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Abstract. Let (X, T ) be a Cantor minimal system and let (R, T ) be the associated
étale equivalence relation (the orbit equivalence relation). We show that for an arbitrary
Cantor minimal system (Y, S) there exists a closed subset Z of X such that (Y, S) is

conjugate to the subsystem (Z, eT ), where eT is the induced map on Z from T . We explore
when we may choose Z to be a T -regular and/or a T -thin set, and we relate T -regularity
of a set to R-étaleness. The latter concept plays an important role in the study of the
orbit structure of minimal Zd-actions on the Cantor set by T. Giordans et al. [J. Amer.
Math. Soc. 21 (2008)].

1. Main results. We state the two main theorems of this paper, post-
poning the proofs till later. In the next two sections we will give definitions
of pertinent concepts, and state some properties and results that will be
relevant for the proofs.

Theorem 1.1. Let (X,T ) be a Cantor minimal system, and let (Y, S)
be an arbitrarily given Cantor minimal system. There exists a closed subset
Z ⊂ X such that all points in Z have finite return times under the action
of T , and if T̃ : Z → Z is the induced map (i.e. T̃ z = Tmz, where m =
inf{k ∈ N | T kz ∈ Z}), then (Y, S) ' (Z, T̃ ). We can choose Z ⊂ X to be
a T -regular set if we allow one point x in Z to have infinite return time,
appropriately defining T̃ x. Moreover , we can always choose Z to be a T -thin
set in X, i.e. µ(Z) = 0 for all T -invariant probability measures µ.

Theorem 1.2. Let (X,T ) be a Cantor minimal system and let (R, T ) be
the associated étale equivalence relation. Let Z be a non-empty closed subset
of X. The following are equivalent :

(i) Z is T -regular , i.e. the (forward and backward) return time maps
(with respect to Z) are continuous.

(ii) Z is R-étale, i.e. R ∩ (Z × Z) is an étale equivalence relation.
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(iii) Z is R{x}-étale for all x ∈ X, where R{x} is obtained from R by
splitting the T -orbit of x in the forward and backward T -orbits.

2. Basic concepts. In this and the next section we will recall some
basic definitions and results that we will need concerning Cantor minimal
systems and étale equivalence relations. For details we refer to [3], [4], [5]
and the survey article [8].

Let X be a locally compact and second countable (hence metrizable)
Hausdorff space. An étale equivalence relation R (⊂ X×X) on X is a count-
able equivalence relation (i.e. every equivalence class is at most countable)
which has a topology T making it a locally compact topological groupoid,
and with the additional property that the range map, r : R → X, defined
by r((x, y)) = x, is a local homeomorphism. Recall that r is a local homeo-
morphism if for all (x, y) ∈ R there exists an open neighborhood U(x,y) ⊂ R
of (x, y) such that

(i) r(U(x,y)) is open in X;
(ii) r : U(x,y) → r(U(x,y)) is a homeomorphism.

Recall that the product of composable pairs (x, y), (y, z) ∈ R is (x, y)·(y, z) =
(x, z), and the inverse (x, y)−1 of (x, y) ∈ R is (y, x). We will denote an étale
equivalence relation by (R, T ), or simply by R. We say that R is minimal
if [x]R is dense in X for every x ∈ X, where [x]R = {y ∈ X | (x, y) ∈ R}
is the equivalence class of x. The diagonal ∆ = {(x, x) | x ∈ X} is a clopen
subset of R (cf. [7, Prop. 2.8]), and is homeomorphic to X. It should be re-
marked that only rarely does the topology T on R coincide with the relative
topology from X ×X. In general, T is finer than the relative topology. We
will refer to U(x,y) as an étale neighborhood, and the local homeomorphism
condition as the étale condition. It is easily seen that if S (⊂ X ×X) is an
open sub-equivalence relation of R, then S is étale in the relative topology.
A (Borel) probability measure µ on X is said to be R-invariant if

µ(r(E)) = µ(s(E))

for every étale neighborhood U(x,y) and Borel set E ⊂ U(x,y). Here s : R→ X
denotes the source map, defined by s((x, y)) = y. We denote by M(X,R)
the set of all R-invariant (Borel) probability measures on X.

Let (Ri, Ti) be étale equivalence relations on Xi, i = 1, 2. We say that
(R1, T1) is isomorphic to (R2, T2), and write (R1, T1) ∼= (R2, T2), if there
exists a homeomorphism F : X1 → X2 such that

(i) (x, y) ∈ R1 ⇔ (F (x), F (y)) ∈ R2;
(ii) F ×F : (R1, T1)→ (R2, T2), defined by F ×F ((x, y)) = (F (x), F (y))

for (x, y) ∈ R1, is a homeomorphism.
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If condition (i) is satisfied, we say that (R1, T1) and (R2, T2) are orbit equiv-
alent. (Note that condition (i) is equivalent to F ([x]R1) = [F (x)]R2 for each
x ∈ X.)

