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INVOLUTIONS ON TORI WITH
CODIMENSION-ONE FIXED POINT SET

BY

ALLAN L. EDMONDS (Bloomington, IN)

Abstract. The standard P. A. Smith theory of p-group actions on spheres, disks, and
euclidean spaces is extended to the case of p-group actions on tori (i.e., products of circles)
and coupled with topological surgery theory to give a complete topological classification,
valid in all dimensions, of the locally linear, orientation-reversing, involutions on tori with
fixed point set of codimension one.

1. Introduction. We extend the standard P. A. Smith theory of p-group
actions on spheres, disks, and euclidean spaces to the case of p-group actions
on tori Tn = S1×· · ·×S1 (n factors). Then we apply the topological surgery
machine to give a complete topological classification of locally linear actions
of the group C2 of order 2 on tori with codimension-one fixed point set.

The simplest standard model of such an action of C2 is the action ob-
tained as the cartesian product of the trivial action on Tn−1 with the action
on the circle S1 fixing two points. Its fixed point set consists of two copies of
Tn−1, which together separate Tn into two copies of Tn−1× I. The action of
the generating involution may then be described as the map of the double
D(Tn−1×I) = Tn−1×I∪Tn−1×I (identified along their common boundaries
by the identity) that interchanges the two summands. Another model action
is that where the generator interchanges two coordinates of Tn, fixing a sin-
gle copy of Tn−1. In this case the orbit space of the action can be described
as the nonorientable, or twisted, I-bundle over Tn−1. Such an I-bundle is
determined by an epimorphism π1(Tn−1) → Z2, and any two such twisted
I-bundles are equivalent, allowing homeomorphisms of the base torus. By
analogy with terminology in the topology of surfaces, we call such a twisted
I-bundle a Möbius band.

We will show that for a general locally linear involution on Tn with
fixed point set of codimension one, the fixed point set must consist of either
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one or two Z[Zn−1]-homology (n − 1)-tori. We will refer to the number of
components of the fixed point set as the Type of the action.

Then we will give a complete analysis of the case of two components,
showing that any two Z[Zn−1]-homology (n− 1)-tori arise as the fixed point
set of a Type 2 action, and that two such actions with the same fixed point
set must be equivalent. Similarly, any single Z[Zn−1]-homology (n−1)-torus
is the fixed point set of a Type 1 action on Tn, and any two Type 1 actions
with the same fixed point set are equivalent.

2. Smith theory for p-group actions on tori. The most basic
P. A. Smith theory, as described, for example, by G. Bredon [1, Chapter 3],
implies that the fixed point set of a p-group acting on euclidean space is
Zp-acyclic. We apply the technique of lifting a group action to the universal
covering space, perhaps first used by P. Conner and D. Montgomery [3] and
heavily exploited by Conner and F. Raymond [4].

Theorem 2.1 (Homology torus fixed set of constant dimension). If a
finite p-group G acts on the n-torus, then each component of the fixed point
set has the mod p homology of a k-torus for some k, and in fact , the Zp[Zk]-
homology of T k. Moreover , all components of the fixed point set have the
same dimension.

Proof. Let x be a point of the fixed point set F . We may lift the action
of G to a covering action on Rn uniquely determined by the requirement
that it fix a chosen point lying over the point x ∈ F . By Smith theory,
the fixed point set F̃ of G acting on Rn is a Zp-acyclic Zp-homology k-
manifold for some k ≤ n. Moreover, F̃ projects as a covering map into F
with its image coinciding with the component Fx of F in which x lies. The
group of deck transformations of the regular covering F̃ → Fx consists of
the subgroup of the group Zn of deck transformations for Rn → Tn that
leave F̃ invariant. In particular, it is a free abelian group of rank k for some
k ≤ n. The spectral sequence of the covering F̃ → Fx (with Zp-coefficients)
shows that H∗(Fx; Zp) ≈ H∗(T k; Zp), and that, indeed, almost by definition,
H∗(Fx; Zp[Zk]) ≈ H∗(T k; Zp[Zk]).

