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MANIFOLDS WITH A UNIQUE EMBEDDING

BY

ZBIGNIEW JELONEK (Kraków)

Abstract. We show that if X,Y are smooth, compact k-dimensional submanifolds
of Rn and 2k + 2 ≤ n, then each diffeomorphism φ : X → Y can be extended to a
diffeomorphism Φ : Rn → Rn which is tame (to be defined in this paper). Moreover, if
X,Y are real analytic manifolds and the mapping φ is analytic, then we can choose Φ to
be also analytic.

We extend this result to some interesting categories of closed (not necessarily compact)
subsets of Rn, namely, to the category of Nash submanifolds (with Nash, real-analytic
and smooth morphisms) and to the category of closed semi-algebraic subsets of Rn (with
morphisms being semi-algebraic continuous mappings). In each case we assume that X,Y
are k-dimensional and φ is an isomorphism, and under the same dimension restriction
2k+ 2 ≤ n we assert that there exists an extension Φ : Rn → Rn which is an isomorphism
and it is tame.

The same is true in the category of smooth algebraic subvarieties of Cn, with mor-
phisms being holomorphic mappings and with morphisms being polynomial mappings.

1. Introduction. A diffeomorphism is said to be a triangle diffeomor-
phism if it is of the form

Φ : Rn 3 (x1, . . . , xn) 7→ (x1, . . . , xn−1, xn + p(x1, . . . , xn−1)) ∈ Rn,

where p(x1, . . . , xn−1) is a smooth function. A diffeomorphism F which can
be obtained as a composition of triangle diffeomorphisms and linear auto-
morphisms with determinant 1 is called tame. Of course, a tame diffeomor-
phism is diffeotopic to the identity and it preserves the volume.

Let X be a smooth manifold. We say that two embeddings f, g : X → Rn

are equivalent if there is a diffeomorphism Φ : Rn → Rn such that g = Φ ◦ f.
If additionally Φ is a tame diffeomorphism, we say that f, g are tamely
equivalent. If any two embeddings of X into Rn are equivalent (resp. tamely
equivalent) we say that X has a unique (resp. tamely unique) embedding
into Rn.

For example if X = S1 is a circle, then X has infinitely many non-
equivalent embeddings into R3 (every knot gives a non-standard embed-
ding). It is of interest to find sufficient conditions for a manifold X to have
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a unique or tamely unique embedding into Rn. One can deduce from Whit-
ney’s paper [13] that if X is a compact k-dimensional smooth manifold, then
any two smooth embeddings f, g : X → Rn, where n ≥ 2k+2, are equivalent.
In this note we improve this result and show that in fact in this case any
two smooth embeddings f, g : X → Rn are tamely equivalent. Moreover, we
show that if X is a compact real analytic manifold and f, g are real analytic
embeddings, then we can find Φ that is a tame real analytic isomorphism
Φ : Rn → Rn.

Of course, the same question can be posed for a larger class of categories.
In particular, in [6], [7], [9] and [12] this problem was solved for the category
of smooth complex algebraic affine varieties (where morphisms are polyno-
mial mappings). The second aim of this paper is to generalize (and simplify)
these results to the case of some other interesting pseudo-algebraic categories
(see Definitions 4.3 and 4.11). Examples of pseudo-algebraic categories are:
the category of Nash (i.e., analytic and semi-algebraic) submanifolds of Rn

with Nash (i.e., analytic and semi-algebraic) mappings as morphisms, the
category of Nash submanifolds of Rn with smooth mappings as morphisms,
the category of Nash submanifolds of Rn with real analytic mappings as
morphisms, the category of smooth complex affine subvarieties of Cn with
holomorphic (or polynomial, or smooth) mappings as morphisms.

In particular, we prove that if X,Y are Nash k-dimensional submanifolds
of Rn (where n ≥ 2k + 2) and φ : X → Y is a diffeomorphism (resp.
Nash isomorphism, real-analytic isomorphism), then φ can be extended to a
tame diffeomorphism (resp. Nash isomorphism, real-analytic isomorphism)
Φ : Rn → Rn.

We also prove that if X,Y are k-dimensional smooth algebraic subvari-
eties of Cn (where n ≥ 2k + 2), and φ : X → Y is a biholomorphism, then
φ can be extended to a global tame biholomorphism Φ : Cn → Cn.

Finally, we show this theorem for the category of closed semi-algebraic
sets with continuous semi-algebraic mappings as morphisms. More precisely,
we show: if X,Y are k-dimensional closed semi-algebraic subsets of Rn

(where n ≥ 2k + 2), and φ : X → Y is a semi-algebraic homeomorphism,
then φ can be extended to a global tame semi-algebraic homeomorphism
Φ : Rn → Rn (in particular, X and Y are homeotopic). This is a semi-
algebraic counterpart of the classical theorem of Hermann Gluck on exten-
sion of homeomorphisms of polyhedrons (see [5]).

We also give examples of k = n+1-dimensional Nash manifoldsXk ⊂ R2n

(where n is any even number different from 2, 4, 8) which have at least two
different embeddings into R2n. This shows that our results cannot be much
improved for large n. Note also that for k = 1 and n = 3 our result (about
Nash manifolds) is optimal.
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2. Preliminaries. We start with the following basic definition:

Definition 2.1. Let X,Y be smooth manifolds and let f : X → Y be
a smooth morphism. We say that the mapping f is an embedding if

• f(X) is a closed submanifold of Y ,
• the mapping f : X → f(X) is a diffeomorphism.

Let Y be a smooth manifold (all manifolds we consider here may be discon-
nected). We will denote by C(Y ) the algebra of all smooth functions on Y.
If f : X → Y is a smooth morphism of smooth manifolds, then we have the
natural homomorphism f∗ : C(Y ) 3 h 7→ h ◦ f ∈ C(X).

Let X ⊂ Y be a closed submanifold. Using a partition of unity it is easy
to see that every function on X is the restriction of some function on Y.
Consequently, the mapping i∗ : C(Y ) → C(X) induced by the inclusion
i : X → Y is an epimorphism. In fact, we have the following more general:

Proposition 2.2. Let X,Y be smooth manifolds and f : X → Y be a
smooth map. The following conditions are equivalent :

(1) f is an embedding ,
(2) the induced mapping f∗ : C(Y )→ C(X) is an epimorphism,
(3) f is proper , injective and dxf : TxX → Tf(x)Y is a monomorphism

for every x ∈ X.