By an action of a countable (discrete) group G on a locally compact,
second countable space X we mean a homomorphism α : G → Homeo(X).
When the action is free, i.e. αg(x) = x for some x ∈ X, some g ∈ G
implies that g is the identity element of G, this gives rise to an étale equiv-
alence relation RG on X. That is, we let RG be the orbit equivalence re-
lation induced by α, where the equivalence class of x ∈ X is the orbit
[x]G = {αg(x) | g ∈ G}. We give RG the topology TG, which is obtained by
transferring the (product) topology from the product space X×G using the
map (x, g) → (αg(x), x). (This map is bijective since the action α is free.)
The resulting space (RG, TG) will be an étale equivalence relation on X.

We will be concerned with the following, which falls under the general
scheme described above: Let (X,T ) be a Cantor minimal system, i.e.X is the
Cantor set and T : X → X is a minimal homeomorphism, where minimality
means that the orbit [x]T = {Tnx |n ∈ Z} is dense in X for all x ∈ X. By
viewing (X,T ) as a (free) Z-action on X, where 1 ∈ Z corresponds to T , we
get an étale equivalence relation on X as described above.

Two Cantor minimal systems (X,T ) and (Y, S) are conjugate, written
(X,T ) ' (Y, S), if there exists a homeomorphism h : X → Y such that
h ◦ T = S ◦ h. Conjugate Cantor minimal systems give isomorphic orbit
equivalence relations.

Let (X,T ) be a Cantor minimal system. For a closed, non-empty subset
Z of X, define λ+, λ− : Z → N∪{∞}, where N∪{∞} is given the one-point
compactification topology, by

λ+(z) = inf{k ≥ 1 | T kz ∈ Z},
λ−(z) = inf{k ≥ 1 | T−kz ∈ Z}.

(We use the convention that inf of the empty set is ∞.) These maps are
called the forward and backward return time maps with respect to Z. We
say that Z ⊂ X is regular with respect to T (or T -regular) if both maps λ+

and λ− are continuous.

Remark 2.1. The maps λ+ and λ− are lower semicontinuous. To see
this, just observe that if λ+(z) = k, then T iz is not in Z for i = 1, . . . , k−1,
and since X\Z is open, there are open neighborhoods UT iz ⊂ X around each
of these points, each UT iz disjoint from Z. Hence V =

⋂k−1
i=1 T−i(UT iz) ∩ Z

is an open neighborhood of z in Z, and for all z′ ∈ V we have λ+(z′) ≥ k.
With a slight modification the argument goes through also for λ+(z) =∞,
by considering VN =

⋂N
i=1 T

−i(UT iz) ∩ Z for each N ∈ N. A similar proof
can be given for λ−.
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Given an étale equivalence relation (R, T ) on a locally compact second
countable space X and a (non-empty) closed subset Z of X we define R|Z =
R ∩ (Z × Z) as an equivalence relation on Z. We say that Z is R-étale if
R|Z , given the relative topology T |Z from T , is étale. It is said to be R-thin
if µ(Z) = 0 for every µ ∈M(X,R).

3. Bratteli diagrams as models for Cantor minimal systems and
for AF-equivalence relations. The concept of a Bratteli diagram will be
important for us, because it serves as a model, and as such as a crucial tool,
for both AF-equivalence relations and for Cantor minimal systems (when
an ordering is introduced). A Bratteli diagram (V,E) is a special directed
infinite graph, consisting of a vertex set V , an edge set E and two maps
i, t : E → V such that

(i) V is an infinite union of disjoint, non-empty finite sets, V =
⋃∞
n=0 Vn,

and V0 is a one-point set, V0 = {v0};
(ii) E is an infinite union of disjoint, non-empty finite sets, E=

⋃∞
n=1En;

(iii) the source (or initial) map i satisfies i(En) ⊂ Vn−1 for all n ≥ 1,
and i−1(v) 6= ∅ for all v ∈ V ;

(iv) the range (or terminal) map t satisfies t(En) ⊂ Vn for all n ≥ 1,
and t−1(v) 6= ∅ for all v ∈ V \ V0.

For a Bratteli diagram (V,E) we denote by X(V,E) the set of all infinite
paths in (V,E), where a path x = (en)∞n=1 is a sequence of edges e1, e2, . . .
such that en ∈ En and t(en) = i(en+1) for all n. We can also talk about
(finite) paths between a vertex v ∈ Vn and a vertex w ∈ Vm, m > n, and it
is obvious what we mean by that. If there exists an edge e ∈ En with source
v ∈ Vn−1 and range u ∈ Vn, we say that v is connected to u. We say that
two paths x = (en)∞n=1, y = (fn)∞n=1 in X(V,E) are cofinal if there exists an
N ∈ N such that en = fn for all n > N . Henceforth we will only consider
non-trivial Bratteli diagrams (V,E), i.e. X(V,E) is an infinite set.

