COLLOQUIUM MATHEMATICUM

AN EXTENSION THEOREM FOR A MATKOWSKI-SUTÔ PROBLEM

BY
ZOLTÁN DARÓCZY (Debrecen), GABRIELLA HAJDU (Debrecen) and CHE TAT NG (Waterloo, ON)

Abstract

Let I be an interval, $0<\lambda<1$ be a fixed constant and $A(x, y)=\lambda x+$ ($1-\lambda$) $y, x, y \in I$, be the weighted arithmetic mean on I. A pair of strict means M and N is complementary with respect to A if $A(M(x, y), N(x, y))=A(x, y)$ for all $x, y \in I$. For such a pair we give results on the functional equation $f(M(x, y))=f(N(x, y))$. The equation is motivated by and applied to the Matkowski-Sutô problem on complementary weighted quasi-arithmetic means M and N.

1. Introduction. We call a convex subset I of \mathbb{R} an interval. An interval is proper when it has more than one element. We shall assume that I is proper. A function $M: I^{2} \rightarrow I$ is said to be a mean on I if it satisfies the following conditions:
(M1) $\quad \min \{x, y\} \leq M(x, y) \leq \max \{x, y\}$ for all $x, y \in I, x \neq y$;
(M2) $\quad M$ is continuous on I^{2}.
A mean is called strict if the inequalities in (M1) are strict. If M is a mean on I, then $M(x, x)=x$ for all $x \in I$. Let $\operatorname{CM}(I)$ denote the class of all continuous and strictly monotonic real functions defined on I. Let $0<\lambda<1$ be a fixed number. A function $M: I^{2} \rightarrow I$ is called a weighted quasi-arithmetic mean on I (see [1]) if there exists $\varphi \in \operatorname{CM}(I)$ such that

$$
M(x, y)=\varphi^{-1}(\lambda \varphi(x)+(1-\lambda) \varphi(y))=: A_{\varphi}(x, y ; \lambda)
$$

for all $x, y \in I$. In this case, $\varphi \in \operatorname{CM}(I)$ is called the generating function of the weighted quasi-arithmetic mean with weight λ. Weighted quasiarithmetic means are strict.

[^0]If $\varphi, \chi \in \mathrm{CM}(I)$ then $A_{\varphi}(x, y ; \lambda)=A_{\chi}(x, y ; \lambda)$ for all $x, y \in I$ if and only if there exist real constants $\alpha \neq 0$ and β such that

$$
\varphi(x)=\alpha \chi(x)+\beta \quad \text { for all } x \in I
$$

If $\varphi, \chi \in C M(I)$ and the above equation holds for some constants $\alpha \neq 0$ and β on a subset $J \subset I$ then we say that φ is equivalent to χ on J; and, in this case, we write $\varphi \sim \chi$ on J. For fixed J, it is easy to verify that \sim is indeed an equivalence relation on $\mathrm{CM}(I)$, i.e., it is reflexive, symmetric and transitive. When $\varphi(x)=x$ for all $x \in I$, or when φ is equivalent to the identity map id on $I, A_{\varphi}(x, y ; \lambda)$ is simply denoted by $A(x, y ; \lambda)$ and is the well known weighted arithmetic mean

$$
A(x, y ; \lambda):=\lambda x+(1-\lambda) y \quad(x, y \in I) .
$$

Let M be a strict mean on I and let $0<\lambda \leq 1 / 2$. Then the function defined by

$$
\widehat{M}_{\lambda}(x, y):=\frac{\lambda}{1-\lambda} x+y-\frac{\lambda}{1-\lambda} M(x, y) \quad(x, y \in I)
$$

is also a strict mean on I and for each $x, y \in I, M(x, y)=\lambda x+(1-\lambda) y$ if and only if $\widehat{M}_{\lambda}(x, y)=\lambda x+(1-\lambda) y$. The pair M, \widehat{M}_{λ} satisfies

$$
\begin{equation*}
\lambda M(x, y)+(1-\lambda) \widehat{M}_{\lambda}(x, y)=A(x, y ; \lambda) \tag{1}
\end{equation*}
$$

for all $x, y \in I$. In this sense, \widehat{M}_{λ} is complementary to M with respect to the weighted arithmetic mean.