It remains to see that all components of the fixed point set have the same
dimension. To this end, consider again the covering F̃ → Fx arising by choos-
ing a fixed point x and lifting the group action to Rn, fixing a chosen point
over x. One can identify the group of deck transformations with the invariant
elements π1(Tn, x)G. The dimension of Fx is then the mod p cohomological
dimension of this group. (See Brown [2], for example, for information about
cohomological dimension.) But, since π1(Tn, x) is abelian, the latter group,
as well as the action of G on it, is independent of the choice of fixed base
point. The result follows.
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Corollary 2.2 (Nontrivial homology). If a finite p-group acts on an
n-torus, then each k-dimensional component Fx of the fixed point set carries
the nonzero mod p homology class of a standard k-subtorus of Tn.

Proof. As above, lift the given action to one on the universal covering Rn.
The image of π1(Fx, x) in π1(Tn, x) must be π1(Tn, x)G, which (being a fixed
point set) is a direct summand of π1(Tn, x) = Zn. Therefore each component
Fx carries the nontrivial mod p homology class of a standard k-subtorus
T k, since the covering F̃ → Fx is classified by a map Fx → T k factoriz-
ing the inclusion Fx → Tn up to homotopy and inducing an isomorphism
H∗(Fx; Zp)→ H∗(T k; Zp).

Here is an alternative approach to the results of this section. An action of
G on Tn determines a geometric model action of G on Tn, which we denote
briefly by Tn

G, by Lee and Raymond [11]. There is then a G-map Tn → Tn
G

inducing an isomorphism on π1, as follows from a construction that perhaps
goes back to Serre. The best way to see this is by lifting both actions to the
universal covers and producing an equivariant map at that level by trivial
obstruction theory, using the fact that the model action has contractible
fixed point sets. Then we can apply ordinary relative Smith theory to the
pair (Tn

G, T
n), i.e., to the mapping cylinder relative to the domain, to obtain

the desired conclusions.

3. Involutions. Now consider the situation of orientation-reversing ac-
tions of the group C2 of order two on the n-torus Tn such that the fixed
point set has dimension n− 1.

As proved above, each component Fx of the fixed point set has the
Z2[Zn−1]-homology of Tn−1. We will argue that Fx is orientable, that there
are exactly one or two components of the fixed point set, and that in fact
each component has the Z[Zn−1]-homology of Tn−1.

Lemma 3.1 (Orientability). If C2 acts on the n-torus with codimen-
sion-one fixed point set , then each component of the fixed point set is
orientable.

Proof. Consider the covering F̃ → Fx, with its deck transformation group
a summand Zn−1 ⊂ Zn. Note that F̃ , being mod 2 acyclic, is certainly
orientable. If Fx were nonorientable, then the action of Zn−1 on F̃ would
reverse orientation. But of course Zn−1 preserves orientation on all of Rn.
Thus the action of Zn−1 interchanges the sides of F̃ in Rn. It follows that
Rn/Zn−1 is an orientable, noncompact manifold with boundary Fx. This
implies that the boundary, namely Fx, is also orientable, contradicting the
assumption that Fx is nonorientable.
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Lemma 3.2 (One or two components). If C2 acts on the n-torus with
codimension-one fixed point set , then the fixed point set contains either one
or two components.

Proof. By the basic inequality of Smith theory,∑
i≥0

dimZ2 Hi(F ; Z2) ≤
∑
i≥0

dimZ2 Hi(Tn; Z2).

Thus
2n−1b0(F ) ≤ 2n.

It follows that there are at most two components.

We note that this also follows from more general formulas for the number
of components of a fixed point set in a torus (see M. Sadowski [12]) or other
aspherical manifolds (see Conner and Raymond [5]).

