VOL. 117

2009

NO. 2

SELECTION PRINCIPLES AND UPPER SEMICONTINUOUS FUNCTIONS

ΒY

MASAMI SAKAI (Yokohama)

Abstract. In connection with a conjecture of Scheepers, Bukovský introduced properties wQN^{*} and SSP^{*} and asked whether wQN^{*} implies SSP^{*}. We prove it in this paper. We also give characterizations of properties $S_1(\Gamma, \Omega)$ and $S_{fin}(\Gamma, \Omega)$ in terms of upper semicontinuous functions.

1. Introduction. In this paper all topological spaces are assumed to be infinite. We denote by I the closed unit interval [0, 1]. The symbol **0** is the constant function with the value 0. For real-valued functions f_n $(n \in \omega)$ on a set X, the symbol $f_n \to \mathbf{0}$ means that the sequence $\{f_n\}_{n \in \omega}$ converges pointwise to **0** (i.e. for every $x \in X$ the sequence $\{f_n(x)\}_{n \in \omega}$ converges to 0). A real-valued function f on a space X is said to be *upper semicontinuous* [4] if for every real number r, the set $\{x \in X : f(x) < r\}$ is open in X.

DEFINITION 1.1 ([5]). A family $\{A_n\}_{n\in\omega}$ of subsets of a set X is a γ -cover of X if every point $x \in X$ is contained in A_n for all but finitely many $n \in \omega$ and $A_n \neq X$ for every $n \in \omega$. A space X has property $S_1(\Gamma, \Gamma)$ if for every sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open γ -covers of X, there are $U_n \in \mathcal{U}_n$ $(n \in \omega)$ such that $\{U_n\}_{n\in\omega}$ is a γ -cover of X.

DEFINITION 1.2. A sequence $\{f_n\}_{n\in\omega}$ of real-valued functions on a set X converges quasi-normally to **0** [1] if there is a sequence $\{\varepsilon_n\}_{n\in\omega}$ of positive real numbers converging to 0 such that for each $x \in X$, $|f_n(x)| < \varepsilon_n$ for all but finitely many $n \in \omega$. A space X has property wQN [3] if whenever $\{f_n\}_{n\in\omega}$ is a sequence of real-valued continuous functions on X such that $f_n \to \mathbf{0}$, the sequence contains a subsequence which converges quasi-normally to **0**. A space X has property SSP (the sequence selection property) [6] if whenever $\{f_{n,m}\}_{n,m\in\omega}$ is a family of real-valued continuous functions on X such that for each $n \in \omega$, $f_{n,m} \to \mathbf{0}$ ($m \to \infty$), there is a function $\varphi \in \omega^{\omega}$ with $f_{n,\varphi(n)} \to \mathbf{0}$.

²⁰¹⁰ Mathematics Subject Classification: 54A20, 54C30, 54C35, 54D20.

Key words and phrases: upper semicontinuous, quasi-normal convergence, γ -cover, ω -cover, wQN, wQN^{*}, SSP, SSP^{*}, S₁(Γ , Γ), S₁(Γ , Ω), S_{fin}(Γ , Ω).

M. SAKAI

Uniform convergence implies quasi-normal convergence, and quasi-normal convergence implies pointwise convergence. It is known that properties wQN and SSP are equivalent (for instance see [2, Theorem 1]). Scheepers [7] proved that property $S_1(\Gamma, \Gamma)$ implies property wQN, and conjectured that for perfectly normal spaces, properties wQN and $S_1(\Gamma, \Gamma)$ are equivalent. In connection with this conjecture, Bukovský introduced properties SSP^{*} and wQN^{*} below as modifications of SSP and wQN.

DEFINITION 1.3 ([2]). A space X has property wQN^{*} if whenever $\{f_n\}_{n\in\omega}$ is a sequence of upper semicontinuous functions from X into I such that $f_n \to \mathbf{0}$, the sequence contains a subsequence which converges quasi-normally to **0**. A space X has property SSP^{*} if whenever $\{f_{n,m}\}_{n,m\in\omega}$ is a family of upper semicontinuous functions from X into I such that for each $n \in \omega$, $f_{n,m} \to \mathbf{0}$ $(m \to \infty)$, there is a function $\varphi \in \omega^{\omega}$ with $f_{n,\varphi(n)} \to \mathbf{0}$.

Bukovský proved:

Theorem 1.4 ([2]).

- (1) Property SSP* implies property wQN*,
- (2) Property $S_1(\Gamma, \Gamma)$ is equivalent to property SSP^* .