We describe two important operations that we can perform on a Bratteli
diagram, turning it into new Bratteli diagrams that retain the basic prop-
erties of the original. These are telescoping and symbol splitting. Let (V,E)
be a Bratteli diagram. Let 0 = t0 < t1 < t2 < · · · be a sequence of natural
numbers. Define a new Bratteli diagram (V ′, E′) by setting V ′n = Vtn and
E′n = {all finite paths between Vtn−1 and Vtn}. The range and source maps
are the obvious ones. We say that (V ′, E′) is a telescope of (V,E).

By the operation of symbol splitting we create a new diagram (V ′, E′)
from (V,E) by inserting new vertex levels. Let V ′2k = Vk for k ≥ 0, and let
|V ′2k−1| = |Ek| for k ≥ 1. There is an obvious way of defining E′2k−1 and
E′2k such that by telescoping between levels 2k − 1 and 2k we get Ek. In
other words, each edge in Ek is split in two by introducing a vertex in V ′2k−1.
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(See Figure 1 and Figure 2 for examples of telescoping and symbol splitting,
respectively. Disregard the ordering of the edges for the time being.)
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Fig. 1. An illustration of telescoping
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Fig. 2. An illustration of symbol splitting

A diagram is simple if it can be telescoped into a diagram (V ′, E′) where
each v ∈ V ′n−1 is connected to each u ∈ V ′n for all n > 0. For a simple
Bratteli diagram (V,E), the path space X(V,E) becomes a Cantor set, where
the cylinder sets {Cn(x) | x = (e1, e2, . . .) ∈ X(V,E), n ∈ N} form a clopen
basis for the topology. Here Cn(x) = {y = (f1, f2, . . .) ∈ X(V,E) | f1 = e1,
f2 = e2, . . . , fn = en}. We remark here that if we drop the condition that
(V,E) is simple, then X(V,E) is still a zero-dimensional space, i.e. X(V,E) has
a countable basis of clopen sets (consisting of the cylinder sets Cn(x)).
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We can give a partial order to the edge set by giving a linear order to
the set of edges t−1(v) for each vertex v ∈ V \ V0. Let (V,E,≥) denote
a Bratteli diagram equipped with a partial order ≥ on E; we call it an
ordered Bratteli diagram. This induces a (partial) lexicographic order on
the path space X(V,E). Specifically, (ei)∞i=1 > (fi)∞i=1 if there exists n ∈ N
such that r(en) = r(fn), ek = fk for all k > n and en > fn. A path
x = (e1, e2, . . .) ∈ X(V,E) is a maximal (resp. minimal) path if all edges en
are maximal (resp. minimal) in the linearly ordered set r−1(r(en)).

Given an ordered Bratteli diagram (V,E,≥), the Vershik map T(V,E) :
X(V,E) → X(V,E) is defined so that a non-maximal path is mapped to its
successor in the lexicographic order, while a maximal path is mapped to a
minimal path. Let (V,E,≥) be an ordered Bratteli diagram, where (V,E)
is simple. We say that (V,E,≥) is properly ordered if there exist exactly
one maximal path and one minimal path. Then (X(V,E), T(V,E)) is a Cantor
minimal system, and we call such a system a Bratteli–Vershik system.

We state a basic theorem that we shall need, which we may call the
model theorem for Cantor minimal systems, and we will refer to the properly
ordered Bratteli diagram (V,E ≥) occurring in the theorem as a Bratteli–
Vershik model (for the given Cantor minimal system (X,T )).

Theorem 3.1 ([5, Theorem 4.7], [8, Theorem 4]). Let (X,T, x) be a
(pointed) Cantor minimal system, where x ∈ X. There exists a properly or-
dered Bratteli diagram (V,E,≥) such that (X,T, x) is (pointedly) conjugate
to (X(V,E), T(V,E), xmin), where xmin is the unique minimal path in X(V,E).
This means that the conjugating map h : X → X(V,E) maps x to xmin.

Remark 3.2. There is a natural way to introduce an ordering on a Brat-
teli diagram which is obtained from an ordered Bratteli diagram by either
telescoping or symbol splitting (cf. [3, Section 3]). Both telescoping and sym-
bol splitting yield natural homeomorphisms, preserving cofinality, between
the original path space and the new path space, such that (X(V,E), T(V,E))
is conjugate to (X(V ′,E′), T(V ′,E′)), where (V ′, E′,≥) is the ordered Bratteli
diagram obtained from (V,E,≥) by a finite number of telescopings and/or
symbol splittings.

