]. In fact, our proof depends essentially on the fact that the operator semigroup \(\alpha \mapsto V^\alpha \in \mathcal{L}(X) \) extends to a holomorphic semigroup on the half plane \(\Lambda_{\pi/2} \), which is exponentially bounded on proper subsectors of \(\Lambda_{\pi/2} \). Here, \(\mathcal{L}(X) \) denotes the space of all bounded linear operators \(T : X \to X \).

It is interesting to point out the formal identity

\[
\int_0^\infty d\alpha \, V^\alpha = -1/\log V
\]

obtained by substituting \(V^\alpha = e^{\alpha \log V} \). This identity is actually valid within the usual bounded Dunford functional calculus for the operator \(V \in \mathcal{L}(X) \) if one assumes that \(\sigma(V) \subseteq \mathbb{D} \setminus (-1, 0] \); in that case \(\log V, (\log V)^{-1} \) are elements of \(\mathcal{L}(X) \). However, we wish to allow operators \(V \) with \(0 \in \sigma(V) \) and which are possibly non-injective, whereas the operator \(\log V \) can generally only be defined for injective sectorial operators (see [4, Section 3.5]). Nevertheless, it might be possible to make sense of (2) even for non-injective \(V \) by considering a multi-valued operator \(\log V \) (compare [4, Remark 3.5.4]). We do not pursue this here.

In [8] Lyubich applied his results on the operator (1) to give a new example of an operator satisfying the well known Ritt condition. Recall
that $T \in \mathcal{L}(X)$ is said to be a Ritt operator if $\sigma(T)$ is contained in the closed disc $\overline{D} = \{z \in \mathbb{C}: |z| \leq 1\}$ and if
\[
\|(\lambda - T)^{-1}\| \leq c|\lambda - 1|^{-1}
\]
for some constant $c > 0$ and all $\lambda \in \mathbb{C}\setminus\overline{D}$. It is a standard theorem that $T \in \mathcal{L}(X)$ is a Ritt operator if and only if $\sigma(T) \subseteq \mathbb{D} \cup \{1\}$ and $I - T$ is of type ω for some $\omega \in [0, \pi/2)$; or alternatively, if and only if
\[
\sup_{n \in \mathbb{N}} (\|T^n\| + n\|T^n - T^{n+1}\|) < \infty
\]
where $\mathbb{N} := \{1, 2, 3, \ldots\}$ (see [1, 2, 7, 11, 12]). In particular, the properties of \tilde{J} mentioned above imply that the operator
\[
T := I - \tilde{J},
\]
acting in $L^p([0, 1])$, is a Ritt operator with spectrum equal to $\{1\}$. Thus Lyubich answered affirmatively a question of J. Zemánek as to whether there exist Ritt operators T with single-point spectrum $\{1\}$.

We will obtain a similar conclusion for the operator $T := I - \int_0^\infty d\alpha V^\alpha$, for any bounded sectorial operator V such that $\sigma(V) = \{0\}$.

Finally, let us speculate on possible generalizations. For a positive measure μ on $(0, \infty)$ and a suitable sectorial operator V one could consider an integral
\[
\tilde{V}_\mu := \int_0^\infty \mu(\alpha) V^\alpha.
\]
It seems reasonable to conjecture that \tilde{V}_μ is of asymptotic type 0 when the measure μ is non-vanishing near 0 in the sense that $\mu((0, \varepsilon)) > 0$ for all $\varepsilon > 0$. Note that measures of the form $\mu = \sum_{k=1}^\infty a_k \delta_{\alpha_k}$ with $a_k, \alpha_k > 0$, $\sum_k a_k < \infty$ and $\lim_{k \to \infty} \alpha_k = 0$ satisfy this hypothesis. We shall not, however, develop these ideas here.

