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SEMIVARIATIONS OF AN ADDITIVE FUNCTION
ON A BOOLEAN RING

BY

ZBIGNIEW LIPECKI (Wrocław)

Abstract. With an additive function ϕ from a Boolean ring A into a normed space
two positive functions on A, called semivariations of ϕ, are associated. We characterize
those functions as submeasures with some additional properties in the general case as well
as in the cases where ϕ is bounded or exhaustive.

1. Introduction. Let A be a Boolean ring and let ϕ be an additive
function from A into a normed space. Associated with ϕ are two positive
functions ϕ̃ and ϕ̄ on A, both called semivariations of ϕ in the literature
(see the beginning of Section 4). Each of them is increasing, subadditive and
has zero value at the minimal element of A, i.e., it is a submeasure, in our
terminology.

Theorem 3, which is one of the main results of this paper (1), exhibits
necessary and sufficient conditions for a submeasure on A to be representable
as ϕ̃ or ϕ̄. Those conditions are multiple subadditivity of Lorentz [15] and
property (G) introduced in [12]. We also deal with an analogous, but much
simpler, problem of characterizing ϕ̃ and ϕ̄ in the case where ϕ is additionally
bounded or exhaustive (Theorem 4). The case where ϕ is σ-additive and A
is σ-complete will be discussed in a subsequent paper [14].

A basic tool used in the proofs is a representation of multiply subadditive
submeasures as upper envelopes of sets of positive additive functions due, in
the finite case, to Lorentz [15] (see also Theorem 1 below). Motivated by this
representation and some results of Dellacherie and Iwanik [2], we introduce
what we call the degree of a multiply subadditive submeasure and present
some relevant examples and observations. In particular, we give a precise
estimate of the degree of a finite submodular submeasure on a finite Boolean
algebra (Theorem 2).
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The paper is divided into five sections. Sections 2 and 3 are concerned
with submeasures while Section 4 presents some auxilary results on semivari-
ations of a vector-valued additive function. The main results, Theorems 3
and 4, are contained in Section 5.

We note that the variation of an additive function from a Boolean algebra
into an Abelian normed group is characterized, in the general and bounded
cases, in [12] and, in the exhaustive case, in [13]. Some ideas used in [12] also
play an essential role in the present paper.

2. Preliminaries on submeasures. Throughout the paper A stands for
a Boolean ring with the operations of join, meet, difference and symmetric
difference denoted by ∨, ∧, r and 4, respectively. The natural ordering of A
is denoted by ≤ and its minimal element by 0, respectively. For every a ∈ A
we denote by Ca the ideal in A generated by a, i.e.,

Ca = {b ∈ A : b ≤ a}.

We say that A is nonatomic or atomless if for every nonzero a ∈ A there
are nonzero disjoint a1, a2 ∈ A with a1 ∨ a2 = a.

We call a function η : A → [0,∞] a submeasure if it is increasing, sub-
additive and satisfies the condition η(0) = 0. We say that η is exhaustive if
η(an) → 0 whenever (an) is a sequence of pairwise disjoint elements in A.
(This is an adaptation of Drewnowski’s terminology [4, p. 277]; cf. also [22,
Definition 2.1].) As is easily seen, a finite exhaustive submeasure on A is
bounded, i.e.,

sup{η(a) : a ∈ A} <∞.

This accounts for the term strongly bounded used in the literature inter-
changeably with exhaustive.

Let η be a submeasure on A. We set

Iη = {a ∈ A : η(a) <∞}.

Clearly, Iη is an ideal in A. We say that η is semifinite provided for every
a ∈ A we have

η(a) = sup{η(b) : b ∈ Iη and b ≤ a}.

The following property the submeasure η may have is basic for our pur-
poses:

(G) Given a ∈ ArIη and t > 0, there are disjoint a1, a2 ∈ A with η(a1),
η(a2) > t and a1 ∨ a2 = a.