The Bratteli diagram (V,E) induces an equivalence relation on X(V,E),
denoted by AF(V,E), namely, two paths are equivalent if and only if they
are cofinal. Topologized appropriately (cf. [4, Example 2.7 (ii)]), AF(V,E)
becomes a so-called AF-equivalence relation, according to the following def-
inition.

Definition 3.3. An AF-equivalence relation R on a zero-dimensional
space X is an étale equivalence relation (R, T ) such that R =

⋃∞
n=1Rn,

where R1 ⊂ R2 ⊂ · · · is an increasing sequence of sub-equivalence relations
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of R such that Rn = (Rn, Tn) is a compact étale equivalence relation (CEER)
for all n. The topology of R is the inductive limit topology, i.e. U ⊂ T iff
U ∩Rn ∈ Tn for all n. We write (R, T ) = lim−→ (Rn, Tn).

Just as ordered Bratteli diagrams serve as models for Cantor minimal
systems, (unordered) Bratteli diagrams serve as models for AF-equivalence
relations as stated in the following theorem.

Theorem 3.4 ([4, Theorem 3.9]). Let (R, T ) = lim−→(Rn, Tn) be an AF-
equivalence relation on the zero-dimensional space X. There exists a Bratteli
diagram (V,E) such that (R, T ) is isomorphic to the AF-equivalence relation
AF(V,E) associated to (V,E). Furthermore, (V,E) is simple if and only if
(R, T ) is minimal.

Combining Theorems 3.1 and 3.4 we get the following corollary.

Corollary 3.5 ([4, Theorem 2.4]). Let (X,T ) be a Cantor minimal
system and let (R, T ) be the associated étale equivalence relation as described
in Section 2. Let x be an arbitrary point in X. The sub-equivalence relation
R{x} of R whose equivalence classes are the full T -orbits, except that the
T -orbit of x is split in two at x (the forward orbit {Tnx | n ≥ 1} and the
backward orbit {Tnx | n ≤ 0}), is open in R. Furthermore, (R{x}, T{x}) is
an AF-equivalence relation on X, where T{x} is the relative topology.

Remark 3.6. It is noteworthy that if x1 and x2 are any two points in X,
then (R{x1}, T{x1}) ∼= (R{x2}, T{x2}). This follows from [4, Lemma 4.13] and
[5, Theorem 5.3].

Let (V,E) be a Bratteli diagram. By a subdiagram of (V,E) we mean a
Bratteli diagram (W,F ) such that W ⊂ V , F ⊂ E and t(F ) ∪ {v0} = i(F ).
The range and source maps of (W,F ) are the restrictions of the range and
source maps of (V,E). Note that a subdiagram (W,F ) of a Bratteli diagram
(V,E) is being telescoped or symbol split in an obvious way simultaneously
as these operations are applied to (V,E). If (V,E,≥) is an ordered Brat-
teli diagram, a subdiagram (W,F ) of (V,E) will inherit the order in an
obvious way. Note that if (W,F ) is a subdiagram of (V,E), then the topol-
ogy of AF(W,F ) coincides with the relative topology from AF(V,E), and
so AF(V,E)|X(W,F )

is AF, and hence étale. With the terminology we have
introduced we can say that X(W,F ) is AF(V,E)-étale.

We include the following result concerning subdiagrams and AF(V,E)-
invariant probability measures.

Proposition 3.7 ([6, Theorem 2.21]). Let (V,E) be a Bratteli dia-
gram and (W,F ) a subdiagram. Suppose that there exists a positive con-
stant M and N > 1 such that , for all w ∈ WN−1 and w′ ∈ WN , we
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have M#FN (w,w′) ≤ #EN (w,w′). Then µ(X(W,F )) ≤ M−1 for all µ in
M(X(V,E),AF(V,E)).

(Here #FN (w,w′) denotes the number of edges in FN with source w and
range w′.)

4. Proof of Theorem 1.1. The key to the proof is the following lemma,
which illustrates what a useful tool Bratteli diagram models can be. In fact,
by elementary and easy manipulations on a given Bratteli diagram (ordered
or unordered) one can set the stage for proving non-trivial results that seem
to be inaccessible otherwise.