In what follows we always use the principal branch of the logarithm $z \mapsto \log z$ and of the power function $z \mapsto z^\alpha = e^{\alpha \log z}$ ($\alpha \in \mathbb{C}$), so that these functions are holomorphic on the domain $\mathbb{C} \setminus (-\infty, 0]$.

2. Proof of the main result. Before stating and proving our main result, let us recall some essential facts about fractional powers of operators (see [4] or [9]).

For a sectorial operator V in the complex Banach space X, one can define the fractional power V^α for every $\alpha \in \Lambda_{\pi/2} \subseteq \mathbb{C}$. If V is also injective one can define V^α for all $\alpha \in \mathbb{C}$, but we will avoid any injectivity assumption in what follows. Here are a few standard properties, in which we assume that $V \in \mathcal{L}(X)$ is a bounded sectorial operator. (For further details and complete proofs see [9] or [4].)
(i) \(V^\alpha \in \mathcal{L}(X) \), and \(V^\alpha V^\beta = V^{\alpha+\beta} \) for all \(\alpha, \beta \in \Lambda_{\pi/2} \).

(ii) For \(0 < \Re \alpha < 1 \) one has the Balakrishnan formula

\[
V^\alpha = \frac{\sin \alpha \pi}{\pi} \int_0^\infty dt \, t^{\alpha-1} (t + V)^{-1} V.
\]

(iii) The mapping \(\alpha \in \Lambda_{\pi/2} \mapsto V^\alpha \in \mathcal{L}(X) \) is holomorphic.

(It is not difficult to derive (iii) from (i) and (ii)).

Observe that \(V^\alpha \) is uniquely determined for all \(\alpha \in \Lambda_{\pi/2} \) by properties (i) and (ii). We mention that \(V^\alpha \) is also given by a Dunford integral

\[
(2\pi i)^{-1} \int_\gamma dz \, z^{\alpha}(z - V)^{-1}
\]

where \(\gamma \) is the positively oriented boundary of a truncated sector \(\overline{\Lambda}_\theta \cap \overline{D}(0; R) \), for large enough \(\theta \in (0, \pi) \) and \(R > \|V\| \).

Here is our main result.

Theorem 2.1. Let \(V \in \mathcal{L}(X) \) be a bounded sectorial operator such that \(\sigma(V) \subseteq \mathbb{D} \). Define the operator

\[
\tilde{V} := \int_0^\infty d\alpha \, V^\alpha.
\]

Then \(\tilde{V} \in \mathcal{L}(X) \), and

\[
\sigma(\tilde{V}) = \left\{-1/\log \lambda : \lambda \in \sigma(V)\right\}
\]

with the convention that \(1/\log 0 := 0 \). Moreover, \(\tilde{V} \) is of asymptotic type 0: more precisely, if \(M_0 > 0, M_1 \geq 1 \) are such that

\[
\|V\| \leq M_0, \quad \sup_{\lambda > 0} \|\lambda(\lambda + V)^{-1}\| \leq M_1,
\]

then for each \(\theta \in (0, \pi) \) there exist \(c, \delta > 0 \) depending only on \(\theta, M_0, M_1 \) such that

\[
\|\lambda(\lambda + \tilde{V})^{-1}\| \leq c
\]

for all \(\lambda \in \Lambda_{\pi-\theta} \cap \overline{D}(0; \delta) \).

The operator \(\tilde{V} \) is sectorial. More precisely, if \(r_0 \in (0, 1) \) and \(\omega_0 \in [0, \pi) \) are chosen with

\[
\sigma(V) \subseteq \overline{D}(0; r_0) \cap \overline{\Lambda}_{\omega_0},
\]

then \(\tilde{V} \) is of type \(\tilde{\omega} \), where

\[
\tilde{\omega} := \arg(-\log r_0 + i\omega_0) \in [0, \pi/2).
\]

In particular, if \(\sigma(V) \subseteq [0, 1) \) then \(\tilde{V} \) is of type 0.
In the special case where \(\sigma(V) = \{0\} \), then (5) gives \(\sigma(\tilde{V}) = \{0\} \), and \(\tilde{V} \) is of type 0. Thus one obtains the following corollary, which generalizes Lyubich’s example of a single-point spectrum Ritt operator discussed in Section 1.