The Matkowski-Sutô problem for weighted quasi-arithmetic means is the following: When will two complementary means M and \widehat{M} be weighted quasi-arithmetic means with the same weight λ on I ? In more detail, this means finding those functions $\varphi, \psi \in \operatorname{CM}(I)$ which satisfy

$$
\begin{align*}
\lambda \varphi^{-1}(\lambda \varphi(x)+(1-\lambda) \varphi(y))+(1-\lambda) \psi^{-1}(\lambda \psi(x)+ & (1-\lambda) \psi(y)) \tag{2}\\
& =\lambda x+(1-\lambda) y
\end{align*}
$$

for all $x, y \in I$.
The case $\lambda=1 / 2$ is the original Matkowski-Sutô problem (see [7], [8], [2], [4]), which has recently been solved in [5] completely. The case $\lambda \neq 1 / 2$ has been solved in [6] under the assumptions that I is open and the generating functions are continuously differentiable on I with nonvanishing derivatives. Under this assumption, the conclusion is that $\varphi \sim \mathrm{id}$ and $\psi \sim \mathrm{id}$ on I. Conversely, it is easy to verify that when $\varphi \sim$ id and $\psi \sim \mathrm{id}$ on I, (2) is satisfied. It is natural to ask if the differentiability assumption in the forward statement can be reduced.

Without loss of generality we can suppose that $\lambda \leq 1 / 2$, otherwise we change the roles of φ and ψ, and of x and y. So in what follows $\lambda \leq 1 / 2$ is assumed.

We ask the following local versus global question. Suppose that $\varphi, \psi \in$ $\mathrm{CM}(I)$ satisfy (2) on I and there exists a proper interval $J \subset I$ such that $\varphi \sim$ id and $\psi \sim$ id on J. Is it true then that $\varphi \sim$ id and $\psi \sim$ id on I ? In this paper we give an affirmative answer. With this result, the differentiability conditions on I used in [6] can be relaxed to their holding on some open subinterval of I. In Section 2 we solve an equivariance functional equation which is later applied in Section 3 to give the main result.
2. An equivariance equation on complementary means. Let M be a strict mean on I and let $0<\lambda \leq 1 / 2$. A function $f: I \rightarrow \mathbb{R}$ is called (M, λ)-associate if it has the following property:
(MA) If $x, y \in I$ satisfy $M(x, y)=\lambda x+(1-\lambda) y$ and $f(x)=f(\lambda x+$ $(1-\lambda) y)$ then $f(y)=f(x)$.
One can easily check that if f is (M, λ)-associate then it is also $\left(\widehat{M}_{\lambda}, \lambda\right)$ associate.

In this section we solve the equivariance functional equation

$$
f(M(x, y))=f\left(\widehat{M}_{\lambda}(x, y)\right) \quad(x, y \in I)
$$

where $0<\lambda \leq 1 / 2$ is fixed.
Theorem 1. Let M be a strict mean on $I, 0<\lambda \leq 1 / 2$, and let f : $I \rightarrow \mathbb{R}$ be a function satisfying the functional equation

$$
\begin{equation*}
f(M(x, y))=f\left(\frac{\lambda}{1-\lambda} x+y-\frac{\lambda}{1-\lambda} M(x, y)\right) \tag{3}
\end{equation*}
$$

for all $x, y \in I$. Then
(a) For all $x, y \in I$ where $M(x, y) \neq A(x, y ; \lambda), f$ is locally constant at $A(x, y ; \lambda)$.
(b) If f is continuous and (M, λ)-associate then either
(i) f is constant on I, or
(ii) f is injective on I and $M(x, y)=A(x, y ; \lambda)$ for all $x, y \in I$.