Proof. (1)⇒(2). This follows from the remarks above.
(2)⇒(3). We can assume that X is embedded in some RN (as a closed

submanifold). Let x1, . . . , xN be coordinates on RN . By the assumption we
can find smooth functions Hi ∈ C(Y ) such that xi = Hi ◦ f (on X). Put
H = (H1, . . . ,HN ). We have identity = H ◦ f. This easily implies that f
is injective and proper. Moreover, after computing the derivatives of both
sides we have

identity = df(x)H ◦ dxf,

which easily implies that dxf is a monomorphism.
(3)⇒(1). This is well known from differential geometry.

3. Smooth and analytic compact case. In this section we will prove
our first main result. To do this we need a series of lemmas:

Lemma 3.1. Let X be a submanifold of Rn. Assume that the projection
π : X 3 (x1, . . . , xn) 7→ (x1, . . . , xl, 0, . . . , 0) ∈ Rl × {0} is an embedding.
Then there exists a tame diffeomorphism Π : Rn → Rn such that Π|X = π.

Proof. Let X ′ := π(X); it is a closed submanifold of Rn. Consider the
mapping π : X → X ′ ⊂ Rn. It is an embedding, so π∗ : C(Rn) → C(X)
is an epimorphism. In particular, for every k > l there exists a function
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pk ∈ C(Rn) such that xk = pk(x1, . . . , xl) (on X). Then the mapping

Π(x1, . . . , xn) = (x1, . . . , xl, xl+1 − pl+1(x1, . . . , xl), . . . , xn − pn(x1, . . . , xl))

is a tame diffeomorphism of Rn and Π|X = π.

The next lemma is a smooth variant of the Bertini Theorem:

Lemma 3.2. Let X be a smooth manifold. Let f : X → Pm be a smooth
morphism. Then there is a subset E ⊂ Pm∗ of measure 0 such that if H is
a projective hyperplane and H 6∈ E, then f−1(H) is a smooth submanifold
of X.

Proof. First assume that f : X → Rm. Hence f = (f1, . . . , fm) and fi

are smooth functions. Consider the mapping

Ψ : X × Rm 3 (x, (λ1, . . . , λm)) 7→
( n∑

i=1

λifi(x), (λ1, . . . , λm)
)
∈ R× Rm.

Now our conclusion follows from the Sard Theorem (see [10]).
To prove the general case let H1, . . . ,Hm+1 ⊂ Pm be hyperplanes in

general position. By the previous result the preimage of a general hyperplane
is smooth in each open subset Ui = X \ f−1(Hi). Since the sets {Ui} cover
X the lemma follows.

We also need the following:

Lemma 3.3. Let X be a compact submanifold of Rn of dimension k. If
n > 2k + 1, then there exists a system of coordinates (x1, . . . , xn) on Rn

such that the projection π : X 3 (x1, . . . , xn) 7→ (x1, . . . , x2k+1, 0, . . . , 0) ∈
R2k+1 × {0} is an embedding.

Proof. Let us denote by π∞ the hyperplane at infinity of Rn. Thus π∞ ∼=
Pn−1 is a real projective space of dimension n−1 > 2k. For a non-zero vector
v ∈ Rn let [v] denote the corresponding point in Pn−1.

Let ∆ = {(x, y) ∈ X×X : x = y} and let TX denote the tangent bundle
of X. Set TX ′ = TX \X × {0}. Consider the mappings

A : X ×X \∆ 3 (x, y) 7→ [x− y] ∈ π∞
and

B : TX ′ 3 (x, v) 7→ [v] ∈ π∞.
Since A,B are smooth and the manifolds X × X \ ∆ and TX are of

dimension 2k, the Sard Theorem (see [10]) implies π∞ \ (A(X × X \ ∆)
∪B(TX ′)) 6= ∅. Let P ∈ π∞ \ (A(X ×X \∆)∪B(TX ′)) and let H ⊂ Rn−1

be a hyperplane which does not contain the point P (at infinity). Thus the
projection S : X 3 x 7→ Px ∩ H ∈ H ∼= Rn−1 is an injective immersion.
Since the manifold X is compact the mapping S is also proper. This means
by Proposition 2.1 that S is an embedding. Now we can apply induction.
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Lemma 3.4. Let X be a compact manifold of dimension k. Assume that
X ⊂ R2n, where n ≥ 2k + 1. Assume that the mappings

π1 : X 3 (x1, . . . , xn, y1, . . . , yn) 7→ (x1, . . . , xn) ∈ Rn

and
π2 : X 3 (x1, . . . , xn, y1, . . . , yn) 7→ (y1, . . . , yn) ∈ Rn

are embeddings. Then there exist linear mappings S, T ∈ SL(n) such that
if we change the coordinates in Rn × {0} to (z1, . . . , zn) = T (x1, . . . , xn)
and the coordinates in {0} × Rn to (w1, . . . , wn) = S(y1, . . . , yn), then all
projections

qr : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zr, wr+1, . . . , wn) ∈ Rn,

r = 0, . . . , n,

are embeddings.

Proof. Let us denote by π∞ the hyperplane at infinity of Rn×Rn. Thus
π∞ ∼= P2n−1 is a real projective space of dimension 2n− 1.

Again let ∆ = {(x, y) ∈ X × X : x = y} and TX the tangent bundle.
Set TX ′ = TX \X × {0}. Consider again the mappings

A : X ×X \∆ 3 (x, y) 7→ [x− y] ∈ π∞
and

B : TX ′ 3 (x, v) 7→ [v] ∈ π∞.
Define Λ := A(X×X\∆)∪B(TX ′) ⊂ π∞. Let L = (L1, . . . , Ln) : R2n → Rn

be a linear mapping. Set S(L) := {x ∈ π∞ : Li(x) = 0, i = 1, . . . , n}. It is
easy to see that L|X is an injective immersion if and only if Λ ∩ S = ∅.