In this case there are regular coverings of each fixed point component
Fi with deck transformation group isomorphic to Zn−1, that are Z2-acyclic.
If there are two components, they separate Tn into two complementary do-
mains interchanged by the group action. The closure of either complementary
domain is homeomorphic to the orbit space. If there is only one component
of the fixed point set, then it is nonseparating. The orbit space is a nonori-
entable manifold with boundary F , whose interior is covered 2-to-1 by the
complement of F in Tn.

The codimension-one aspect allows us to do a bit better, gleaning integral,
not just mod 2, information.

Proposition 3.3 (Z[Zn−1]-homology). If the group C2 of order two acts
on the n-torus Tn such that the fixed point set has dimension n − 1, then
any component Fi of the fixed point set has the Z[Zn−1]-homology of Tn−1. In
particular , there is a regular covering of Fi with group Zn−1 that is Z-acyclic.
Moreover , the orbit space Wn also has the Z[Zn−1]-homology of Tn−1 and
has π1(W ) ≈ Zn−1.

Proof. As we have seen, one may lift the action of C2 to a covering action
on Rn whose fixed point set F̃ covers (one component of) F ⊂ Tn. And F̃
is a Z2-acyclic Z2-homology (n − 1)-manifold, by basic Smith theory, and
the group of deck transformations preserving F̃ is isomorphic to Zn−1 and
a summand of π1(Tn). By duality such a mod 2 hyperplane F̃ separates Rn

into two components U and V . The involution in C2 allows one to define re-
tractions of Rn onto the closures U and V of the complementary domains. It
follows that U and V are acyclic over Z and have trivial fundamental group.
Then a Mayer–Vietoris sequence argument implies that F̃ is also acyclic.
(Technical note: one needs to assume that either the action is “nice” or that
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one is using, say, Čech cohomology.) It thus follows that (each component
of) F itself has the Z[Zn−1]-homology of Tn−1.

It remains to discuss the homology of W . The full action of Zn on Rn

creates a Zn/Zn−1 = Z orbit of pairwise disjoint “parallel” copies of F̃ , sepa-
rating Rn into a sequence of “strip” domains Ui. The closures U i of these strip
domains are all acyclic, simply connected by van Kampen’s theorem, invari-
ant precisely under π1(Tn)C2 , and cover a complementary domain in Tn. It
follows that both complementary domains there have the Z[Zn−1]-homology
of Tn−1, and have π1 = Zn−1. In the case where the fixed point set has two
components, and two complementary domains interchanged by the involu-
tion, this describes the orbit space as well.

Finally, we must complete the argument in the case when the fixed point
set is connected and has a single complementary domain. Then (the interior
of) the orbit space is covered two-to-one by the complement of the fixed
set in Tn. In this case intW is necessarily nonorientable, with orientable
double covering given by Tn − F . It is necessary to note that the action of
C2 on H1(Tn−F ) = Zn−1 is trivial. Indeed, H1(Tn−F ) and H1(F ) coincide
in H1(Tn). Also, W is aspherical since it is covered by a contractible strip
domain in Rn. It follows that π1(W ) is a torsion-free central extension of
Zn−1 by C2, hence isomorphic to Zn−1.

Remark 3.4. Note that in the Type 1 case, the orientable double cov-
ering Tn − F → W is trivial over the image of π1(∂W ), and completely
determined by this condition.

Remark 3.5. When n = 3 (and the action is locally linear) we observe
that the orbit spaceW 3 is an irreducible 3-manifold. Any embedded 2-sphere
would be trivially covered by a pair of 2-spheres in T 3. Since T 3 is irreducible,
these 2-spheres must bound 3-balls in T 3. It follows that the original 2-sphere
in W 3 must bound a ball as well.

Remark 3.6. The observation that one obtains integral, not just mod 2,
information about codimension-one fixed sets and their complementary do-
mains was perhaps first made by the author and the late D. Galewski in [7],
in the context of PL, not necessarily locally linear, actions on spheres.

