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DIVISORS, PARTITIONS AND SOME NEW q-SERIES IDENTITIES

BY

ALEXANDER E. PATKOWSKI (Centerville, MA)

Abstract. We obtain new q-series identities that have interesting interpretations
in terms of divisors and partitions. We present a proof of a theorem of Z. B. Wang,
R. Fokkink, and W. Fokkink, which follows as a corollary to our main q-series identity,
and offer a similar result.

1. Introduction. In the history of partition theory, divisor functions
have played an important part in understanding different partition functions.
Perhaps one of the more well-known results in partition theory relating
divisors to the partition function p(n), the number of unrestricted partitions
of n, is the simple and elegant recurrence equation due to Euler (see [2,
p. 108]), which can be paraphrased from the identity

(1.1)
∞∑

n=0

np(n)qn =
1∏∞

n=1(1− qn)

∞∑
n=1

nqn

1− qn
.

It follows directly that the right hand side of (1.1) is the product of the
generating functions for σ1(n) =

∑
d|n d and p(n), and consequently,

(1.2) np(n) =
n∑

k=1

σ1(k)p(n− k).

The q-series identities established in this paper have deep relations to
partitions, divisors, and recurrence equations for partitions. In particular,
we obtain a result that is of a similar nature to that of Euler’s formula.
We also obtain some results that are related to a type of “middle” divisor
function that appears in [1, 5]. Lastly, we consider a theorem of Z. B. Wang,
R. Fokkink, and W. Fokkink, as well as a new theorem that is similar in form.

For the combinatorial considerations (the generating function interpre-
tations) convergence is not an issue, but to make sense analytically |q| is
taken to be smaller than 1.
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We use the standard notation [4]

(x)n = (x; q)n :=
n∏

k=1

(1− xqk−1),(1.3)

(x)∞ = (x; q)∞ :=
∞∏

k=1

(1− xqk−1).(1.4)

2. Results. In establishing our main results, we will need two known
general results for q-series. The first of these can be found in [1] and can be
seen as an extension of Abel’s lemma.

Proposition 2.1. Suppose that f(z) =
∑∞

n=0 α(n)zn is analytic for
|z| < 1. If α is a complex number for which

(1)
∞∑

n=0

(α− α(n)) <∞,

(2) lim
n→∞

n(α− α(n)) = 0,

then

lim
z→1−

d

dz
(1− z)f(z) =

∞∑
n=0

(α− α(n)).

Proposition 2.2.

(2.1)
∞∑

n=0

(αq)2n(βq)nz
n

(αq)n(q)n
=

(βzq)∞
(z)∞

∞∑
n=0

(βq)n(z)n

(q)n(βzq)2n
(−αz)nqn(3n+1)/2.

This is an identity that can be found in Fine’s book [4, eq. (25.96)].

Theorem 2.3.

(2.2)
∞∑

n=0

(
(βq)∞
(q)∞

− (αq)2n(βq)n

(αq)n(q)n

)

=
(βq)∞
(q)∞

( ∞∑
n=1

qn

1− qn
− β

∞∑
n=0

qn

1− βqn

−
∞∑

n=1

(βq)n

(1− qn)(βq)2n
(−α)nqn(3n+1)/2

)
.
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Proof. Applying Propositions 2.2 and 2.1, we have

lim
z→1−

d

dz
(1− z) (βzq)∞

(z)∞

∞∑
n=0

(βq)n(z)n

(q)n(βzq)2n
(−αz)nqn(3n+1)/2

=
(βq)∞
(q)∞

( ∞∑
n=1

qn

1− qn
− β

∞∑
n=0

qn

1− βqn

+ lim
z→1−

d

dz

∞∑
n=0

(z)n(βq)n

(q)n(βzq)2n
(−αz)nqn(3n+1)/2

)

=
(βq)∞
(q)∞

( ∞∑
n=1

qn

1− qn
− β

∞∑
n=0

qn

1− βqn

−
∞∑

n=1

(βq)n

(1− qn)(βq)2n
(−α)nqn(3n+1)/2

)
.

Corollary 2.4.

(2.3)
∞∑

n=0

(
1

(q)∞
− (αqn+1)n

(q)n

)

=
1

(q)∞

( ∞∑
n=1

qn

1− qn
−
∞∑

n=1

(−α)nqn(3n+1)/2

(1− qn)

)
.

This follows by simply setting β = 0 in Theorem 2.3. It can be seen that
(2.3) reveals some interesting results in the elementary theory of partitions
for α = −1.

Theorem 2.5. Let p(n) denote the number of partitions of n. Moreover ,
let j(N,n) denote the partitions of N where parts are less than or equal to 2n,
and parts greater than n and less than or equal to 2n are distinct. Lastly , let
l(n) denote the number of odd divisors of n that occur outside the interval
[
√

2n/3,
√

6n]. Then

(2.4) (N + 1)p(N)−
N∑

n=1

j(N,n) =
N∑

k=1

p(k)(d(N − k)− l(N − k)).

Proof. Recall that the generating function for p(n) is given by

1
(q)∞

=
∞∑

n=0

p(n)qn.