Proof. Denote by $I_{x y}$ the closed interval joining $M(x, y)$ and $\widehat{M}_{\lambda}(x, y)$ and recall that $A(x, y ; \lambda):=\lambda x+(1-\lambda) y$ is the weighted arithmetic mean on I. We also recall that $\lambda M(x, y)+(1-\lambda) \widehat{M}_{\lambda}(x, y)=A(x, y ; \lambda)$.

Claim 1. For all $x_{0}, y_{0} \in I$ two cases are possible:
(I) If $M\left(x_{0}, y_{0}\right) \leq \widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)$ then

$$
f\left(A\left(x_{0}, y_{0} ; \lambda\right)-s\right)=f\left(A\left(x_{0}, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} s\right)
$$

for all $0 \leq s \leq A\left(x_{0}, y_{0} ; \lambda\right)-M\left(x_{0}, y_{0}\right)$.
(II) If $\widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)<M\left(x_{0}, y_{0}\right)$ then

$$
f\left(A\left(x_{0}, y_{0} ; \lambda\right)-s\right)=f\left(A\left(x_{0}, y_{0} ; \lambda\right)+\frac{1-\lambda}{\lambda} s\right)
$$

for all $0 \leq s \leq A\left(x_{0}, y_{0} ; \lambda\right)-\widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)$.
Proof. The assertion is trivial when $I_{x_{0} y_{0}}$ is a singleton. Suppose $I_{x_{0} y_{0}}$ is proper. There are two cases: either $x_{0}<y_{0}$ or $y_{0}<x_{0}$. First let $x_{0}<y_{0}$.

Consider $x_{t}:=x_{0}+t, y_{t}:=y_{0}-\frac{\lambda}{1-\lambda} t$ for $0 \leq t \leq A\left(x_{0}, y_{0} ; \lambda\right)-x_{0}$. We note that for all $t \in\left[0, A\left(x_{0}, y_{0} ; \lambda\right)-x_{0}\right]$ we have $\lambda x_{t}+(1-\lambda) y_{t}=A\left(x_{0}, y_{0} ; \lambda\right)$, and consequently $\lambda M\left(x_{t}, y_{t}\right)+(1-\lambda) \widehat{M}_{\lambda}\left(x_{t}, y_{t}\right)=A\left(x_{0}, y_{0} ; \lambda\right)$.

Now suppose $M\left(x_{0}, y_{0}\right)<\widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)$. This immediately implies $M\left(x_{0}, y_{0}\right)$ $<A\left(x_{0}, y_{0} ; \lambda\right)$. The function $t \mapsto M\left(x_{t}, y_{t}\right)$ is continuous and takes the values $M\left(x_{0}, y_{0}\right)$ and $A\left(x_{0}, y_{0} ; \lambda\right)$. By the Intermediate Value Theorem, for each $0 \leq s \leq A\left(x_{0}, y_{0} ; \lambda\right)-M\left(x_{0}, y_{0}\right)$, there exists $t \in\left[0, A\left(x_{0}, y_{0} ; \lambda\right)-x_{0}\right]$ such that $M\left(x_{t}, y_{t}\right)=A\left(x_{0}, y_{0} ; \lambda\right)-s$ and $\widehat{M}_{\lambda}\left(x_{t}, y_{t}\right)=A\left(x_{0}, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} s$. Thus by (3),

$$
f\left(A\left(x_{0}, y_{0} ; \lambda\right)-s\right)=f\left(A\left(x_{0}, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} s\right) .
$$