Our goal now becomes one of showing that any homology (n − 1)-torus
or pair of homology (n − 1)-tori arise as fixed point sets of locally linear
involutions, and that any two such involutions with the same fixed point set
are equivalent.

4. Classification of homology tori. Here we describe the classification
of the sort of homology tori that appear as codimension-one fixed point sets
in standard tori.
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Definition 1. A Z[Zn]-homology n-torus is a closed orientable n-mani-
fold Mn with the properties that H1(Mn; Z) = Zn and H̃∗(M̃n; Z) = 0,
where M̃n denotes the universal abelian cover of Mn (with deck transfor-
mation group Zn) and H̃ denotes reduced homology.

In dimensions at least 3 one can obtain simple nontrivial examples in
the form Tn#Σn, where Σn is a non-simply connected integral homology
sphere. With more work one can construct interesting examples that do not
split in such a simple way.

Since the torus Tn is aspherical, for any Z[Zn]-homology n-torus Mn

there is a map f : Mn → Tn inducing an isomorphism of H1, indeed all Hk,
and of homology with local coefficients Z[Zn], well-defined up to homotopy
and composition with a self-homotopy equivalence of Tn.

Definition 2. A Z[Zn]-homology-cobordism (of homology n-tori) is an
(n + 1)-manifold Wn+1 with two boundary components, Xn and Y n, such
that all three spaces have compatible maps to Tn inducing isomorphisms of
homology with local coefficients Z[Zn]. In particular,

H∗(Wn+1, Xn; Z[Zn]) = 0 = H∗(Wn+1, Y n; Z[Zn]).

If such a cobordism exists we say that Xn and Y n are Z[Zn]-homology
cobordant. A Z[Zn]-homology-cobordismWn+1 will be called a strong Z[Zn]-
homology cobordism if π1(Wn+1) ≈ Zn.

We will apply the following two results that generalize the standard topo-
logical surgery classification of homotopy tori to the context of homology tori.

Proposition 4.1. Any two Z[Zn]-homology n-tori are strongly Z[Zn]-
homology cobordant.

Proof. It suffices to show that any Z[Zn]-homology n-torusXn is strongly
Z[Zn]-homology cobordant to the standard torus Tn.

For n ≤ 2 this is true by the classification of 1- and 2-manifolds.
For n ≥ 4 it is an immediate consequence of the “Plus Construction” of

Freedman and Quinn [8, 11.1A (dimension 4) and 11.2 (higher dimensions)].
This requires noting that the kernel of the abelianization map π1 → Zn

is perfect and moreover that Zn is “good” (required only in dimension 4).
The Plus Construction describes a homology cobordism with π1 = Zn to a
homology torus with π1 = Zn, and the latter is homeomorphic to Tn, by the
classification of homotopy tori.

For n = 3 this is a special case of Theorem 15 of Jahren and Kwasik [9],
who prove that the Z[π1(M3)]-homology structure set of a closed aspher-
ical 3-manifold is trivial in the cases when the manifold is Seifert fibered,
hyperbolic or Haken with at least one hyperbolic piece in its torus decom-
position. In our case we have M3 = T 3, which is certainly Seifert fibered.
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This line of reasoning requires a version of the surgery exact sequence for
homology equivalences, and the use of periodicity to move into higher dimen-
sions, finally quoting higher-dimensional rigidity results of Farrell and Jones,
Leeb, and Stark. This theory produces a Z[Zn]-homology cobordism. The
Plus Construction, applied to the cobordism, gives a strong Z[Zn]-homology
cobordism.