For a discussion of property (G) in a less general setting see [12], espe-
cially pp. 446–447.
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We denote by dens η the density character of A equipped with the topol-
ogy generated by the semimetric

dη(a, b) = min(1, η(a 4 b)) for all a, b ∈ A.
We call a function η : A→ [0,∞] a (positive) quasi-measure or a content

if it is additive and satisfies the condition η(0) = 0. Clearly, η is then a sub-
measure. We note that for a finite quasi-measure exhaustivity is equivalent
to boundedness (see [22, Theorem 2.10]). We set

c(A) = {η ∈ [0,∞]A : η is a quasi-measure}.
A function η : A→ [0,∞] is said to be submodular or strongly subadditive

provided that

η(a1 ∨ a2) + η(a1 ∧ a2) ≤ η(a1) + η(a2) for all a1, a2 ∈ A.
This condition holds and, in fact, turns into equality if η is additive.

We say that a1, . . . , an ∈ A cover a ∈ A exactly k times if the following
three conditions hold:

1o ai ≤ a for each i,

2o a =
∨

1≤i1<···<ik≤n

k∧
j=1

aij ;

3o
k+1∧
j=1

aij = 0 whenever 1 ≤ i1 < · · · < ik < ik+1 ≤ n.

(This definition appears in [15, p. 456], in a somewhat different wording.)
We note that, in the case where A is a ring of sets, conditions 1o–3o are
jointly equivalent to the following one:

k1a =
n∑
i=1

1ai .

Following [15, p. 455], we call a function η : A → [0,∞] multiply subad-
ditive (m.s., for short) if

kη(a) ≤
n∑
i=1

η(ai)

whenever a1, . . . , an ∈ A cover a ∈ A exactly k times. (In fact, in [15]
only finite functions are considered.) Every quasi-measure on A is m.s., with
equality holding in the definition above; cf. [15, p. 457]. We shall also need
the following more general result:

Lemma 1. Every submodular function η : A→ [0,∞] is m.s.

This lemma is essentially due to Eisenstatt and Lorentz [5, Theorem 2(β)];
see also [1, Remark 1], or [9, Lemma 3]. The converse fails to hold even for
a finite submeasure η (see, e.g., [10, Example 3.2]).
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The next result will be applied in the proofs of Theorem 1 in Section 3
and Theorem 3 in Section 5. For A a Boolean algebra and η a quasi-measure
it is covered by [12, Proposition 1]. A part of the latter result is contained
in [11, Propositions 3.1.8 and 3.1.9]. The proof below follows [11] and [12].

Proposition 1. Let η be a [m.s.] submeasure on A. Then there exist
submeasures η1 and η2 on A such that

(a) η1 is semifinite [and m.s.];
(b) η2(A) ⊂ {0,∞};
(c) η = max(η1, η2) (2).

If , moreover , η has property (G), then η2 can be chosen with this property.

Proof. Set
η1(a) = sup{η(b) : b ∈ Iη and b ≤ a}

for all a ∈ A. It is easily seen that η1 is a semifinite submeasure on A. As
for multiple subadditivity, it is enough to observe that, if a1, . . . , an cover a
exactly k times and b ∈ Ca, then a1 ∧ b, . . . , an ∧ b cover b exactly k times.

Set
J = {a ∈ A : η(b) = η1(b) for every b ∈ Ca}.

Clearly, J is a hereditary subset of A with Iη ⊂ J . Moreover, if a1, a2 ∈ J ,
then a1 ∨ a2 ∈ J . Indeed, for b ∈ Ca1∨a2 with η(b) =∞ we have

η(b ∧ a1) =∞ or η(b ∧ a2) =∞,
and so η1(b) =∞. Thus a1 ∨ a2 ∈ J , which shows that J is an ideal in A.

Set

η2(a) =

{
0 if a ∈ J,
∞ if a ∈ Ar J.

Then η2 is a submeasure on A, and (b) and (c) hold.
The second part of the assertion can be established in exactly the same

way as the corresponding part of [12, Proposition 1].

3. Lorentz’ theorem and the degree of an m.s. submeasure. The
following result is due, for η finite, to Lorentz [15, Theorem 4]. In the general
case the equivalence of (i) and (iii) is due to Plappert [17, Satz 3.5].