But it was open whether wQN^{*} implies SSP^{*} [2, Problem 2]. In the next section we show that this is indeed the case. In the third section we give characterizations of properties $S_1(\Gamma, \Omega)$ and $S_{fin}(\Gamma, \Omega)$ in terms of upper semicontinuous functions.

2. Properties $S_1(\Gamma, \Gamma)$, SSP^* and wQN^*

LEMMA 2.1. Let $\{f_m\}_{m\in\omega}$ be a sequence of real-valued functions on a set X which converges quasi-normally to **0**. Let $\{\delta_n\}_{n\in\omega}$ be a sequence of positive real numbers converging to 0. Then there is a subsequence $\{f_{m_n}\}_{n\in\omega} \subset \{f_m\}_{m\in\omega}$ such that for every $x \in X$, $|f_{m_n}(x)| < \delta_n$ for all but finitely many $n \in \omega$.

Proof. Since $\{f_m\}_{m\in\omega}$ converges quasi-normally to **0**, there is a sequence $\{\varepsilon_m\}_{m\in\omega}$ of positive real numbers converging to 0 such that for every $x \in X$, $|f_m(x)| < \varepsilon_m$ for all but finitely many $m \in \omega$. For each $n \in \omega$ take $m_n \in \omega$ with $\varepsilon_{m_n} < \delta_n$. Then for every $x \in X$, $|f_{m_n}(x)| < \varepsilon_{m_n} < \delta_n$ for all but finitely many $n \in \omega$.

We denote by $\mathrm{USC}_p(X,\mathbb{I})$ the space of all upper semicontinuous functions from a space X into \mathbb{I} with the topology of pointwise convergence.

THEOREM 2.2. Property wQN^{*} implies property $S_1(\Gamma, \Gamma)$.

Proof. For each $n \in \omega$, let $\mathcal{U}_n = \{U_{n,m} : m \in \omega\}$ be an open γ -cover of X. For each $n, m \in \omega$, we put $V_{n,m} = U_{0,m} \cap \cdots \cap U_{n,m}$, and let $\mathcal{V}_n =$

 $\{V_{n,m} : m \in \omega\}$. Each \mathcal{V}_n is an open γ -cover of X. We define $f_m : X \to [0,1]$ as follows:

$$f_m(x) = \begin{cases} 1 & \text{if } x \in X \setminus V_{0,m}, \\ 1/(k+2) & \text{if } x \in V_{k,m} \setminus V_{k+1,m} \ (k \in \omega), \\ 0 & \text{otherwise.} \end{cases}$$

Then $f_m \in \text{USC}_p(X, \mathbb{I})$. Note that $f_m(x) < 1/(n+1)$ if and only if $x \in V_{n,m}$. Since each \mathcal{V}_n is a γ -cover of X, $f_m \to \mathbf{0}$. By property wQN^{*}, the sequence $\{f_m\}_{m \in \omega}$ has a subsequence converging quasi-normally to $\mathbf{0}$. Applying Lemma 2.1 to this quasi-normal subsequence and $\{\delta_n = 1/(n+1)\}_{n \in \omega}$, we obtain a subsequence $\{f_{m_n}\}_{n \in \omega} \subset \{f_m\}_{m \in \omega}$ such that for each $x \in X$, $f_{m_n}(x) < \delta_n = 1/(n+1)$ for all but finitely many $n \in \omega$. This shows that $\{V_{n,m_n}\}_{n \in \omega}$ (hence $\{U_{n,m_n}\}_{n \in \omega}$) is a γ -cover of X.

Combining Theorems 2.2 and 1.4, we obtain the following (so Problems 1 and 3 in [2] coincide):

COROLLARY 2.3. Properties $S_1(\Gamma, \Gamma)$, SSP^* and wQN^* are all equivalent.

3. Properties $S_1(\Gamma, \Omega)$ and $S_{fin}(\Gamma, \Omega)$

DEFINITION 3.1 ([5]). A family \mathcal{A} of subsets of a set X is an ω -cover of X if every finite subset of X is contained in some member of \mathcal{A} and Xis not a member of \mathcal{A} . A space X has property $S_1(\Gamma, \Omega)$ (resp. $S_{fin}(\Gamma, \Omega)$) if for every sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open γ -covers of X, there are $U_n \in \mathcal{U}_n$ (resp. finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n$) $(n \in \omega)$ such that $\{U_n\}_{n\in\omega}$ (resp. $\bigcup_{n\in\omega} \mathcal{V}_n$) is an ω -cover of X.