Lemma 4.1. Let (X,T ) be a Cantor minimal system, and let {(lk, nk)}∞k=1
be a sequence of pairs of natural numbers, where lk ≥ 2. There exists a
Bratteli–Vershik model (V,E,≥) for (X,T ) such that

(i) |Vk| ≥ lk for all k ≥ 1;
(ii) xmin and xmax do not pass through the same vertex at any level

k ≥ 1 of (V,E), where xmin and xmax denote the unique minimal
and maximal paths, respectively , in X(V,E);

(iii) if Vk−1 = {v1, . . . , vmk−1
}, k ≥ 1, then for all vertices w ∈ Vk and

for all vi ∈ Vk−1 we can choose nk edges {e(i,j)}nkj=1 in Ek connecting
w to vi; furthermore, the ordering of these edges is as follows:

e(1,1) < e(2,1) < · · · < e(mk−1,1) < e(1,2) < e(2,2) < · · ·
< e(mk−1,2) < · · · < e(1,nk) < · · · < e(mk−1,nk).

Proof. Let (V,E,≥) be a Bratteli–Vershik model for (X,T ). It is easy
to see that by a succession of telescoping, symbol splitting and telescoping,
in that order, one may satisfy conditions (i) and (ii). Indeed, more can be
achieved by the same token. If (V ′, E′,≥) denotes the new ordered Bratteli
diagram obtained, which by Remark 3.2 is again a Bratteli–Vershik model for
(X,T ), then we can assume that |V ′k−1| ≤ |V ′k| for all k ≥ 1. Furthermore, we
may assume that (V ′, E′) is totally connected, that is, between any v ∈ V ′k−1
and w ∈ V ′k, there exists an edge e ∈ E′k connecting the two, i.e. i(e) = v
and t(e) = w. We observe that all the properties of (V ′E′,≥) listed above
are preserved under telescopings of (V ′, E′,≥).

So we may at start assume that (V,E,≥) has all the above-mentioned
properties. We want to show that condition (iii) can be obtained by telescop-
ing (V,E,≥), and this will finish the proof by the above remarks. Clearly,
we can choose a level k1 ≥ 1 such that if we telescope between levels k0 = 0
and k1 of (V,E,≥), then (iii) is satisfied for k = 1. Assume we have tele-
scoped (V,E,≥) between the levels 0 = k0 < k1 < · · · < kl, so that (iii)
is satisfied for k = 1, . . . , l. Now choose an arbitrary vertex u ∈ Vkl+1.
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By our assumption on total connection, there exists an edge e′i ranging
at u and sourcing at v′i for every i ∈ {1, . . . , s}, where Vkl = {v′1, . . . , v′s}.
To simplify the notation, rearrange the vertices in Vkl according to the
linear order of the set {e′i}si=1, i.e. if {e′i}si=1 = {e1 < · · · < es}, then
Vkl = {v′i}si=1 = {v1, . . . , vs}, and the source of ei is vi. There exists a level
kl+1 > kl + 1 such that the number of paths from u to any vertex in Vkl+1

is at least nk+1. We telescope between level kl and kl+1 of our diagram, and
for each vi ∈ Vkl and w ∈ Vkl+1

we choose nk+1 paths arbitrarily between
vi and w, except that we require the first edge of each path to be ei. Now
it is easy to see, using the lexicographic order on paths, that we may ar-
range these nk+1 paths, which become edges after telescoping, in such a way
that they satisfy condition (iii) for k = kl+1. Telescoping (V,E,≥) to levels
0 = k0 < k1 < k2 < · · · , we get a diagram satisfying the three conditions of
the lemma.

Proof of Theorem 1.1. The idea is to use Lemma 4.1 to construct a
Bratteli–Vershik model (V,E,≥) for (X,T ), in which we can imbed a Bra-
tteli–Vershik model (W,F,≥) for (Y, S), such that the ordering on (W,F ≥)
coincides with the one induced from (V,E,≥). This will obviously give a
conjugacy h : (Y, S) → (Z, T̃ ), where Z = X(W,F ), and T̃ : Z → Z is the
induced map as described in the theorem.

Let (W,F,≥) be a Bratteli–Vershik model for (Y, S), where the maximal
and the minimal paths pass through different vertices at each level. Let
lk = |Wk| and let nk be the maximal number of edges ranging at a vertex
at level Wk, i.e. nk = max{|t−1(w)| | w ∈Wk}. Let (V,E,≥) be a Bratteli–
Vershik model for (X,T ) satisfying the conditions of Lemma 4.1 with respect
to the sequence {(lk, nk)}∞k=1. We describe how to define a copy of (W,F )
as a subdiagram of (V,E), such that the order of (W,F,≥) coincides with
the induced order from (V,E,≥).