Remark 4.2. We outline a somewhat less-learned approach for the spe-
cial case of 3-dimensional homology tori. First we need to note a priori
that any Z[Zn]-homology equivalence X3 → T 3 is normally cobordant to
the identity id : T 3 → T 3. This is in fact Theorem 2 in [9], which uses
simply the existence of the surgery machine and an explicit calculation of
low-dimensional normal invariants to prove that the surgery obstruction map
is a split monomorphism. It remains to justify that the surgery obstruction
of the normal cobordism can be made to vanish. Let F : W 4 → T 3 × I
be a normal map. The Wall group L4(Z3) is isomorphic to Z ⊕ Z3

2 by the
Wall–Shaneson product formula. The Z is given by signature /8 and the Z2

terms are given by codimension 2 Arf invariants. We can kill the signature
by connected sum with a suitable number of copies of the ±E8 manifold.
Similarly, we may change any nonzero Arf invariants by replacing a tubular
neighborhood of a transverse preimage of a standard 2-torus, of the form
F 2× intD2, with F 2× (T 2− intD2), where the T 2 factor is given the fram-
ing with nonzero Arf invariant. Compare the argument of J. Davis [6, proof
of the Theorem]. Then topological surgery can be carried out on the modi-
fied 4-manifold, since the surgery obstruction vanishes and the fundamental
group of the target is “good”, to produce the required strong Z[Z3]-homology
cobordism.

Proposition 4.3. Any two strong Z[Zn]-homology cobordisms (irredu-
cible if n+ 1 = 3) between the same pair of Z[Zn]-homology n-tori are hom-
eomorphic.

Proof. For n+1 ≥ 4 this is an immediate consequence of the uniqueness
clause in the Freedman–Quinn Plus Construction, [8, p. 197]. For n+ 1 = 3
it is a special case of the h-cobordism theorem for Haken 3-manifolds. And
for n+ 1 = 2 it is a trivial consequence of the classification of surfaces.

Remark 4.4. We could drop the irreducibility hypothesis when n+1 = 3
by invoking the Poincaré Conjecture as proved by G. Perelman. But since
irreducibility is an easily verified necessary condition it seems reasonable
simply to assume it.

For the classification of Type 1 involutions we need similar results where
strong Z[Zn]-homology cobordisms are replaced by what we shall call strong
Z[Zn]-homology Möbius bands.
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Definition 3. A Z[Zn]-homology Möbius band is a nonorientable (n+1)-
manifold Wn+1 with one boundary component, Xn, such that both Xn and
Wn+1 have the Z[Zn]-homology of Tn, and the inclusion induced homo-
morphism H1(Xn) → H1(Wn+1) is injective with image of index 2. The
homology Möbius band is called strong if in addition π1(Wn+1) ≈ Zn.

In this context we have the analogues of the existence and topological
uniqueness of strong homology cobordisms of homology tori, as follows.

Proposition 4.5. Any Z[Zn]-homology n-torus Xn is the boundary of
a strong Z[Zn]-homology Möbius band.

Proof. Just attach a strong Z[Zn]-homology cobordism between Xn and
Tn to the standard Möbius band Tn ×̃ I along the boundary Tn.

Lemma 4.6. Let Wn+1 be a strong Möbius band with boundary Tn. (As-
sume Wn+1 is irreducible if n + 1 = 3.) Then Wn+1 is homeomorphic to
Tn ×̃ I.

Proof. What we need, from a topological surgery point of view, is for the
topological structure set S(Tn ×̃ I) (rel boundary) to vanish. This follows
from the calculation of the surgery obstruction groups of π1 = Zn and the
fact that topological surgery “works” when n + 1 ≥ 5. For detailed treat-
ment, see Kirby and Siebenmann [10, Appendix C, especially Theorems C.2
and C.7], where Theorem C.7 in particular allows nontrivial disk bundles
over tori.

The same surgery argument applies when n + 1 = 4, by Freedman and
Quinn [8], since the fundamental groups in question are good.

When n + 1 = 3, this follows from standard Waldhausen theory of suf-
ficiently large 3-manifolds, since a Möbius band is Haken. In dimension
n+ 1 = 2, it is a consequence of the classification of surfaces.