Theorem 1. For a positive function η on A the following three condi-
tions are equivalent :

(i) η is an m.s. submeasure;
(ii) there exists a set Γ of finite quasi-measures on A such that supΓ = η;
(iii) there exists a set Γ of quasi-measures on A such that supΓ = η.

(2) Here and in what follows, the symbols max and sup applied to a set of positive
functions on A mean the pointwise maximum and supremum of that set, respectively.
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Proof. Obviously, (ii) implies (iii). The implication (iii)⇒(i) is clear,
since every quasi-measure on A is m.s., as noted in the passage introducing
Lemma 1 above. The implication (i)⇒(ii) can be reduced to the finite case
as follows. Let η satisfy (i), and choose η1 and η2 according to Proposition 1.
For all a ∈ A and b ∈ Iη1 set

(η1)b(a) = η1(a ∧ b).

Then (η1)b is a finite m.s. submeasure on A and

η1 = sup{(η1)b : b ∈ Iη1}.

In view of Lorentz’ theorem, there exists a set Γ1 of finite quasi-measures on A
such that supΓ1 = η1. On the other hand, η2 is a quasi-measure on A, and
so there exists a set Γ2 of finite quasi-measures on A such that supΓ2 = η2

(see [11, Proposition 3.1.6]). Setting Γ = Γ1 ∪ Γ2, we get (ii).

We note that the implication (iii)⇒(ii) of Theorem 1 also follows from
[11, Corollary 3.1.17].

Theorem 1 shows that an m.s. submeasure is “nowhere” pathological.
Recall that a submeasure η on A is called pathological if for every γ ∈ c(A)
with γ ≤ η we have γ = 0 (see [8, p. 203]; cf. also [18]). We also note that in
[6, p. 21] this last term is given a weaker meaning, so that non-pathological
submeasures of [6] coincide with m.s. ones, in view of Theorem 1.

Motivated by Theorem 1 and some results of Dellacherie and Iwanik [2],
we say that an m.s. submeasure η on A has degree m and write

deg η = m,

where m is a cardinal number ≥ 1, provided m is the smallest among the
cardinalities of sets Γ ⊂ c(A) for which (iii) above holds.

Clearly, deg η = 1 if and only if η ∈ c(A). According to [2, théorème 2],
for A being the algebra of all subsets of {1, . . . , n}, where n is a natural
number ≥ 3, we have

deg η ≤ 2n − n− 1 for each finite m.s. submeasure η on A,
deg η0 = 2n−1 for some finite m.s. submeasure η0 on A.

We shall establish a more precise result for submodular submeasures.

Theorem 2. Let A be the algebra of all subsets of {1, . . . , n} where
n ≥ 1. For every finite submodular submeasure η on A we have

deg η ≤
(

n

[n/2]

)
,

and this estimate is best possible.
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Proof. Given a chain D of elements of A and a finite submodular sub-
measure η on A, there exists γ ∈ c(A) with

γ ≤ η and γ|D = η|D
(see [9, Example 3]). On the other hand, by a combination of classical results
due to Dilworth and Sperner (see, e.g., [21, Theorems 2.1 and 4.1]), A can
be covered by

(
n

[n/2]

)
chains in A. Therefore, the first part of the assertion

follows. To prove the remaining part, we fix n ≥ 2 and define, for natural
1 ≤ k ≤ n and a ∈ A,

ηk(a) =


1
k

card a if card a < k,

1 if card a ≥ k.

Clearly, ηk(0) = 0 and ηk is increasing. We shall check the inequality

ηk(a1 ∨ a2) + ηk(a1 ∧ a2) ≤ ηk(a1) + ηk(a2)

for a1, a2 ∈ A. It is enough to consider the case where card ai < k for i = 1, 2.
If card(a1∨a2) < k, the inequality in question turns into equality. Otherwise,
we have

ηk(a1 ∨ a2) + ηk(a1 ∧ a2) =
1
k

(k + card(a1 ∧ a2))

≤ 1
k

(card(a1 ∨ a2) + card(a1 ∧ a2))

=
1
k

(card a1 + card a2) = ηk(a1) + ηk(a2).