Obviously the following implications hold:

$$S_1(\Gamma, \Gamma) \Rightarrow S_1(\Gamma, \Omega) \Rightarrow S_{fin}(\Gamma, \Omega).$$

The following is easy to show, so we omit the proof.

LEMMA 3.2. If \mathcal{U} is an ω -cover of a set X, then every finite subset of X is contained in infinitely many members of \mathcal{U} .

We denote by $[X]^{<\omega}$ the set of all finite subsets of a set X.

THEOREM 3.3. The following properties of a space X are equivalent.

- (1) $S_{fin}(\Gamma, \Omega)$,
- (2) If $\{f_{n,m}\}_{n,m\in\omega} \subset \mathrm{USC}_p(X,\mathbb{I})$ and for each $n \in \omega, f_{n,m} \to \mathbf{0}$ $(m \to \infty)$, then there is $\varphi \in \omega^{\omega}$ with $\mathbf{0} \in \overline{\{f_{n,m} : n \in \omega, m \leq \varphi(n)\}}$ in $\mathrm{USC}_p(X,\mathbb{I})$,
- (3) If $\{f_m\}_{m\in\omega} \subset \mathrm{USC}_p(X,\mathbb{I})$ and $f_m \to \mathbf{0}$, then there is a sequence $\{\varepsilon_m\}_{m\in\omega} \subset (0,1)$ converging to 0 such that for every $F \in [X]^{<\omega}$ there is $m \in \omega$ with $\max\{f_m(x) : x \in F\} < \varepsilon_m$.

Proof. $(1) \Rightarrow (2)$. Assume $\{f_{n,m}\}_{n,m\in\omega} \subset \mathrm{USC}_p(X,\mathbb{I})$ and for each $n \in \omega$, $f_{n,m} \to \mathbf{0} \ (m \to \infty)$. For each $n, m \in \omega$, let $U_{n,m} = \{x \in X : f_{n,m}(x) < 1/(n+1)\}$. Since each $f_{n,m}$ is upper semicontinuous, $U_{n,m}$ is open in X. Let $\mathcal{U}_n = \{U_{n,m} : m \in \omega\}$. If there are infinitely many $n \in \omega$ with $X \in \mathcal{U}_n$, then we can take a sequence $\{f_{n_j,m_j}\}_{j\in\omega}$ which converges uniformly to $\mathbf{0}$. Therefore we may assume $X \notin \mathcal{U}_n$ for every $n \in \omega$. Hence each \mathcal{U}_n is an open γ -cover of X. Using property $\mathrm{S}_{\mathrm{fin}}(\Gamma,\Omega)$, we can take $\varphi \in \omega^{\omega}$ such that $\mathcal{U} = \{U_{n,m} : n \in \omega, m \leq \varphi(n)\}$ is an ω -cover of X. Let $F \in [X]^{<\omega}$ and let $\varepsilon > 0$. By Lemma 3.2, F is contained in infinitely many members of \mathcal{U} , hence there are $n, m \in \omega$ such that $F \subset U_{n,m}, m \leq \varphi(n)$ and $1/(n+1) < \varepsilon$. Then for every $x \in F$, $f_{n,m}(x) < 1/(n+1) < \varepsilon$. This shows $\mathbf{0} \in \overline{\{f_{n,m} : n \in \omega, m \leq \varphi(n)\}}$.

 $(2) \Rightarrow (3)$. Assume that $\{f_m\}_{m \in \omega} \subset \mathrm{USC}_p(X, \mathbb{I})$ and $f_m \to \mathbf{0}$. For each $n, m \in \omega$, let $g_{n,m} = \min\{1, (n+1)f_m\}$. Then $g_{n,m} \in \mathrm{USC}_p(X, \mathbb{I})$ and $g_{n,m} \to \mathbf{0} \ (m \to \infty)$. We take $\varphi \in \omega^{\omega}$ with $\mathbf{0} \in \overline{\{g_{n,m} : n \in \omega, m \leq \varphi(n)\}}$. We may assume that φ is strictly increasing. We define a sequence $\{\varepsilon_m\}_{m \in \omega} \subset (0, 1)$ as follows:

$$\varepsilon_m = \begin{cases} 1/2 & \text{if } m \le \varphi(0), \\ 1/(n+2) & \text{if } \varphi(n) < m \le \varphi(n+1) \ (n \in \omega). \end{cases}$$

Note that $\{\varepsilon_m\}_{m\in\omega}$ is decreasing and $\varepsilon_{\varphi(n)} = 1/(n+1)$ $(n \geq 1)$. Let $F \in [X]^{<\omega}$. Take $g_{n,m}$ such that $m \leq \varphi(n)$ and $\max\{g_{n,m}(x) : x \in F\} < 1$. Then $\max\{f_m(x) : x \in F\} < 1/(n+1) = \varepsilon_{\varphi(n)} \leq \varepsilon_m$.