Now we show that there are affine coordinates (z1, . . . , zn) in Rn × {0}
and affine coordinates (w1, . . . , wn) in {0} × Rn such that all projections

qi : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zn−i, wn−i+1, . . . , wn) ∈ Rn,

i = 0, . . . , n,

are embeddings. On π∞ we have coordinates (x : y). Since π1|X is an em-
bedding we have {(x : y) ∈ π∞ : x1 = 0, . . . , xn = 0}∩Λ = ∅. Consequently,
if we set ψ : π∞ 3 (x : y) 7→ x ∈ Pn−1 (it is a rational mapping), then the
mappings g := ψ ◦A : X ×X \∆→ Pn−1 and k := ψ ◦B : TX ′ → Pn−1 are
well defined and smooth.

By Lemma 3.2 this means that if H = {x ∈ Pn−1 :
∑n

i=1 cixi = 0} is a
generic hyperplane, then g−1(H) and k−1(H) are smooth submanifolds of
X ×X \∆ and TX ′, of dimension at most 2k − 1. Set z1 =

∑n
i=1 cixi.

Continuing in this fashion we see that we can choose n generic hyper-
planes given by equations zi =

∑n
k=1 ai,kxk, i = 1, . . . , n, such that for every

1 ≤ r ≤ n the sets A−1({z1 = 0, . . . , zr = 0}) and B−1({z1 = 0, . . . , zr = 0})
are smooth submanifolds of X×X \∆ and TX ′ of dimension at most 2k−r.
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In particular, dimA−1({z1 = 0, . . . , zn−1 = 0}) ≤ 0 and dimB−1({z1 = 0,
. . . , zn−1 = 0}) ≤ 0.

Now in the same way we can choose a generic hyperplane given by the
equation wn =

∑n
k=1 bn,kyk, i=1, . . . , n, such that A−1({z1 =0, . . . , zn−1 =0,

wn = 0}) = ∅ andB−1({z1 = 0, . . . , zn−1 = 0, wn = 0}) = ∅ and additionally
for every 0 ≤ r ≤ n − 1 we have dimA−1({z1 = 0, . . . , zr = 0, wn = 0}) ≤
2k−r−1 and dimB−1({z1 = 0, . . . , zr = 0, wn = 0}) ≤ 2k−r−1. Further we
can construct wn−1 =

∑n
k=1 bn−1,kyk, i = 1, . . . , n, such that A−1({z1 = 0,

. . . , zn−2 = 0, wn−1 = 0, wn = 0, }) = ∅ and B−1({z1 = 0, . . . , zn−2 = 0,
wn−1 = 0, wn = 0}) = ∅ and additionally for every 0 ≤ r ≤ n − 2 we
have dimA−1({w1 = 0, . . . , wr = 0, zn−1 = 0, zn = 0}) ≤ 2k − r − 2 and
dimB−1({z1 = 0, . . . , zr = 0, wn−1 = 0, wn = 0}) ≤ 2k − r − 2. Continuing
in this manner we find a system of coordinates (z1, . . . , zn, w1, . . . , wn) we
are looking for: for all 0 ≤ r ≤ n we have

Λ ∩ {z1 = 0, . . . , zr = 0, wr+1 = 0, . . . , wn = 0} = ∅,

which implies that the mapping

qr : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zr, wr+1, . . . , wn) ∈ Rn,

r = 0, . . . , n,

is an immersion. Since X is compact the mapping qr is an embedding. More-
over, we can always assume (by the construction) that the transformations
T : (x1, . . . , xn) 7→ (z1, . . . , zn) and S : (y1, . . . , yn) 7→ (w1, . . . , wn) are from
SL(n).

Now we are in a position to prove the first main result of this section:

Theorem 3.5. Let X be a compact smooth submanifold of Rn of dimen-
sion k. Let f : X → Rn be an embedding. If n ≥ 2k + 2, then there exists a
tame diffeomorphism F : Rn → Rn such that F |X = f.

Proof. Apply Lemma 3.3 to X and f(X). Then in virtue of Lemma 3.1
we can assume that there exist tame diffeomorphisms A,B : Rn → Rn such
that A(X) ⊂ R2k+1 × {0} and B(f(X)) ⊂ {0} × R2k+1 (if necessary we
compose A and B with suitable affine transformations with determinant 1).
Consider f ′ = B◦f ◦A−1; of course we can assume that f = f ′. In particular,
we can assume that X ⊂ R2k+1 × {0} and f(X) ⊂ {0} × R2k+1 and that
n = 2k + 2. Thus f = (0, f1, . . . , fn−1).

Applying Lemma 3.4 to the set X ′ = graph(f) ⊂ R2k+1 × R2k+1 we
see that there are linear transformations T, S ∈ SL(n − 1) such that if
we put (z1, . . . , zn−1) = T (x1, . . . , xn−1) and (f ′1(z), . . . , f ′n−1(z)) = S(f1 ◦
T−1(z), . . . , fn−1 ◦ T−1(z)) then all mappings

q′r : X 3 (z1, . . . , zn−1, 0) 7→ (z1, . . . , zr, f ′r+1(z), . . . , f ′n−1(z)) ∈ Rn−1
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are embeddings (as compositions of the standard diffeomorphism X →
graph(f) with qr; notation as in Lemma 3.4).

Now we construct a sequence of tame diffeomorphisms An−1, An−2, . . . ,
A1, A0 and Bn−1, Bn−2, . . . , B1, B0 such that for z ∈ X we have

Br ◦Ar ◦ · · · ◦Bn−1 ◦An−1(x) = (z1, . . . , zr, 0, f ′r+1(z), . . . , f ′n−1(z)).

We proceed by induction. For r = n− 1 it is enough to put An−1 = Bn−1 =
identity. Now assume that 1 ≤ r < n−1 and we have constructed a sequence
of tame diffeomorphisms Ar, . . . , An−1 and Br, . . . , Bn−1 such that for z ∈ X
we have

Br ◦Ar ◦ · · · ◦Bn−1 ◦An−1(x) = (z1, . . . , zr, 0, f ′r+1(z), . . . , f ′n−1(z)).