For k > 0, choose lk = |Wk| vertices {v(k)
1 , v

(k)
2 , . . . , v

(k)
lk
} ⊂ Vk, including

the ones that the unique maximal and minimal paths pass through, denoting
these by v(k)

max and v
(k)
min, respectively. We denote the corresponding vertices

in Wk by w
(k)
max and w

(k)
min, respectively. Let gk be a bijection between Wk

and {v(k)
i }lki=1 such that gk(w

(k)
max) = v

(k)
max and gk(w

(k)
min) = v

(k)
min. We define

g0(w0) = v0, where W0 = {w0} and V0 = {v0}.
Next we define an injective map hk from Fk into Ek. For a vertex

w(k) ∈ Wk, let {fs}ms=1 be the linearly ordered edges in Fk with range
w(k), i.e. f1 < · · · < fm. Let v(k) = gk(w(k)), and let {et}nt=1 be the lin-
early ordered edges in Ek with range v(k). Define hk(f1) = et1 , where et1
is the minimal edge in {et}nt=1 such that gk−1(i(f1)) = i(et1). Note that if
f1 is an edge of the unique minimal path in X(W,F ), then et1 is an edge
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of the unique minimal path in X(V,E). After having defined hk(fl) = etl ,
for l < m and if l + 1 < m, we define hk(fl+1) = etl+1

, where etl+1
is the

minimal edge in {et}nt=1 greater than etl , such that gk−1(i(fl+1)) = i(etl+1
).

If l + 1 = m, we define hk(fm) to be the maximal edge e in {et}nt=1 such
that gk−1(i(fm)) = i(e). Note that if fm is an edge of the unique maximal
path in X(W,F ) then hk(fm) will be an edge of the unique maximal path in
X(V,E). The properties satisfied by the ordered Bratteli diagram (V,E,≥)
entail that the map hk is well-defined for k = 1, 2, . . . .

Let

W ′ = {gk(w) | w ∈Wk, k = 0, 1, . . .},
F ′ = {hk(f) | f ∈ Fk, k = 1, 2, . . .}.

It is easy to see that (W ′, F ′) is a subdiagram of (V, F ), and that (W ′, F ′)
is in an obvious way isomorphic to (W,F ). Transferring the order from
(W,F ≥) to (W ′, F ′) by this isomorphism we get a copy, (W ′, F ′,≥), of
(W,F,≥). Hence the two associated Bratteli–Vershik systems are conju-
gate, with conjugating map h : X(W,F ) → X(W ′,F ′) being defined by h(x) =
(h1(f1), h2(f2), . . .) ∈ X(W ′,F ′), where x = (f1, f2, . . .) ∈ X(W,F ). Further-
more, it follows by our definition of the pair of maps (gk−1, hk), for k =
1, 2, . . ., that the ordering on (W ′, F ′,≥) coincides with the induced order-
ing from (V,E,≥), i.e. if f1, f2 ∈ F ′ and t(f1) = t(f2), then f1 < f2 in
(W ′, F ′,≥) if and only if f1 < f2 in (V,E,≥). We conclude from all this
that the proof of the first statement of the theorem is complete if we show
that the return time to Z = X(W ′,F ′) is finite. But this follows from the fact
that by our set-up the unique maximal and minimal paths in X(W ′,F ′) co-
incide with the unique maximal and minimal paths, respectively, in X(V,E).
We omit the easy details.

The set Z = X(W ′,F ′) may not be regular since the forward return time
map at xmax, and the backward return time map at xmin, may not be con-
tinuous. (Here xmax and xmin denote the (coinciding) unique maximal and
minimal paths, respectively, in X(W ′,F ′) and X(V,E).) At all other paths it
is easy to see that the two return time maps are continuous. (An example
of a closed subset Z ⊂ X which is not regular is shown in Figure 5.) By
a slight modification of the construction of (W ′, F ′,≥) we can achieve that
Z = X(W ′,F ′) is regular, but we pay the price that at the unique maximal
and minimal paths in X(W ′,F ′) (which no longer coincide with the corre-
sponding ones in X(V,E)) the return time is no longer finite. Referring to

the notation used above, we let lk = |Wk| + 2. This time we avoid v
(k)
max

and v(k)
min for all k in the construction of the subdiagram (W ′, F ′). It is easy

to see that Z = X(W ′,F ′) is T -regular, and that (Y, S) ' (Z, T̃ ), where we
define T̃ (ymax) = ymin. (Here ymax and ymin denote the unique maximal
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and minimal paths, respectively, in X(W ′,F ′).) We see that in this case the
forward return time of ymax and the backward return time of ymin are both
infinite. However, the return time maps at both these points are continuous.
We omit the details.

The last assertion of the theorem is easy to obtain. In fact, we can
telescope (V,E), before we define the subdiagram (W ′, F ′), so that the ratio
of the number of paths from the top vertex in (V,E) to any vertex at level k
to the corresponding number for (W,F ), tends to zero as k goes to infinity.
Then Z = X(W ′,F ′) is going to be a thin subset of X(V,E), a fact that is
easily seen by recalling Proposition 3.7.

We give a simple example to illustrate the construction in the proofs of
Lemma 4.1 and Theorem 1.1. We keep the above notation.