 $(3) \Rightarrow (1)$. This can be proved by similar arguments to the proof of Theorem 2.2. For each $n \in \omega$, let $\mathcal{U}_n = \{U_{n,m} : m \in \omega\}$ be an open γ cover of X. For each $n, m \in \omega$, we put $V_{n,m} = U_{0,m} \cap \cdots \cap U_{n,m}$ and let $\mathcal{V}_n = \{V_{n,m} : m \in \omega\}$. Each \mathcal{V}_n is an open γ -cover of X. We define $f_m : X \to [0, 1]$ as follows:

$$f_m(x) = \begin{cases} 1 & \text{if } x \in X \setminus V_{0,m}, \\ 1/(k+2) & \text{if } x \in V_{k,m} \setminus V_{k+1,m} \ (k \in \omega), \\ 0 & \text{otherwise.} \end{cases}$$

Then $f_m \in \mathrm{USC}_p(X,\mathbb{I})$ and $f_m \to \mathbf{0}$. We take a sequence $\{\varepsilon_m\}_{m\in\omega} \subset (0,1)$ converging to 0 such that for every $F \in [X]^{<\omega}$ there is $m \in \omega$ with $\max\{f_m(x) : x \in F\} < \varepsilon_m$. Note that $1/(n+2) < \varepsilon_m \leq 1/(n+1)$ implies $f_m^{-1}([0,\varepsilon_m)) = V_{n,m}$. For each $n \in \omega$, let

$$\mathcal{V}'_n = \{ V_{n,m} : m \in \omega, \ 1/(n+2) < \varepsilon_m \le 1/(n+1) \}.$$

Since $\{\varepsilon_m\}_{m\in\omega}$ converges to 0, each \mathcal{V}'_n is a finite subfamily of \mathcal{V}_n . We observe that $\bigcup_{n\in\omega}\mathcal{V}'_n$ is an ω -cover of X. Let $F\in[X]^{<\omega}$. Then there is

 $m \in \omega$ with $\max\{f_m(x) : x \in F\} < \varepsilon_m$. Take $n \in \omega$ with $1/(n+2) < \varepsilon_m \leq 1/(n+1)$. Then $F \subset V_{n,m} \in \mathcal{V}'_n$. Consequently, $\bigcup_{n \in \omega} \{U_{n,m} : m \in \omega, 1/(n+2) < \varepsilon_m \leq 1/(n+1)\}$ is an ω -cover of X.

THEOREM 3.4. The following properties of a space X are equivalent.

- (1) $S_1(\Gamma, \Omega)$.
- (2) If $\{f_{n,m}\}_{n,m\in\omega} \subset \mathrm{USC}_p(X,\mathbb{I})$ and for each $n \in \omega, f_{n,m} \to \mathbf{0}$ $(m \to \infty)$, then there is $\varphi \in \omega^{\omega}$ with $\mathbf{0} \in \overline{\{f_{n,\varphi(n)} : n \in \omega\}}$ in $\mathrm{USC}_p(X,\mathbb{I})$.
- (3) If $\{f_m\}_{m\in\omega} \subset \mathrm{USC}_p(X,\mathbb{I}), f_m \to \mathbf{0} \text{ and } \{\varepsilon_m\}_{m\in\omega} \subset (0,1) \text{ is a convergent sequence to } 0, then there is <math>\varphi \in \omega^{\omega}$ such that for every $F \in [X]^{<\omega}$ there is $m \in \omega$ with $\max\{f_{\varphi(m)}(x) : x \in F\} < \varepsilon_m$.