We show how to construct Ar−1 and Br−1. Note that the mapping

q′r : X 3 (z1, . . . , zn−1, 0) 7→ (z1, . . . , zr, f ′r+1(z), . . . , f ′n−1(z)) ∈ Rn−1

is an embedding. Consequently, there exists a smooth function Pr−1 such
that

f ′r(z) = Pr−1(z1, . . . , zr, f ′r+1(z), . . . , f ′n−1(z)).

Consider the tame diffeomorphism Ar−1 :

(t1, . . . , tn) 7→ (t1, . . . , tr, tr+1 + Pr−1(t1, . . . , tr, tr+2, . . . , tn), tr+2, . . . , tn).

Thus for z ∈ X we have

Ar−1(z1, . . . , zr, 0, f ′r+1(z), . . . , f ′n−1(z)) = (z1, . . . , zr, f ′r(z), . . . , f ′n−1(z)).

Since the mapping (z1, . . . , zr−1, f
′
r(z), . . . , f ′n−1(z)) restricted to X is an

embedding, there exists a smooth function Qr−1 such that

zr = Qr−1(z1, . . . , zr−1, f
′
r(z), . . . , f ′n−1(z)).

Consider the tame diffeomorphism

Br−1 : Rn 3 (t1, . . . , tn) 7→
(t1, . . . , tr −Qr−1(t1, . . . , tr−1, tr+1, . . . , tn), tr+1, . . . , tn) ∈ Rn.

For z ∈ X we have

Br−1 ◦Ar−1(z1, . . . , zr, 0, f ′r+1(z), . . . , f ′n−1(z))
= (z1, . . . , zr−1, 0, f ′r(z), . . . , f ′n−1(z)).

Finally, by induction we obtain a sequence of tame diffeomorphisms An−1,
An−2, . . . , A1, A0 and Bn−1, Bn−2, . . . , B1, B0 such that for z ∈ X we have

B0 ◦A0 ◦ · · · ◦Bn−1 ◦An−1(x) = (0, f ′1(z), . . . , f ′n−1(z)).

If we take T1(x1, . . . , xn) = (T (x1, . . . , xn−1), xn) and S1(y1, . . . , yn) =
(y1, S(y2, . . . , yn)), then

S−1
1 ◦B0 ◦A0 ◦ · · · ◦Bn−1 ◦An−1 ◦ T1(x) = (0, f1(x), . . . , fn−1(x)).

Now it is enough to put F = S−1
1 ◦B0 ◦A0 ◦ · · · ◦Bn−1 ◦An−1 ◦ T1.
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Corollary 3.6. With the preceding notation, there is a smooth family
of tame diffeomorphisms Ft : Rn × R → Rn such that F0 = identity and
F1|X = f.

Proof. Indeed, every triangle diffeomorphism

G = (x1, . . . , xn−1, xn + Pn(x1, . . . , xn−1))

is diffeotopic to the identity by

t 7→ Gt = (x1, . . . , xn−1, xn + tPn(x1, . . . , xn−1)).

The same is true for any linear mapping with determinant 1, since such a
mapping is a product of triangular linear mappings.

Corollary 3.7. Let X be a compact smooth manifold of dimension k.
In n ≥ 2k + 2, then X has a (tamely) unique embedding into Rn.

Now note that we can repeat this proof for real analytic submanifolds
of Rn nearly word for word, with one exception: we need the fact that if
f : X → R is a real analytic function on a real analytic manifold X, then
we can extend f to a real analytic function F : Rn → R. This follows from a
result of Cartan (see [3, p. 89]). In this way we have the following interesting:

Theorem 3.8. Let X ⊂ Rn be a compact real analytic submanifold of
dimension k. Let f : X → Rn be a real analytic embedding. If n ≥ 2k + 2,
then f can be extended to a tame real analytic isomorphism F : Rn → Rn.

Corollary 3.9. With the preceding notation, there is an analytic family
of tame analytic isomorphisms Ft : Rn × R → Rn such that F0 = identity
and F1|X = f.

Corollary 3.10. Let X be a compact real analytic manifold of dimen-
sion k. If n ≥ 2k + 2, then X has a (tamely) unique analytic embedding
into Rn.

Example 3.11. As shown by the example of a non-trivial knot f : S1 →
R3 (note that we can take f real analytic) the assumption n ≥ 2k + 2 in
Theorems 3.5 and 3.8 is essential.

4. Real pseudo-algebraic categories. Now we apply our results to
other categories of manifolds. In this section we will assume that the under-
lying field is the real numbers. We denote by S0 the category of all pairs
(X,Rn(X)), where X ⊂ Rn(X) is a smooth closed submanifold of Rn(X) and
morphisms are smooth mappings. Let S be a subcategory of S0. Every ob-
ject of S is a pair (X,Rn(X)); we will identify it simply with X. In particular,
we will identify (Rn,Rn) with Rn. We start with:

Definition 4.1. Let S be as above and let X,Y ∈ S. We say that a
mapping f : X → Y is an S-embedding if
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• (f(X),Rn(Y )) ∈ S,
• f as well as f−1 : f(X)→ X ⊂ Rn(X) are S-morphisms.

Remark 4.2. In particular, an S-embedding is always a smooth embed-
ding (see Definition 2.1).

Definition 4.3. We say that S is a fine category if:

(1) Rn ∈ S for every n ∈ N,
(2) if f : X → R is in S, then f can be extended to a mapping F :

Rn(X) → R which is also in S,
(3) the linear mappings are in S, and if X ∈ S, then the restrictions to

X of mappings from S are in S,
(4) if X ∈ S, then the set CS(X) = {f : X → R; f ∈ S} is an R-algebra,
(5) if X ∈ S and π : X → Rn is a linear projection which is a smooth

embedding, then π is an S-embedding,
(6) if X ∈ S and f : X → Rn and g : X → Rm are S-morphisms, then

(f, g) : X → Rn × Rm is also an S-morphism,
(7) if f : X → Rn is in S, then (graph(f),Rn(X)+k) ∈ S.

The following definition will be crucial (see e.g. [2]):

Definition 4.4. We say that a submanifold X ⊂ Rn is a Nash manifold
if X is a real analytic manifold and a closed semi-algebraic subset of Rn.
Moreover, if X,Y are Nash manifolds and f : X → Y is a mapping, then f
is a Nash mapping if f is real analytic and semi-algebraic.