Example 4.2. Let (Y, S) be the Sturmian flow with rotation number
equal to the golden mean. The simplest Bratteli–Vershik model (W,F,≥)
for (Y, S) is shown in Figure 3 (cf. [8, 3.3]). In this case the parameters

(W,F,≥)

•

~~
~~

~~
~

@@
@@

@@
@

•

2 1

w
(1)
max

OOOOOOOOOOOOOO •

oooooooooooooo w
(1)
min

•

1 2

w
(2)
min

OOOOOOOOOOOOOO •

oooooooooooooo
w

(2)
max

•

2 1

w
(3)
max

OOOOOOOOOOOOOO •
w

(3)
min

oooooooooooooo

•
w

(4)
min

•
w

(4)
max

Fig. 3. A Bratteli–Vershik model for (Y, S)

are lk = |Wk| = 2 for all k ≥ 1, and nk = 2 for k ≥ 2. Let (X,T ) be the
2-odometer. The simplest Bratteli–Vershik model for (X,T ) is shown on
the left of Figure 4. Also in Figure 4 we indicate the manipulations done in
order to get a Bratteli–Vershik model (V,E,≥) for (X,T ) that is adapted
for the construction of a copy (W ′, F ′,≥) of (W,F,≥) as a subdiagram.
(Note that in this case we only need the operations of symbol splitting and
telescoping, in that order.) The edges belonging to (W ′, F ′,≥) are drawn
solid.
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Fig. 4. Starting with the two-odometer, we first do symbol splitting between every level,
then we telescope to the sequence 0 < 1 < 5 < 9 < 13 < · · · .

5. Proof of Theorem 1.2. We start by showing (i)⇒(ii). For k ∈ N,
define the maps λ+

k , λ
−
k : Z → N ∪ {∞} by

λ+
k (z) = inf{l ≥ 1 | T li(z) ∈ Z for k distinct numbers 1 ≤ li ≤ l},
λ−k (z) = inf{l ≥ 1 | T−li(z) ∈ Z for k distinct numbers 1 ≤ li ≤ l}.

Again we use the convention that inf of the empty set is ∞. We call these
maps the positive and negative kth return time maps with respect to Z.
We claim that λ+

k and λ−k are continuous for every k ∈ N if and only if λ+

and λ−, respectively, are continuous. This follows by induction on k, and the
observation that for all z ∈ Z we have λ+

k+1(z) = λ+
k (z)+λ+(T λ

+
k (z)(z)). The

claim concerning λ−k is completely analogous. (The modifications needed if
λ±k (y) =∞ are obvious.)

Suppose Z is regular. Let z0 ∈ Z, and assume that the equivalence class
of z0 in Z is [z0]R|Z = {. . . , z−1, z0, z1, . . .}, where zi = Tmiz0, and we have
arranged the points in such a way that · · · < m−1 < m0 = 0 < m1 < · · · .
We want to find an étale neighborhood U(z0,z) ⊂ R|Z for all possibilities of
z ∈ [z0]R|Z . If z = z0, then obviously ∆X ∩ (Z×Z) is an étale neighborhood
containing (z0, z0), where ∆X = {(x, x) | x ∈ X} is the diagonal of R. Next
assume z is in the positive orbit of z0. Note that if λ+(z0) = ∞ then there
are no points to check. Suppose z = zk, i.e. z = Tmkz0. This means that
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z0 ∈ (λ+
k )−1(mk), which is open in Z by continuity of λ+

k . Let V(z0,z) be an
étale neighborhood of (z0, z) in R, and let Uz0 = (λ+

k )−1(mk)∩r(V(z0,z)) ⊂ Z.
Define U(z0,z) = {(x, Tmkx) | x ∈ Uz0}. This is an étale neighborhood of
(z0, z) in R|Z , a fact that is easily verified. If z is in the negative orbit the
argument is analogous, using the continuity of λ−k .

To prove (ii)⇒(iii), let x ∈ X. By Corollary 3.5, R{x} is open in R, and
hence R{x}|Z is open in R|Z . As Z is R-étale, it follows that Z is R{x}-étale,
since every open sub-equivalence relation of an étale equivalence relation is
étale.