It can be seen that (see [3])

(−aqn+1)n

(q)n
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is the generating function for the partitions where parts are less than or
equal to 2n, and parts greater than n and less than or equal to 2n are
distinct. Moreover, the exponent of a is the number of parts greater than n.
We now choose α = −1 in (2.3) and observe that the coefficient of qN on
the left hand side is precisely

(N + 1)p(N)−
N∑

n=0

j(N,n).

Now the generating function for the divisor function d(n) is given by
∞∑

n=1

qn

1− qn
=
∞∑

n=1

d(n)qn.

The generating function for l(n) (defined in Theorem 2.5) is seen to be
∞∑

n=1

(qn(3n+1)/2 + qn(3n+3)/2 + qn(3n+5)/2 + · · · ) =
∞∑

n=1

qn(3n+1)/2

(1− qn)
.

It is clear to see that coefficient of qN on the right hand side is
N∑

n=0

p(n)(d(N − n)− l(N − n)).

This completes the proof.

Corollary 2.6.
∞∑

n=0

(
1− (1− αqn+1)(1− αqn+2) · · · (1− αq2n)

)
= −

∞∑
n=1

(−α)nqn(3n+1)/2

(1− qn)(1− qn+1) · · · (1− q2n)
.

Proof. This is the β = 1 case of (2.2). Combinatorially, both sides give
the same generating function. In particular, a partition into distinct parts
≥ n+ 1, and with all other parts ≤ 2n, is easily seen to be

(1− αqn+1)(1− αqn+2) · · · (1− αq2n),

where α keeps track of the number of parts.
It is left to the reader to show the combinatorial equivalence of the two

series in Corollary 2.6.

In the work of Z. B. Wang, R. Fokkink, and W. Fokkink (see [6]) it has
been shown that bo(n)−be(n) = d(n) for all positive natural numbers n. Here
bo(n) (resp. be(n)) denotes the sum of the smallest parts in all the partitions
of n into an odd (resp. even) number of distinct parts. For example, the
four partitions of 6 into distinct parts are 6, 5 + 1, 4 + 2, 3 + 2 + 1. So
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bo(6) = 6 + 1 = 7 and be(6) = 1 + 2 = 3. On the other hand, the total
number of divisors of 6 is 4 = 7 − 3. We now state this as the following
theorem and offer an alternative proof to the one given in [6].

Theorem 2.7. Let bo(n) (resp. be(n)) denote the sum of the smallest
parts in all the partitions of n into an odd (resp. even) number of distinct
parts. Moreover , let d(n) denote the classical divisor function. If n is a
positive integer , then

(2.5) bo(n)− be(n) = d(n).

Proof. It turns out that this result is an immediate corollary of

(2.6)
∞∑

n=0

(
1

(q)∞
− 1

(q)n

)
=

1
(q)∞

∞∑
n=1

qn

1− qn
,

which is the case α = 0 of (2.3). To see this we multiply both sides by (q)∞
to obtain

(2.7)
∞∑

n=0

(1− (qn+1)∞) =
∞∑

n=1

qn

1− qn
.

The right hand side of (2.7) is clearly the generating function for d(n). On
the left hand side we see that 1−(qn+1)∞ counts every partition into distinct
parts each ≥ n + 1 with +1 if there are an odd number of parts and −1 if
there are an even number of parts. We find that a given partition will be
counted each time n + 1 does not exceed the smallest part, i.e. it will be
counted in

∞∑
n=0

(1− (qn+1)∞)

exactly as many times as the size of its smallest part. Consequently,
∞∑

n=0

(1− (qn+1)∞) =
∞∑

n=1

(bo(n)− be(n))qn,

and this proves that
bo(n)− be(n) = d(n).

Now we consider a partition theorem very similar in form to the theorem
we have just proved.

Theorem 2.8. Let Uo(n) (resp. Ue(n)) denote the sum of the smallest
parts in all the partitions of n into an odd (resp. even) number of parts,
where all parts less than twice the smallest minus one appear zero or two
times, and parts greater than or equal to twice the smallest minus one are
distinct. Then

Uo(n)− Ue(n) = d(n)− l(n).
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Proof. First, set α = −1 in (2.3) and multiply both sides by (q)∞ to get

(2.8)
∞∑

n=0

(1− (−qn+1)n(qn+1)∞) =
∞∑

n=1

qn

1− qn
−
∞∑

n=1

qn(3n+1)/2

(1− qn)
.

Now we can write the left hand side as
∞∑

n=0

(1− (1− qn+n+1+1)(1− qn+n+2+2) · · · (1− q2n+2n)(1− q2n+1) · · · ).

Now the product is similar to the generating function in the previous proof,
the only difference being that parts ≥ n + 1 and less than or equal to 2n
appear zero or two times, parts > 2n being distinct. The result now follows
after recalling the generating functions for d(n) and l(n).

3. Conclusion. It is clear that we have not seen the full extent of the
results obtainable from the extension of Abel’s lemma. The results contained
herein illustrate some of the variety of partition theorems obtainable from
Proposition 2.1.
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