Example 4.5. Examples of fine categories are: the category S0 itself,
the category RA of smooth real analytic submanifolds with real analytic
mappings as morphisms (it satisfies (2) by [3]) and the category NA of
Nash submanifolds with Nash mappings as morphisms (it satisfies (2) by [2,
Corollary 8.9.13]).

A simple but important consequence of Definition 4.3 is:

Proposition 4.6. Let S be a fine category and let X ∈ S. If f : X → Rn

is an S-embedding , then the induced mapping f∗ : CS(Rn)→ CS(X) is an
epimorphism.

Proof. Indeed, let Y = f(X). By definition Y ∈ S and the mapping

a : CS(Y ) 3 α 7→ α ◦ f ∈ CS(X)

is an isomorphism. Now let i : Y → Rn be the inclusion. Since every S-
function σ : Y → R can be extended to a global S-function Σ : Rn → R,
the mapping i∗ : CS(Rn)→ CS(Y ) is an epimorphism. But f∗ = a ◦ i∗.

Now we have an (obvious) generalization of Lemma 3.1:

Lemma 4.7. Let S be a fine category and let (X,Rn) ∈ S be a submani-
fold. Assume that the projection π : X 3 (x1, . . . , xn) 7→ (x1, . . . , xl, 0, . . . , 0)
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∈ Rl × {0} is an embedding. Then there exists a tame S-diffeomorphism
Π : Rn → Rn such that Π|X = π.

We will need the following:

Definition 4.8. For a hyperplane H ⊂ Pn let us consider the Zariski
open affine set UH = Pn \H. We will say that UH is a standard open affine
subset of Pn. Now let X be a semi-algebraic set and let f : X → Pn be
a mapping. We say that the mapping f is projectively semi-algebraic if for
every standard affine set UH ⊂ Pn the set f−1(UH) is semi-algebraic and
the mapping

f |f−1(UH) : f−1(UH)→ UH
∼= Rn

is semi-algebraic.

The next lemma is a semi-algebraic variant of Lemma 3.3:

Lemma 4.9. Let X be a semi-algebraic submanifold of Rn of dimen-
sion k. If n > 2k+1, then there exists a system of coordinates (x1, . . . , x2k+1,
x2k+2, . . . , xn) on Rn such that the projection π : X 3 (x1, . . . , x2k+1, x2k+2,
. . . , xn) 7→ (x1, . . . , x2k+1, 0, . . . , 0) ∈ R2k+1 × {0} is an embedding.

Proof. We follow closely the proof of Lemma 3.3, using the same nota-
tion. Since A,B are now semi-algebraic mappings and the manifolds X ×
X \∆ and TX ′ are of dimension 2k, the set Λ := A(X ×X \∆)∪B(TX) is
a projectively semi-algebraic set (i.e., it is semi-algebraic in every standard
affine open subset of Pn−1) of dimension at most 2k. Hence so is its closure
Σ (for details see e.g. [1]). Consequently, π∞ \Σ 6= ∅.

Let P ∈ π∞ \ Σ and let H ⊂ Rn−1 be a hyperplane which does not
contain the point P (at infinity). Since P 6∈ Λ, the projection S : X 3 x 7→
Px∩H ∈ H ∼= Rn−1 is an immersion. Moreover, since P 6∈ Σ, this projection
is also proper, hence it is an embedding.

Now we can apply induction.

Lemma 4.10. Let S be a fine category. Let (X,R2n) ∈ S, where n ≥
2k + 1. Assume that the mappings

π1 : X 3 (x1, . . . , xn, y1, . . . , yn) 7→ (x1, . . . , xn) ∈ Rn

and
π2 : X 3 (x1, . . . , xn, y1, . . . , yn) 7→ (y1, . . . , yn) ∈ Rn

are (closed) embeddings and the submanifolds π1(X) = Ω1 and π2(X) = Ω2

are semi-algebraic. Then there exist linear mappings S,Q ∈ SL(n) such that
if we change the coordinates in Rn × {0} to (z1, . . . , zn) = Q(x1, . . . , xn)
and the coordinates in {0} × Rn to (w1, . . . , wn) = S(y1, . . . , yn), then all
projections
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qr : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zr, wr+1, . . . , wn) ∈ Rn,

r = 0, . . . , n,

are S-embeddings.

Proof. As in the proof of Lemma 3.4, we can show that if (z1, . . . , zn)
in Rn × {0} and (w1, . . . , wn) in {0} × Rn are sufficiently generic affine
coordinates, then all projections

qi : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zn−i, wn−i+1, . . . , wn) ∈ Rn,

i = 0, . . . , n,

are immersions. The key point now is to prove that they are also proper. Let
Ω′1 be the (euclidean) projective closure of Ω1 in Pn and take W1 = Ω′1 \Ω1.
Define W2 analogously. Of course W1,W2 are algebraic sets of dimension
k − 1.

We can choose coordinates (z1, . . . , zn) and (w1, . . . , wn) so that addi-
tionally

dimW1 ∩ {z1 = 0, . . . , zt = 0} ≤ k − 1− t for t = 1, . . . , k,

and

dimW2 ∩ {wn = 0, . . . , wn−t = 0} ≤ k − t− 2 for t = 0, 1, . . . , k − 1.

This implies that the mappings

T : Ω1 3 (z1, . . . , zn) 7→ (z1, . . . , zk) ∈ Rk

and
R : X2 3 (w1, . . . , wn) 7→ (wn−k+1, . . . , wn) ∈ Rk

are proper. Consequently, the projection

P1 = T ◦ π1 : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zk) ∈ Rk

is proper. Similarly the projection

P2 = R ◦ π1 : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (wn−k+1, . . . , wn) ∈ Rk

is proper. Set

Tr : Rn 3 (z1, . . . , zr, wr+1, . . . , wn) 7→ (z1, . . . , zr) ∈ Rr

and

Rr : Rn 3 (z1, . . . , zr, wr+1, . . . , wn) 7→ (wr+1, . . . , wn) ∈ Rn−r.