We claim that deg ηk ≥
(
n
k

)
. Indeed, take Γ ⊂ c(A) with supΓ = η. We

may assume that Γ is finite. Denote by Ek the family of all k-element subsets
of {1, . . . , n}, and choose, for each c ∈ Ek, an element γc of Γ with γc(c) = 1.
Since for different c1, c2 ∈ Ek we have card(c1 ∧ c2) < k, the map c 7→ γc is
injective. Thus, the claim is established, which completes the proof.

It is worth noting that the submeasure ηk defined in the proof of Theo-
rem 2 is symmetric in the sense of [2, p. 2], i.e., ηk(a) depends only on the
cardinality of a. Moreover, for n = 4, η2 coincides with the submeasure c1 of
[10, Example 3.2].

The following simple example shows that deg η, where η is a finite m.s.
submeasure, can be an arbitrary cardinal number ≥ 1. This is still so if η is
defined on a Boolean σ-algebra and is order continuous (see [14, Example 1]).

Example 1. Let S be a set of cardinality m ≥ 1 and let A stand for the
ring of finite subsets of S. Set

η(0) = 0 and η(a) = 1 for a ∈ Ar {0}.
Clearly, η is a submodular submeasure on A and η = sup{δs : s ∈ S},
where δs stands for the Dirac quasi-measure on A concentrated at s. Hence
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deg η ≤ m. To establish the other inequality, take Γ ⊂ c(A) with supΓ = η.
For each s ∈ S there exists γs ∈ Γ with γs({s}) > 1/2. It follows that the
map s 7→ γs is injective. This completes the argument.

In our next example we only give some estimates for deg η. To determine
its precise value might be impossible in ZFC.

Example 2. Let A stand for the algebra of all subsets of [0, 1] and let η
be the Lebesgue outer measure on A. It is well known that η is submodular,
and so m.s. (see Lemma 1). Clearly, deg η ≤ 22ℵ0 . Let C ⊂ A be such that
η(c) = 1 for each c ∈ C and η(c1 ∧ c2) = 0 whenever c1, c2 ∈ C and c1 6= c2.
The argument used in Example 1 shows that deg η ≥ cardC. Now, according
to classical results, we can find sets C with these properties whose cardinality
is 2ℵ0 (in ZFC; see [16]) or 22ℵ0 (under CH; see [20]). In particular, we have

2ℵ0 ≤ deg η ≤ 22ℵ0
,

and it is consistent with ZFC that deg η = 22ℵ0 .

Remark 1. For every m.s. submeasure η on A we have deg η ≤ dens η.
Indeed, if η0 is a submeasure on A such that η0 ≤ η and the set

{a ∈ A : η0(a) = η(a)}
is dense in (A, dη), then η0 = η.

4. Preliminaries on vector-valued additive functions. Throughout
this section X stands for a normed vector space over the scalar field R or C.
We set

a(A,X) = {ϕ ∈ XA : ϕ is additive},

ba(A,X) = {ϕ ∈ a(A,X) : ϕ is bounded},

ea(A,X) = {ϕ ∈ a(A,X) : ϕ is exhaustive}.
Recall that ϕ ∈ a(A,X) is called exhaustive or strongly bounded or strongly
additive provided ϕ(an)→ 0 whenever (an) is a sequence of pairwise disjoint
elements in A (see [3, pp. 7 and 32]), [4, p. 277] and [22, Definition 2.1]). As
is well known, ea(A,X) ⊂ ba(A,X) (see, e.g., [22, Corollary 2.7]).