Corollary 2.2. Let \(V \in \mathcal{L}(X) \) be a bounded sectorial operator with \(\sigma(V) = \{0\} \), and define \(\tilde{V} \) as in Theorem 2.1. Then the operator \(T := I - \tilde{V} = I - \int_{0}^{\infty} \alpha V^{\alpha} \) is a Ritt operator with spectrum \(\sigma(T) = \{1\} \), and the operator \(I - T = \tilde{V} \) is of type 0.

In the rest of this section we prove Theorem 2.1. Let \(V \) satisfy the hypotheses of the theorem.

Lemma 2.3. Given any \(\varphi \in (0, \pi/2) \), there exist \(c, \rho > 0 \) depending only on \(\varphi \) and on \(M_0, M_1 \) in (6) such that
\[
\|V^{\alpha}\| \leq ce^{\rho|\alpha|}, \quad \alpha \in \Lambda_{\varphi}.
\]
Moreover, there exist \(C, \sigma > 0 \) such that
\[
\|V^{\alpha}\| \leq Ce^{-\sigma \alpha}, \quad \alpha > 0.
\]

Proof. Given \(\varphi \in (0, \pi/2) \), we first claim that there is a \(c_0 \geq 1 \) depending only on \(\varphi, M_0, M_1 \) such that
\[
\sup\{\|V^{\alpha}\| : \alpha \in \Lambda_{\varphi} \cap \overline{D}(0; 1/2)\} \leq c_0.
\]
This can be seen from (3): apply the bounds
\[
\|t^{\alpha-1}(t + V)^{-1}V\| = t^{\Re(\alpha)-1}\|I - t(t + V)^{-1}\| \leq t^{\Re(\alpha)-1}(1 + M_1)
\]
for \(t \in (0, 1] \) and
\[
\|t^{\alpha-1}(t + V)^{-1}V\| \leq t^{\Re(\alpha)-2}M_1M_0
\]
for \(t \geq 1 \), noting also that \(|(\Re \alpha)^{-1} \sin(\alpha \pi)| \) is uniformly bounded for \(\alpha \in \Lambda_{\varphi} \cap \overline{D}(0; 1/2) \). We leave the reader to check the details.

Next, for any \(\alpha \in \Lambda_{\varphi} \), take an integer \(n \in (|\alpha|, |\alpha| + 1] \) and use (11) to write \(\|V^{\alpha}\| \leq (\|V^{\alpha/2n}\|)^{2n} \leq c^n_0 \leq c_0c_{|\alpha|} \). Then (9) follows.

Finally, the hypothesis \(\sigma(T) \subseteq \mathbb{D} \) means that \(\lim_{n \in \mathbb{N}, n \to \infty} \|V^n\|^{1/n} < 1 \), hence there exists a \(\sigma > 0 \) with \(\sup\{e^{\sigma n}\|V^n\| : n \in \mathbb{N}\} < \infty \). Because \(\sup\{\|V^{\alpha}\| : \alpha \in (0, 1]\} < \infty \), it is easy to deduce (10).

By (10), the integral (4) converges and defines an element \(\tilde{V} \in \mathcal{L}(X) \).

To study the resolvent of \(\tilde{V} \) we require the following lemma.

Lemma 2.4. One has
\[
(\lambda + \tilde{V})^{-1} = \lambda^{-1} - \lambda^{-2} \int_{0}^{\infty} d\alpha e^{-\lambda^{-1}\alpha}V^{\alpha}
\]
for all \(\lambda \in \Lambda_{\pi/2} \).
Heuristically, one derives (12) by writing \(\tilde{V} = -(\log V)^{-1} \) (recall (2)) so that
\[
(\lambda + \tilde{V})^{-1} = \lambda^{-1} - \lambda^{-2}(\lambda^{-1} - \log V)^{-1},
\]
which equals the right side of (12) by writing \(V^\alpha = e^{\alpha \log V} \).