It is easy to see that for every r either Tr ◦ qr is proper (if r ≥ k) or Rr ◦ qr
is proper (if r < k and hence r + 1 < n− k + 1). In both cases this implies
that qr is proper. This finishes the proof.

Definition 4.11. Let S be a fine category and let S′ ⊂ S be a subcat-
egory. We say that S′ is a pseudo-algebraic subcategory in S (or briefly a
pseudo-algebraic category) if
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• Rn ∈ S′ for every n ∈ N,
• if X ∈ S′, then X is a Nash manifold,
• if X,Y in S′ then MorS(X,Y ) = MorS′(X,Y ),

where MorS(X,Y ) = {f ∈ S; f : X → Y }.

Now we can repeat word for word the proof of Theorem 3.5 to obtain:

Theorem 4.12. Let S′ be a pseudo-algebraic category and let X, Y, ∈ S′

be smooth manifolds of dimension k. Let f : X → Y be an S′-diffeo-
morphism. If n ≥ 2k + 2, then f can be extended to a tame S′-diffeo-
morphism F : Rn → Rn. Moreover , there is a smooth family of tame S′-
diffeomorphisms Ft : Rn × R→ Rn such that F0 = identity and F1|X = f.

It is easy to check that the following categories are pseudo-algebraic: the
category of Nash submanifolds of Rn with Nash mappings as morphisms
(here S′ = NA), the category of Nash submanifolds of Rn with real ana-
lytic mappings as morphisms (here S′ ⊂ RA), and the category of Nash
submanifolds of Rn with smooth mappings as morphisms (here S′ ⊂ S0). In
particular, we have:

Theorem 4.13. Let X,Y ⊂ Rn be Nash manifolds of dimension k. Let
f : X → Y be a diffeomorphism. If n ≥ 2k + 2, then f can be extended to
a tame diffeomorphism F : Rn → Rn. Moreover , there is a smooth family
of tame diffeomorphisms Ft : Rn × R → Rn such that F0 = identity and
F1|X = f.

This gives the following nice application to complex algebraic varieties:

Corollary 4.14. Let X,Y ⊂ Cn be smooth complex algebraic manifolds
of complex dimension k. Let f : X → Y be a diffeomorphism. If n ≥ 2k+ 1,
then f can be extended to a tame diffeomorphism F : Cn → Cn. In partic-
ular , if two smooth algebraic complex curves X,Y ⊂ C3 are diffeomorphic,
then they are embedded into C3 in the same way (up to a diffeomorphism).

Proof. Indeed, we can treatX,Y as 2k-dimensional real algebraic smooth
submanifolds of Cn ∼= R2n. By the assumption 2n ≥ 2(2k+1) = 2(2k)+2.

We also have the analytic variant of Theorem 4.13:

Theorem 4.15. Let X,Y ⊂ Rn be Nash (not necessarily connected)
submanifolds of dimension (not necessarily pure) k. Let f : X → Y be a
Nash isomorphism (resp. real analytic isomorphism). If n ≥ 2k + 2, then
f can be extended to a tame Nash isomorphism (resp. tame real analytic
isomorphism) F : Rn → Rn. Moreover , there is an analytic family of tame
Nash isomorphisms (resp. tame real analytic isomorphisms) Ft : Rn × R→
Rn such that F0 = identity and F1|X = f.
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Example 4.16. Since some non-trivial knots f : R→ R3 can be realized
as polynomial embeddings (see e.g. [11]), we see that the assumption n ≥
2k + 2 in Theorems 4.13 and 4.15 is optimal.

5. Complex pseudo-algebraic categories. Now assume that the un-
derlying field is the complex field. We let S0 denote the category of all pairs
(X,Cn(X)), where X ⊂ Cn(X) is a smooth closed submanifold of Cn(X) and
morphisms are smooth mappings. Every object of S0 is a pair (X,Cn(X));
we will identify it simply with X. In particular, we will identify (Cn,Cn)
with Cn. Let S be a subcategory of S0. We can easily extend Definition 4.3
to:

Definition 5.1. We say that S is a fine category if:

(1) Cn ∈ S for every n ∈ N,
(2) if f : X → C is in S, then f can be extended to a mapping F :

Cn(X) → C which is also in S,
(3) the C-linear mappings are in S, and if X ∈ S, then the restrictions

to X of mappings from S are in S,
(4) if X ∈ S, then the set CS(X) = {f : X → C; f ∈ S} is a C-algebra,
(5) if X ∈ S and π : X → Cn is a linear projection which is a smooth

embedding, then π is an S-embedding,
(6) if X ∈ S and f : X → Cn and g : X → Cm are S-morphisms, then

(f, g) : X → Cn × Cm is also an S-morphism,
(7) if f : X → Cn is in S, then (graph(f),Cn(X)+k) ∈ S.

From now on our models of fine categories will be the category St of
smooth Stein submanifolds X ⊂ Cn(X) with holomorphic mappings as mor-
phisms and the category Pl of smooth algebraic submanifolds with polyno-
mial mappings as morphisms. Note that again the fact that the category
St has property (2) is a non-trivial fact, which follows from Cartan’s The-
orem B (for details see [3]). We can also define a complex pseudo-algebraic
category:

Definition 5.2. Let S be a (complex) fine category and let S′ ⊂ S be
a subcategory. We say that S′ is a (complex) pseudo-algebraic subcategory
in S (or briefly a pseudo-algebraic category) if

• Cn ∈ S′ for every n ∈ N,
• if X ∈ S′, then X is a complex algebraic manifold,
• if X,Y in S′ then MorS(X,Y ) = MorS′(X,Y ),

where MorS(X,Y ) = {f ∈ S; f : X → Y }.

Now we can repeat word for word the results of the previous section to
obtain:
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Theorem 5.3. Let S′ be a pseudo-algebraic category and let (X,Cn),
(Y,Cn) ∈ S′ be smooth complex manifolds of dimension k. Let f : X → Y
be an S′-diffeomorphism. If n ≥ 2k + 2, then f can be extended to a tame
S′-diffeomorphism F : Cn → Cn. Moreover , there is a smooth family of tame
S′-diffeomorphisms Ft : Cn×C→ Cn such that F0 = identity and F1|X = f.