With each ϕ ∈ a(A,X) we associate three positive functions on A defined
by the formulas:

|ϕ|(a) = sup
{ n∑
i=1

‖ϕ(ai)‖ : ai ∈ A are pairwise disjoint and
n∨
i=1

ai = a
}
,

ϕ̃(a) = sup
{∥∥∥ n∑

i=1

tiϕ(ai)
∥∥∥ : ai ∈ A are pairwise disjoint and

n∨
i=1

ai = a,

and ti are scalars with |ti| ≤ 1
}

,
ϕ̄(a) = sup {‖ϕ(b)‖ : b ∈ Ca}
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for a ∈ A. The first one is a quasi-measure and is called the variation of ϕ.
The others are submeasures. The notation ‖ϕ‖ is often used for ϕ̃. Both
ϕ̃ and ϕ̄ are called semivariations of ϕ in the literature (see [3, p. 2 and
Proposition I.1.11] and [22, Example 1.2]). In [4, p. 273], the term submeasure
majorant for ϕ is used for ϕ̄.

The next proposition collects some properties of |ϕ|, ϕ̃ and ϕ̄ which will
be needed later.

Proposition 2. If ϕ ∈ a(A,X), then

(a) ϕ̄ ≤ ϕ̃ ≤ |ϕ|;
(b) ϕ̃ ≤ 4ϕ̄;
(c) ϕ̃ = sup{|x∗ϕ| : x∗ ∈ M and ‖x∗‖ ≤ 1}, where M is an arbitrary

1-norming subset of X∗;
(d) ϕ is bounded [resp., exhaustive] if and only if ϕ̄ is bounded [resp.,

exhaustive] if and only if ϕ̃ is bounded [resp., exhaustive].

Part (a) is straightforward. Part (b) and a special case of (c) with M =
X∗ are presented in [3, Proposition I.1.11]. The proof given there works in
the general case. Finally, the first equivalence of (d) is straightforward in
both cases and the rest follows from (a) and (b).

Given ϕ ∈ a(A,R), we set

ϕ+(a) = sup{ϕ(b) : b ∈ Ca} and ϕ−(a) = sup{−ϕ(b) : b ∈ Ca}
for a ∈ A. Both ϕ+ and ϕ− are quasi-measures on A. The following simple
proposition shows how ϕ+ and ϕ− are related to the previously defined
functions |ϕ|, ϕ̃ and ϕ̄.

Proposition 3. If ϕ ∈ a(A,R), then

(a) |ϕ| = ϕ+ + ϕ− and ϕ̄ = max(ϕ+, ϕ−);
(b) |ϕ| ≤ 2ϕ̄;
(c) |ϕ| = ϕ̃.

The next two lemmas will be used in the proofs of Theorems 3 and 4 in
Section 5.

Lemma 2. If ϕ ∈ a(A,X), then both ϕ̃ and ϕ̄ are m.s. and have prop-
erty (G).

Proof. To establish the first part of the assertion, we apply Theorem 1,
(iii)⇒(i). In the case of ϕ̃ we use additionally Proposition 2(c). In the case
of ϕ̄ and X over R we also make use of the formula

ϕ̄ = sup{(x∗ϕ)+, (x∗ϕ)− : x∗ ∈ X∗ and ‖x∗‖ ≤ 1},
which follows from Proposition 3(a) via the Hahn–Banach theorem. If the
scalar field of X is C, we consider X to be a normed space over R (with the
same norm) and note that this does not affect ϕ̄.



SEMIVARIATIONS OF AN ADDITIVE FUNCTION 275

To establish the second part of the assertion, fix a ∈ A with ϕ̄(a) = ∞
and t > 0. We can then find b ∈ Ca with

‖ϕ(b)‖ > ‖ϕ(a)‖+ t.

This implies ϕ̄(b), ϕ̄(arb) > t. Thus, ϕ̄ has property (G). Since ϕ̄ ≤ ϕ̃ ≤ 4ϕ̄,
by Proposition 2(a),(b), it follows that ϕ̃ also has property (G).

In view of Lemma 2, one might ask whether deg ϕ̃ and deg ϕ̄ are related,
for arbitrary ϕ ∈ a(A,X), in some way. The author only knows the following
negative answer to this question. For ϕ ∈ a(A,R) we have deg ϕ̃ = 1 while
deg ϕ̄ = 2 unless ϕ̄ = |ϕ|, by Proposition 3(c) and Propositions 2(a) and 3(a),
respectively. On the other hand, the inequality deg ϕ̄ < deg ϕ̃ is also possible,
as the next simple example shows.