Proof of Lemma 2.4. Let \(R(\lambda) \) denote the operator on the right hand side of (12). It is clear from (10) that \(R(\lambda) \in \mathcal{L}(X) \) and that \(R(\lambda)\tilde{V} = \tilde{V} R(\lambda) \), so the lemma will follow if we show that \((\lambda + \tilde{V})R(\lambda) = I\). Now
\[
(\lambda + \tilde{V})R(\lambda) = \left(\lambda + \int_0^\infty d\beta V^\beta \right) \left(\lambda^{-1} - \lambda^{-2} \int_0^\infty d\alpha e^{-\lambda^{-1}\alpha V^\alpha} \right)
\]
\[= I + \lambda^{-1} \int d\beta V^\beta - \lambda^{-1} \int d\alpha e^{-\lambda^{-1}\alpha V^\alpha} \]
\[= -\lambda^{-2} \int d\beta \int d\alpha e^{-\lambda^{-1}\alpha V^\alpha + \beta}.
\]
In the last line, make a change of variable \(u = \alpha + \beta \) to see that
\[
\int_0^\infty d\beta \int_0^\infty d\alpha e^{-\lambda^{-1}\alpha V^{\alpha + \beta}} = \int_0^\infty d\beta \int_0^\infty du e^{-\lambda^{-1}u} e^{\lambda^{-1}\beta V^u}
\]
\[= \int_0^\infty du e^{-\lambda^{-1}u} V^u \left[\int_0^\infty d\beta e^{\lambda^{-1}\beta} \right]
\]
\[= \lambda \int_0^\infty du V^u - \lambda \int_0^\infty du e^{-\lambda^{-1}u} V^u.
\]
Thus after cancellation we obtain \((\lambda + \tilde{V})R(\lambda) = I\).

We remark that (12) and the bound \(||V^\alpha|| \leq C \) from (10) yield
\[
||(\lambda + \tilde{V})^{-1}|| \leq |\lambda|^{-1} + C|\lambda|^{-2}(\text{Re}(\lambda^{-1}))^{-1}
\]
for all \(\lambda \in \Lambda_{\pi/2} \). It follows easily that \(\tilde{V} \) is sectorial of type \(\pi/2 \); however, the value \(\pi/2 \) will later be improved.

We will establish (5) by an approximation argument. Because \(\sigma(V) \subseteq \mathbb{D} \) we may choose an \(\varepsilon_0 > 0 \) such that \(\sigma(\varepsilon + V) \subseteq \mathbb{D} \) for all \(\varepsilon \in (0, \varepsilon_0) \). For such \(\varepsilon \) the operators \(\log(\varepsilon + V) \in \mathcal{L}(X) \) and \(\tilde{V}_\varepsilon := -(\log(\varepsilon + V))^{-1} \in \mathcal{L}(X) \) are defined by the Dunford functional calculus for \(V \), and the usual spectral mapping theorem for that calculus yields
\[
\sigma(\tilde{V}_\varepsilon) = \{ -1/\log(\varepsilon + \lambda) : \lambda \in \sigma(V) \}.
\]
Note that
\[\widetilde{V}_\varepsilon = \int_0^\infty d\alpha\ e^{\alpha \log(\varepsilon + V)} = \int_0^\infty d\alpha\ (\varepsilon + V)^\alpha. \]

It is a standard fact, derivable from the above properties (i) and (ii) of fractional powers, that \(\lim_{\varepsilon \downarrow 0} \| (\varepsilon + V)^\alpha - V^\alpha \| = 0 \) for each \(\alpha > 0 \). Using the Lebesgue dominated convergence theorem one finds that
\[\lim_{\varepsilon \downarrow 0} \| \widetilde{V}_\varepsilon - \widetilde{V} \| \leq \lim_{\varepsilon \downarrow 0} \int_0^\infty d\alpha\ (\varepsilon + V)^\alpha - V^\alpha = 0. \]