It is easy to check that the category of smooth complex algebraic sub-
manifolds with holomorphic mappings as morphisms is a pseudo-algebraic
category (here S′ ⊂ S = St). Similarly the category of smooth complex al-
gebraic submanifolds with polynomial mappings as morphisms is a pseudo-
algebraic category (here S′ = S = Pl). In particular, we have:

Theorem 5.4. Let X,Y ⊂ Cn be smooth complex algebraic submani-
folds of dimension k. Let f : X → Y be a biholomorphism (resp. polynomial
isomorphism). If n ≥ 2k + 2, then f can be extended to a tame biholomor-
phism (resp. a tame polynomial automorphism) F : Cn → Cn. Moreover ,
there is a smooth family of tame biholomorphisms (resp. tame polynomial
isomorphisms) Ft : Cn × C→ Cn such that F0 = identity and F1|X = f.

Example 5.5 (see [8]). Let n ≥ 4 be an even number and consider the
variety S2n−1 = {(x, y) ∈ C2n :

∑n
i=1 xiyi = 1}. Then the embeddings

ι : S2n−1 × C2 3 ((x, y), (s, t)) 7→ ((x, y), s, t, 0, . . . , 0) ∈ C2n × Cn

and φ : S2n−1 × C2 → C2n × Cn given by

((x, y), (s, t)) 7→
((x, y), y1s+x2t, y2s−x1t, y3s+x4t, y4s−x3t, . . . , yn−1s+xnt, yns−xn−1t)

are non-equivalent, i.e., there does not exist a biholomorphism

Φ : C2n × Cn → C2n × Cn

such that Φ ◦ ι = φ.

Example 5.6. For every n ≥ 2 there is a (closed) holomorphic embed-
ding f : C×{0, . . . , 0} → Cn which cannot be extended to a biholomorphism
F : Cn → Cn (for details see [4]). Of course, the reason is that the smooth
Stein curve Y = f(C) is far from being algebraic.

Example 5.7. LetX,Y ⊂ C be finite sets of points with #X = #Y ≥ 3.
Since every biholomorphism of C is a C-linear mapping, a general bijection
f : X → Y cannot be extended to a global biholomorphism F : C → C.
This means that at least for k = 0 the assumption n ≥ 2k + 2 of Theorem
5.4 is optimal.

6. Semi-algebraic category. To end this paper we consider a category
which is not smooth. Let SE be the category of closed semi-algebraic subsets
of Rn, i.e., objects of this category are pairs (X,Rn(X)) and X ⊂ Rn(X) is a
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closed semi-algebraic subset of Rn(X). The morphisms in SE are continuous
semi-algebraic mappings. This is a fine category in some sense, since:

(1) Rn ∈ SE for every n ∈ N,
(2) if f : X → R is in SE, then f can be extended to a mapping

F : Rn(X) → R which is also in SE (this is a semi-algebraic version
of the Tietze Extension Theorem, see e.g. [2, Proposition 2.6.9]),

(3) the linear mappings are in SE, and if X ∈ SE, then the restrictions
to X of mappings from SE are in SE,

(4) if X ∈ SE, then the set CSE(X) = {f : X → R; f ∈ SE} is an
R-algebra,

(5) if X ∈ SE and π : X → Rn is a projection which is a topological
embedding, then f is an SE-embedding,

(6) if X ∈ SE and f : X → Rn and g : X → Rm are SE-morphisms,
then (f, g) : X → Rn × Rm is also an SE-morphism.

(7) if f : X → Rn is in SE, then (graph(f),Rn(X)+k) ∈ SE.

By Proposition 4.6 we have:

Lemma 6.1. If X is a semi-algebraic set and f : X → Rn is an SE-
embedding , then the mapping

f∗ : CSE(Rn) 3 h 7→ h ◦ f ∈ CSE(X)

is an epimorphism.

Moreover, using basic properties of semi-algebraic sets it is not difficult
to prove topological counterparts of Lemmas 4.9, 4.7 and 4.10; the main
idea is the same, we have to use the lemma below.

Lemma 6.2. Let W be a semi-algebraic subset of P(Rn). Let (x1, . . . , xk)
be a system of linear homogeneous polynomials on P(Rn) with V (x1, . . . , xk)
∩W = ∅. Then for generic λ = (λ1, . . . , λk) ∈ Rk we have

dimW ∩ V
( k∑

i=1

λixi

)
≤ dimW − 1.

Proof. Let W =
⋃r

i=1Wi be the decomposition of W into irreducible
components (in the semi-algebraic sense, see Proposition 2.9.10 of [2]). For
simplicity we may suppose that dimWi = dimW for every i = 1, . . . , s.

Let Li be the linear subspace of Pn(R) spanned by Wi, i = 1, . . . , s. A
hyperplane H satisfies dimW∩H = dimW if and only if it contains some Li.
If P(λ) parametrizes all hyperplanes of the type

∑k
i=1 λixi = 0, then those

that contain some Li form a linear subspace Λi of P(λ). By our assumption
we have Λi 6= P(λ) for every i (since otherwise Wi ⊂ V (x1, . . . , xk) ∩W ).
Hence the union

⋃s
i=1 Λi is a proper subset of P(λ) and the proof is finished.

For example we give a proof of:
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Lemma 6.3. Let X be a closed semi-algebraic subset of Rn of dimension
k. If n > 2k + 1, then there exists a system of coordinates (x1, . . . , x2k+1,
x2k+2, . . . , xn) such that the projection

π : X 3 (x1, . . . , x2k+1, x2k+2, . . . , xn)
7→ (x1, . . . , x2k+1, 0, . . . , 0) ∈ R2k+1 × {0}

is a topological embedding.

Proof. Again we follow the proof of Lemma 3.3. Since

A : X ×X \∆ 3 (x, y) 7→ [x− y] ∈ π∞
is a semi-algebraic mapping and the semi-algebraic set X × X \ ∆ is of
dimension 2k, the set Λ := A(X ×X \∆) is (projectively) semi-algebraic of
dimension at most 2k, and hence so is its closure Σ (for details see e.g., [1]).
Consequently, π∞ \Σ 6= ∅. Now we can finish as in Lemma 4.9.