To show (iii)⇒(i), suppose that Z is not T -regular. We want to show
that this implies that there exists x ∈ X such that Z is not R{x}-étale.
In fact, we will show that x = z ∈ Z, where z is a point of disconti-
nuity of either λ+ or λ−. So let z ∈ Z, and suppose λ+ is not contin-
uous at z. (A similar argument applies for λ−.) As λ+ is always lower
semicontinuous, it is not upper semicontinuous at z. So there exists a se-
quence {zn}∞n=1 ⊂ Z such that zn → z and limn λ

+(zn) > λ+(z). [Note:
limn λ

+(zn) may be infinite, but if so, the argument is unchanged.] As-
suming now, to the contrary, that Z is R{z}-étale, there exists an étale
neighborhood U

(z,Tλ
+(z)z)

of (z, T λ
+(z)z) in R{z}|Z . Choose an open neigh-

borhood Vz of z in X. Put V
(z,Tλ

+(z)z)
= {(x, T λ+(z)x) | x ∈ Vz}. Then

V
(z,Tλ

+(z)z)
is an étale neighborhood of (z, T λ

+(z)z) with respect to R, and
this implies that U

(z,Tλ
+(z)z)

∩ V
(z,Tλ

+(z)z)
is another étale neighborhood

of (z, T λ
+(z)z) with respect to R{z}|Z . This is clear since R{z}|Z has the

relative topology from R. However, {zn}∞n=1 ∩ r(U(z,Tλ
+(z)z)

∩ V
(z,Tλ

+(z)z)
)

= ∅, and so r(U
(z,Tλ

+(z)z)
∩ V

(z,Tλ
+(z)z)

) cannot be open in Z, and hence

U
(z,Tλ

+(z)z)
∩ V

(z,Tλ
+(z)z)

is not an étale neighborhood of (z, T λ
+(z)z) in

R{z}|Z . This contradiction finishes the proof of (iii)⇒(i), and hence the
proof of Theorem 1.2.

Corollary 5.1. Let (X,T ) be a Cantor minimal system, and let (R, T )
be the associated étale equivalence relation. Let Z be an R-étale subset of X.
For any x ∈ X there exists a simple Bratteli diagram (V,E) and a homeo-
morphism h : X(V,E) → X implementing an isomorphism h×h : AF(V,E)→
R{x} such that h−1(Z) = X(W,F ) for some subdiagram (W,F ) of (V,E).

Proof. By Corollary 3.5, R{x} is an AF-equivalence relation for x ∈ X.
By Theorem 1.2 we find that Z is R{x}-étale. By [4, Theorem 3.11] we get
the result.

The example we will now exhibit is somewhat related to the above corol-
lary, even though it illustrates a different aspect of the theory. Figure 5 shows
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(V,E,≥)
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22oooooooooooooo

•

1 1OOOOOOO •

22oooooooooooooo

• •
Fig. 5. The subdiagram (W, F ) of the Bratteli diagram (V, E) is obtained by deleting the
dotted edges.

that not every subdiagram of a properly ordered, simple Bratteli diagram is
regular with respect to the Vershik map, and hence not all subdiagrams give
rise to étale sub-equivalence relations by Theorem 1.2. Let (X(V,E), T(V,E))
be the Bratteli–Vershik system associated to (V,E,≥) in Figure 5, and let
xmin and xmax be the unique minimal and maximal paths, respectively, in
X(V,E). Let Z = X(W,F ). Now λ+(xmax) = 1, but there exists a sequence
{zn} in Z converging to xmax, such that λ+(zn)→∞, which shows that λ+

is not continuous at xmax.
Note also, referring again to Figure 5, that Z is R{xmax}-étale, but not

R{xmin}-étale. This underscores the requirement (iii) of Theorem 1.2, namely
that Z should be R{x}-étale for all x ∈ X.

We end this paper by giving the following result which extends Theorem
1.2 when the subset Z ⊂ X satisfies a certain condition.

Corollary 5.2. Let (X,T ) be a Cantor minimal system and let (R, T )
be the associated étale equivalence relation. Let Z be a non-empty closed
subset of X such that there exists z0 ∈ X with [z0]T ∩Z contained in either
{Tnz0 | n ≥ 1} or {T−nz0 | n ≥ 0}. (Recall that [z0]T denotes the T -orbit
{Tnz0 | n ∈ Z} of z0.) The following are equivalent :

(i) Z is T -regular ;
(ii) Z is R-étale;

(iii) Z is R{x}-étale for all x ∈ X;
(iv) there exists a simple Bratteli diagram (V,E), containing a subdi-

agram (W,F ), and a map h : X(V,E) → X such that h × h :
AF(V,E)→ R{z0} is an isomorphism and h(X(W,F )) = Z.
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Proof. By Corollary 5.1 we have (ii)⇒(iv). We will prove (iv)⇒(ii). The
rest follows by Theorem 1.2.

Let (V,E) and (W,F ) be as in (iv). Now AF(W,F ) is an AF-equivalence
relation on X(W,F ), and the topology coincides with the relative topology
from AF(V,E). So (h× h)(AF(W,F )) = R{z0}|Z is an AF-equivalence rela-
tion, and hence étale, on h(X(W,F )) = Z. This means that R|Z is étale, since
R|Z = R{z0}|Z , and both R|Z and R{z0}|Z have relative topology from R.
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