By standard results in spectral theory it follows that \(\sigma(\widetilde{V}) \) is the limit of the sets \(\sigma(\widetilde{V}_\varepsilon) \) as \(\varepsilon \downarrow 0 \), in the Hausdorff metric for compact subsets of \(\mathbb{C} \); see for example [6, Theorem IV.3.6]. But (13) shows that the sets \(\sigma(\widetilde{V}_\varepsilon) \) converge to \(\{ -1/\log \lambda : \lambda \in \sigma(V) \} \). Thus (5) follows.

That \(\widetilde{V} \) is of asymptotic type 0 is really a consequence of the resolvent identity (12) and the fact that the semigroup \(\alpha \mapsto V^\alpha \) is exponentially bounded on any proper subsector of the half plane \(\Lambda_{\pi/2} \). The details are as follows.

Given any \(\varphi \in (0, \pi/2) \), choose \(c, \rho \) as in (9). In (12), we may shift the integration to a complex contour \(\{ r e^{i\theta} : r \geq 0 \} \), where \(\theta \in (-\varphi, \varphi) \), and then analytically continue in the variable \(\lambda \). In this way one sees that
\[(\lambda + \widetilde{V})^{-1} = \lambda^{-1} - \lambda^{-2} e^{i\theta} \int_0^\infty dr\ e^{-\lambda^{-1} r e^{i\theta}} V r e^{i\theta} \]
whenever \(\lambda \in \mathbb{C} \) with \(\lambda = |\lambda| e^{i(\theta + \tau)} \) where \(\theta, \tau \in (-\varphi, \varphi) \) and \(0 < |\lambda| < \rho^{-1} \cos \varphi \). These conditions on \(\lambda \) ensure that
\[\Re(\lambda^{-1} r e^{i\theta}) \geq |\lambda|^{-1} r \cos \varphi > \rho r \]
so that the integral in (14) converges, thanks to (9). Choosing \(\tau = \theta \) we obtain
\[\| \lambda(\lambda + \widetilde{V})^{-1} \| \leq 1 + c|\lambda|^{-1} \int_0^\infty dr\ e^{-|\lambda|^{-1} r \cos \varphi + \rho r} \]
\[\leq 1 + c|\lambda|^{-1} (|\lambda|^{-1} \cos \varphi - \rho)^{-1} \]
\[\leq 1 + 2c(\cos \varphi)^{-1} \]
valid for all \(\lambda \in \Lambda_{2\varphi} \) such that \(|\lambda| < 2^{-1} \rho^{-1} \cos \varphi \). This proves that \(\widetilde{V} \) is of asymptotic type 0 with resolvent estimates of the required form.

Let us prove the final statement of the theorem. It follows straightforwardly from (7) and (5) that \(\sigma(\widetilde{V}) \subseteq \overline{\Lambda} \) where \(\overline{\Lambda} \) is defined by (8). Then, since \(\widetilde{V} \in \mathcal{L}(X) \), one must have
\[\sup\{ \| \lambda(\lambda + \widetilde{V})^{-1} \| : \lambda \in \Lambda_{\pi-\theta}, |\lambda| \geq \varepsilon \} < \infty \]
for every $\theta \in (\tilde{\omega}, \pi)$ and $\varepsilon > 0$. Because \tilde{V} is of asymptotic type 0 it follows that \tilde{V} is actually of type $\tilde{\omega}$. The proof of Theorem 2.1 is complete.

Acknowledgements. This work was carried out at Macquarie University and financially supported by the ARC (Australian Research Council).

REFERENCES

Department of Mathematics
Macquarie University
Sydney, NSW 2109, Australia
E-mail: n.dungey@ics.mq.edu.au

Received 19 May 2008