Lemma 6.4. Let (X,Rn) ∈ SE be a closed subset of dimension k. As-
sume that the projection π : X 3 (x1, . . . , xn) 7→ (x1, . . . , xl, 0, . . . , 0) ∈
Rl × {0} is a topological embedding. Then there exists a tame SE-homeo-
morphism Π : Rn → Rn such that Π|X = π.

Lemma 6.5. Let (X,R2n) ∈ SE, where n ≥ 2k + 1. Assume that the
mappings

π1 : X 3 (x1, . . . , xn, y1, . . . , yn) 7→ (x1, . . . , xn) ∈ Rn

and
π2 : X 3 (x1, . . . , xn, y1, . . . , yn) 7→ (y1, . . . , yn) ∈ Rn

are (closed) embeddings. Then there exist linear mappings S, T ∈ SL(n) such
that if we change the coordinates in Rn×{0} to (z1, . . . , zn) = T (x1, . . . , xn)
and the coordinates in {0} × Rn to (w1, . . . , wn) = S(y1, . . . , yn), then all
projections

qr : X 3 (z1, . . . , zn, w1, . . . , wn) 7→ (z1, . . . , zr, wr+1, . . . , wn) ∈ Rn,

r = 0, . . . , n,

are closed (topological) embeddings.

Now we can repeat nearly word for word the proof of Theorem 3.5 to
obtain:

Theorem 6.6. Let X,Y ⊂ Rn be closed semi-algebraic subsets of di-
mension k. Let f : X → Y be a semi-algebraic homeomorphism. If n ≥
2k + 2, then f can be extended to a tame semi-algebraic homeomorphism
F : Rn → Rn.

Since every triangle homeomorphism

G = (x1, . . . , xn−1, xn + Pn(x1, . . . , xn−1))
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is homeotopic to the identity by

t 7→ Gt = (x1, . . . , xn−1, xn + tPn(x1, . . . , xn−1))

and the same is true for linear mappings with determinant 1, we have:

Corollary 6.7. Let X,Y ⊂ Rn be closed semi-algebraic subsets of di-
mension k. Let f : X → Y be a semi-algebraic homeomorphism. If n ≥
2k + 2, then X,Y are semi-algebraically homeotopic, i.e., there is a con-
tinuous semi-algebraic family t 7→ Gt of semi-algebraic homeomorphisms
Gt : Rn → Rn such that G0 = identity and G1|X = f.

Remark 6.8. Example 4.16 shows that the assumption n ≥ 2k + 2 in
Theorem 6.6 is essential.

Remark 6.9. The results of this section are semi-algebraic counterparts
of the classical topological results of Gluck on extension of homeomorphisms
of compact polyhedra (see [5]).

7. Examples. If X is a k-dimensional Nash submanifold of Rn and
n > 2k + 1 then X has a unique Nash embedding into Rn. We know that
for k = 1 and n = 3 this result is optimal. It is of interest whether it is also
optimal for large k and n.

We give examples of Nash manifolds Xn+1 ⊂ R2n (where n is any even
number different from 2, 4, 8) which have at least two different Nash embed-
dings into R2n. This means that our results cannot be much improved for
large n.

Theorem 7.1. Let Sn−1 ⊂ Rn be a sphere where n is an even number
different from 2, 4, 8. The embeddings

ι : Sn−1 × R2 3 (x, (s, t)) 7→ (x, s, t, 0, . . . , 0) ∈ Rn × Rn

and φ : Sn−1 × R2 → Rn × Rn given by

(x, (s, t)) 7→
(x, x1s+ x2t, x2s− x1t, x3s+ x4t, x4s− x3t, . . . , xn−1s+ xnt, xns− xn−1t)

are non-equivalent , i.e., there does not exist a diffeomorphism

Φ : Rn × Rn → Rn × Rn

such that Φ ◦ ι = φ.

Proof. It is well known that for even n 6= 2, 4, 8 the tangent bundle
A = TSn−1 is not trivial. However, since the normal bundle N(Sn−1) is
trivial, the bundle A is stably trivial. In fact, if Er denotes a trivial bundle
of rank r on the sphere, then A⊕ E1 = En.
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Let x1, . . . , xn be standard coordinates in Rn. Let E′ ⊂ En be the sub-
bundle of rank 1 generated by the vector a = (x1, . . . , xn) and E′′ be a
subbundle generated by the vector b = (x2,−x1, x4,−x3, . . . , xn,−xn−1).

It is easy to see that

F : En 3 (v1, . . . , vn) 7→
n∑

i=1

xivi ∈ E1

and

G : En 3 (v1, . . . , vn) 7→ x2v1 − x1v2 + · · ·+ xnvn−1 − xn−1vn ∈ E1

are morphisms of vector bundles. Moreover, F (a) = 1 and G(b) = 1. This
means that E′ and E′′ are prime summands in En.

Since kerF = A, we have E′ ⊕ A = En. Moreover, since F (b) = 0 we
have E′′ ⊂ A. In particular, this means that there exists a subbundle D ⊂ En

such that A = E′′ ⊕D. By the construction we have D⊕ 〈a,b〉 = En, where
〈a,b〉 denote the subbundle generated by the vectors a and b (check that
it is really a subbundle!).

Now consider the embedding

φ : Sn−1 × R2 3 (x, (s, t)) 7→
(x, x1s+ x2t, x2s− x1t, . . . , xn−1s+ xnt, xns− xn−1t) ∈ Rn × Rn.

By direct computations we see that the normal bundle N(φ(Sn−1 × R2))
restricted to the submanifold Sn−1 × {0} is equal to

N(Sn−1)⊕ (En/〈a,b〉) = E1 ⊕ D = A = TSn−1.

This means that this normal bundle is not trivial along Sn−1 × {0}.
However, it is easy to see that the normal bundle N(ι(Sn−1 × R2)) re-

stricted to the submanifold Sn−1×{0} is trivial. Since φ and ι coincide along
Sn−1 × {0}, this implies that there is no diffeomorphism

Φ : Rn × Rn → Rn × Rn

such that Φ ◦ ι = φ.
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