Proposition 4.7. Any two strong Z[Zn]-homology Möbius bands (irre-
ducible if n+ 1 = 3) with the same Z[Zn]-homology n-torus as boundary are
homeomorphic.

Proof. LetWn+1
1 andWn+1

2 be two strong Z[Zn]-homology Möbius bands
(irreducible if n + 1 = 3) with the same Z[Zn]-homology n-torus Xn as
boundary. Also, let V n+1 be the unique strong Z[Zn]-homology cobordism
between Xn and Tn. By Lemma 4.6, Wn+1

i ∪Xn V n+1 ∼= Tn ×̃ I. Then we
may view (Tn ×̃I)×I as a strong Z[Zn]-homology cobordism betweenWn+1

1

and Wn+1
2 . But over the boundary we have V n∪T n V n between Xn and Xn.

Applying the Plus Construction to V n ∪T n V n, we augment (Tn ×̃ I) × I
to an actual s-cobordism between Wn+1

1 and Wn+1
2 . Thus the result follows

from the s-cobordism theorem. This requires n+ 2 ≥ 5 or n+ 1 ≥ 4.
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It remains to consider the low-dimensional cases where n + 1 ≤ 3. In
these cases the boundary is a standard torus, and the result follows from
Lemma 4.6.

Remark 4.8. Note that the orientable double cover of a strong Möbius
band with boundary Xn is the unique strong Z[Zn]-homology cobordism of
Xn to itself. It follows that a strong Z[Zn]-homology cobordism from Xn

to itself admits a unique free, orientation-reversing involution exchanging
boundary components.

5. Classification of involutions. Finally, we interpret the preceding
classification of homology tori in the context of involutions with codimension-
one fixed point set.

Proposition 5.1. If Xn−1 and Y n−1 are Z[Zn−1]-homology (n − 1)-
tori and are Z[Zn−1]-homology cobordant , by a strong (irreducible) Z[Zn−1]-
homology cobordism Wn, then the group C2 acts on the n-torus Tn with fixed
point set homeomorphic to Xn−1 ∪ Y n−1, and with orbit space Wn.

Proof. The double of Wn clearly admits an involution with fixed point
set Xn−1 ∪ Y n−1, and with orbit space Wn. The double is easily seen to be
a homotopy torus, hence be homeomorphic to the standard torus.

Since the strong (irreducible) Z[Zn−1]-homology cobordism between two
Z[Zn−1]-homology (n − 1)-tori is unique, by Proposition 4.3 we have the
following.

Theorem 5.2. The set of equivariant homeomorphism classes of locally
linear involutions on Tn with disconnected , codimension-one fixed point sets
is in one-to-one correspondence with the set of unordered pairs {Xn−1, Y n−1}
of homeomorphism classes of Z[Zn−1]-homology (n− 1)-tori.

Similarly, in the case of connected fixed point sets, we have the following.

Proposition 5.3. If Xn−1 is a Z[Zn−1]-homology (n−1)-torus bounding
a strong (irreducible) Z[Zn−1]-homology Möbius band Wn, then the group C2

acts on the n-torus Tn with fixed point set homeomorphic to Xn−1, and with
orbit space Wn.

Proof. The orientable double covering ofWn clearly admits a fixed-point-
free involution interchanging two copies of Xn−1, and with orbit space Wn.
Identifying the two copies of Xn−1 by the involution produces a closed man-
ifold V n with involution having fixed point set Xn−1 and orbit space Wn.
By construction V n has the homotopy type of an n-torus, hence is homeo-
morphic to the n-torus.

Theorem 5.4. The set of equivariant homeomorphism classes of locally
linear involutions on Tn with connected , codimension-one fixed point sets is
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in one-to-one correspondence with the set of homeomorphism classes Xn−1

of Z[Zn−1]-homology (n− 1)-tori.
Proof. This follows from Proposition 4.7, since the orientable double cov-

ering (depending only on the corresponding Möbius band with boundary
Xn−1) then determines the action.
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