Example 3. Let A be the algebra of all subsets of the set {1, 2, 3}.
Consider ϕ ∈ a(A, l(4)

∞ ), which is uniquely determined by the equalities

ϕ({1}) = (2, 0, 0, 1), ϕ({2}) = (0, 2, 0,−1) and ϕ({3}) = (0, 0, 2, 1).

We then have

ϕ̃(a) = ϕ̄(a) = 2 if card a ≤ 2, ϕ̃({1, 2, 3}) = 3 and ϕ̄({1, 2, 3}) = 2.

Hence

ϕ̃ = max{2δ1, 2δ2, 2δ3, δ1 + δ2 + δ3} and ϕ̄ = max{2δ1, 2δ2, 2δ3},
where δi stands for the Dirac quasi-measure on A concentrated at i. As is
easily seen, deg ϕ̃ = 4 (cf. [2, p. 3]), while deg ϕ̄ = 3, according to Example 1.

Lemma 3. If η is a semifinite m.s. submeasure on A, then there exist
Γ ⊂ c(Iη) and ϕ ∈ a(A, l∞(Γ )) such that ϕ̃ = ϕ̄ = η.

Proof. By Theorem 1, (i)⇒(ii), applied to η|Iη, there exists Γ ⊂ c(Iη)
such that

η(a) = sup{γ(a) : γ ∈ Γ} for all a ∈ Iη.
Define ϕ0 : Iη → l∞(Γ ) by ϕ0(a)(γ) = γ(a) for a ∈ Iη and γ ∈ Γ . Clearly,
ϕ0 ∈ a(Iη, l∞(Γ )) and, by Proposition 2(c), we have

ϕ̃0 = ϕ̄0 = η|Iη.
Choose ϕ ∈ a(A, l∞(Γ )) to be an arbitrary extension of ϕ0 (cf. Lemma 1 of
[12] and its proof). Since Iη is an ideal in A, we have

ϕ̃|Iη = ϕ̃0 and ϕ̄|Iη = ϕ̄0,

and so ϕ̃, ϕ̄ and η coincide on Iη. Since η is semifinite, by assumption, and
both ϕ̃ and ϕ̄ are increasing, we conclude that ϕ is as desired.

As an example, we note that, in view of Lemma 1, Lemma 3 applies to
the Lebesgue outer measure on R.

The following lemma will be used in the proof of Theorem 3 below.
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Lemma 4. If A is nonatomic, then there exists ϕ ∈ a(A,R) with ϕ(A) ⊂
Q and ϕ̃(a) = ϕ̄(a) =∞ for every nonzero a ∈ A.

In the case where A is a Boolean algebra, this is a reformulation of [12,
Lemma 3] (see Proposition 3(b),(c) above). The general case follows, since
every [nonatomic] Boolean ring can be embedded as an ideal into a [non-
atomic] Boolean algebra. We note that, by using the natural embedding
of R into C, we can deduce from Lemma 4 its complex version where we
have ϕ ∈ a(A,C).

Remark 2. For A additionally assumed to be countable, Lemma 4 can
be improved to the effect that ϕ is integer-valued and ϕ(a) 6= 0 for every
nonzero a ∈ A (cf. [7, Proposition 13(b)]). In this connection, we also note
that [12, Remark 5] is related to [7, Proposition 6].

Remark 3. In the special case where A is, in addition, complete and
admits a strictly positive finite measure µ, Lemma 4 can also be proved as
follows. Let f : R → Q be a nonzero additive function, and set ϕ = f ◦ µ.
The additional assumptions imply that

µ(Ca) = [0, µ(a)],

and so ϕ(Ca) is unbounded for every nonzero a ∈ A. The idea of this proof
is due to Sierpiński [19, pp. 245–246].