Proof. (1) \Rightarrow (2). Assume $\{f_{n,m}\}_{n,m\in\omega} \subset \mathrm{USC}_p(X,\mathbb{I})$ and for each $n \in \omega$, $f_{n,m} \to \mathbf{0} \ (m \to \infty)$. For each $n, m \in \omega$, let $U_{n,m} = \{x \in X : f_{n,m}(x) < 1/(n+1)\}$. Since each $f_{n,m}$ is upper semicontinuous, $U_{n,m}$ is open in X. Let $\mathcal{U}_n = \{U_{n,m} : m \in \omega\}$. By the same argument as in the proof of Theorem 3.3, we may assume that each \mathcal{U}_n is an open γ -cover of X. Using property $S_1(\Gamma, \Omega)$, we take $\varphi \in \omega^{\omega}$ such that $\mathcal{U} = \{U_{n,\varphi(n)} : n \in \omega\}$ is an ω -cover of X. Let $F \in [X]^{<\omega}$ and let $\varepsilon > 0$. By Lemma 3.2, there is $n \in \omega$ such that $F \subset U_{n,\varphi(n)}$ and $1/(n+1) < \varepsilon$. This shows $\mathbf{0} \in \overline{\{f_{n,\varphi(n)} : n \in \omega\}}$.

 $(2) \Rightarrow (3).$ Assume $\{f_m\}_{m \in \omega} \subset \mathrm{USC}_p(X, \mathbb{I}), f_m \to \mathbf{0}$ and let $\{\varepsilon_m\}_{m \in \omega} \subset (0, 1)$ be a convergent sequence to 0. For each $n, m \in \omega$, let $g_{n,m} = \min\{1, (1/\varepsilon_n)f_m\}$. Then $g_{n,m} \in \mathrm{USC}_p(X, \mathbb{I})$ and $g_{n,m} \to \mathbf{0} \ (m \to \infty)$. We take $\varphi \in \omega^{\omega}$ with $\mathbf{0} \in \overline{\{g_{n,\varphi(n)} : n \in \omega\}}$. Let $F \in [X]^{<\omega}$. Take $g_{m,\varphi(m)}$ with $\max\{g_{m,\varphi(m)}(x) : x \in F\} < 1$. Then $\max\{f_{\varphi(m)}(x) : x \in F\} < \varepsilon_m$.

 $(3) \Rightarrow (1)$. This can also be proved by similar arguments to the proof of Theorem 2.2. For each $n \in \omega$, let $\mathcal{U}_n = \{U_{n,m} : m \in \omega\}$ be an open γ -cover of X. For each $n, m \in \omega$, we put $V_{n,m} = U_{0,m} \cap \cdots \cap U_{n,m}$ and let $\mathcal{V}_n = \{V_{n,m} : m \in \omega\}$. Each \mathcal{V}_n is an open γ -cover of X. We define $f_m : X \to [0, 1]$ as follows:

$$f_m(x) = \begin{cases} 1 & \text{if } x \in X \setminus V_{0,m}, \\ 1/(k+2) & \text{if } x \in V_{k,m} \setminus V_{k+1,m} \ (k \in \omega), \\ 0 & \text{otherwise.} \end{cases}$$

Then $f_m \in \mathrm{USC}_p(X,\mathbb{I})$ and $f_m \to \mathbf{0}$. For the sequences $\{f_m\}_{m\in\omega}$ and $\{\varepsilon_0 = 1/2, \varepsilon_m = 1/(m+1)\}_{m\geq 1}$, there is $\varphi \in \omega^{\omega}$ such that for every $F \in [X]^{<\omega}$ there is $m \in \omega$ with $\max\{f_{\varphi(m)}(x) : x \in F\} < \varepsilon_m$. Note that the condition $\max\{f_{\varphi(m)}(x) : x \in F\} < \varepsilon_m$ implies $F \subset V_{m,\varphi(m)}$. Therefore $\{V_{n,\varphi(n)} : n \in \omega\}$ (hence $\{U_{n,\varphi(n)} : n \in \omega\}$) is an ω -cover of X.

REFERENCES

- [1] Z. Bukovská, Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53–62.
- [2] L. Bukovský, On wQN_{*} and wQN^{*} spaces, Topology Appl. 156 (2008), 24–27.
- [3] L. Bukovský, I. Recław and M. Repický, Spaces not distinguishing pointwise and quasinormal convergence of real functions, ibid. 41 (1991), 25–40.
- [4] R. Engelking, *General Topology*, Heldermann, Berlin, 1989.
- [5] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31–62.
- [6] —, A sequential property of $C_p(X)$ and a covering property of Hurewicz, Proc. Amer. Math. Soc. 125 (1997), 2789–2795.
- [7] —, Sequential convergence in $C_p(X)$ and a covering property, East-West J. Math. 1 (1999), 207–214.

Department of Mathematics Kanagawa University Yokohama 221-8686, Japan E-mail: sakaim01@kanagawa-u.ac.jp

> Received 27 November 2008; revised 25 March 2009

(5131)

256