5. Main results. Recall that, as before, A stands for an arbitrary
Boolean ring.

Theorem 3. For η : A→ [0,∞] the following four conditions are equiv-
alent :

(i) η is an m.s. submeasure and has property (G);
(ii) there exist a normed space X and ϕ ∈ a(A,X) with ϕ̃ = η;
(iii) there exist a normed space X and ϕ ∈ a(A,X) with ϕ̄ = η;
(iv) there exist a normed space X and ϕ ∈ a(A,X) with ϕ̃ = ϕ̄ = η.

Proof. Clearly, (iv) implies (iii) and (ii). In view of Lemma 2, each of the
conditions (iii) and (ii) implies (i).

Suppose (i) holds. To establish (iv) with X over R, let η1 and η2 be
given by Proposition 1. In view of Lemma 3, there exist a set Γ and ϕ1 ∈
a(A, l∞(Γ )) with ϕ̃1 = ϕ̄1 = η1. Since η2 has property (G), the quotient
Boolean ring A/Iη2 is nonatomic. Denote by h the canonical homomorphism
of A onto A/Iη2 . By Lemma 4, there exists

ψ ∈ a(A/Iη2 ,R) with ψ̃(h(a)) = ψ̄(h(a)) =∞ for every a ∈ Ar Iη2 .

Setting ϕ2 = ψ ◦ h, we get ϕ2 ∈ a(A,R) with ϕ̃2 = ϕ̄2 = η2. Let X stand
for the l∞-sum of the Banach spaces l∞(Γ ) and R, and set ϕ = (ϕ1, ϕ2). We
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have ϕ ∈ a(A,X) and

ϕ̃ = max(ϕ̃1, ϕ̃2) = max(ϕ̄1, ϕ̄2) = ϕ̄ = η.

Thus, (iv) holds in the real case. In the complex case, we only have to replace
“R” by “C” throughout the argument.

Remark 4 (cf. [12, Remark 6]). The space X constructed in the proof
of Theorem 3, (i)⇒(iv), is, in fact, linearly isometric to an l∞-space. There
is, however, no point in including this in the formulation of condition (iv),
since every normed space is linearly isometric to a subspace of l∞(Γ ) for
some set Γ , as a consequence of the Hahn–Banach theorem.

Remark 5. In Theorem 3 we cannot restrict the size of X, keeping A
arbitrary. (This is in contrast with both [12, Theorem 1] and [13, Theorems 1
and 2].) Indeed, for every ϕ ∈ a(A,X) and every 1-norming subset M of X∗
we have

deg ϕ̃ ≤ cardM and deg ϕ̄ ≤ 2 cardM,

by Propositions 2(c) and 3(a), respectively. On the other hand, deg η, where
η is a finite m.s. submeasure, can be an arbitrary cardinal number ≥ 1 (see
Example 1).

From Theorem 3 we immediately get the following corollary.

Corollary. Let X be a normed space and let ϕ ∈ a(A,X).

(a) There exist a normed space Y and χ ∈ a(A, Y ) with χ̃ = χ̄ = ϕ̃.
(b) There exist a normed space Z and ψ ∈ a(A,Z) with ψ̃ = ψ̄ = ϕ̄.

Theorem 4. For η : A → [0,∞) the following four conditions are equi-
valent :

(i) η is a bounded [resp., exhaustive] m.s. submeasure;
(ii) there exist a normed space X and ϕ ∈ ba(A,X) [resp., ϕ ∈ ea(A,X)]

with ϕ̃ = η;
(iii) there exist a normed space X and ϕ ∈ ba(A,X) [resp., ϕ ∈ ea(A,X)]

with ϕ̄ = η;
(iv) there exist a normed space X and ϕ ∈ ba(A,X) [resp., ϕ ∈ ea(A,X)]

with ϕ̃ = ϕ̄ = η.

Proof. Clearly, (iv) implies (iii) and (ii). In view of Lemma 2 and Propo-
sition 2(d), each of the conditions (iii) and (ii) implies (i). That (i) implies
(iv) follows from Lemma 3.

In closing, we note that Theorem 4 implies an analogue of the Corollary
above for ϕ ∈ ba(A,X) [resp., ϕ ∈ ea(A,X)].
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