A similar argument proves that if $\widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)<M\left(x_{0}, y_{0}\right)$ then for each $0 \leq s \leq A\left(x_{0}, y_{0} ; \lambda\right)-\widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)$, there exists $t \in\left[0, A\left(x_{0}, y_{0} ; \lambda\right)-x_{0}\right]$ such that $\widehat{M}_{\lambda}\left(x_{t}, y_{t}\right)=A\left(x_{0}, y_{0} ; \lambda\right)-s$ and $M\left(x_{t}, y_{t}\right)=A\left(x_{0}, y_{0} ; \lambda\right)+\frac{1-\lambda}{\lambda} s$. Then again by (3),

$$
f\left(A\left(x_{0}, y_{0} ; \lambda\right)-s\right)=f\left(A\left(x_{0}, y_{0} ; \lambda\right)+\frac{1-\lambda}{\lambda} s\right)
$$

If $y_{0}<x_{0}$ then let $x_{t}:=x_{0}-\frac{1-\lambda}{\lambda} t, y_{t}:=y_{0}+t$ for $0 \leq t \leq A\left(x_{0}, y_{0} ; \lambda\right)-y_{0}$. The rest of the proof goes as above.

Claim 2. Suppose $I_{x_{0} y_{0}}$ is proper. Then f is locally constant at the point $A\left(x_{0}, y_{0} ; \lambda\right)$; i.e., there exists a neighbourhood of $A\left(x_{0}, y_{0} ; \lambda\right)$ on which f is constant.

Proof. We only examine case (I), when $M\left(x_{0}, y_{0}\right)<\widehat{M}_{\lambda}\left(x_{0}, y_{0}\right)$. Let $x_{0}<y_{0}$, say. For some sufficiently small $\delta>0$, we have $\left[A\left(x_{0}, y_{0} ; \lambda\right)-\delta\right.$, $\left.A\left(x_{0}, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} \delta\right] \subset I_{x y_{0}}$ for all $x \in\left[x_{0}, x_{0}+\delta\right]$.

Now for all $x \in\left[x_{0}, x_{0}+\delta\right], I_{x y_{0}}$ is proper, and by Claim 1,

$$
f\left(A\left(x, y_{0} ; \lambda\right)-s\right)=f\left(A\left(x, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} s\right)
$$

whenever both arguments are in $\left[A\left(x_{0}, y_{0} ; \lambda\right)-\delta, A\left(x_{0}, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} \delta\right]$. The point $A\left(x, y_{0} ; \lambda\right)$ being arbitrary in $\left[A\left(x_{0}, y_{0} ; \lambda\right), A\left(x_{0}, y_{0} ; \lambda\right)+\lambda \delta\right]$, this gives the constancy of f on $\left[A\left(x_{0}, y_{0} ; \lambda\right)-\delta, A\left(x_{0}, y_{0} ; \lambda\right)+\frac{\lambda}{1-\lambda} \delta\right]$.

The other cases, when $y_{0}<x_{0}$ and (II) holds, can be proved similarly.
The above proves (a) of Theorem 1. To prove (b), in what follows we assume that f is continuous and (M, λ)-associate.

Claim 3. Suppose there exist $x_{0}<y_{0}$ such that $I_{x_{0} y_{0}}$ is proper. Then f is constant on I.

Proof. Let $J \subset I$ be the maximal interval containing $A\left(x_{0}, y_{0} ; \lambda\right)$ on which f is constant, i.e.,
$J:=\{x \in I \mid f(y)=c$ for all y in the closed interval joining

$$
\left.x \text { and } A\left(x_{0}, y_{0} ; \lambda\right)\right\}
$$

where $c:=f\left(A\left(x_{0}, y_{0} ; \lambda\right)\right)$. By the continuity of f, J is closed relative to I; and by Claim 2, it is a proper interval neighbourhood of $A\left(x_{0}, y_{0} ; \lambda\right)$. We shall argue that $J=I$; thus f is constant on I.

Suppose that $\beta:=\sup J$ is an interior point of I. Then there exists $\varepsilon>0$ such that $\beta-\varepsilon \in J$ and $\beta+\frac{\lambda}{1-\lambda} \varepsilon \in I$. Now for each $\left.\left.y \in\right] \beta, \beta+\frac{\lambda}{1-\lambda} \varepsilon\right]$ there exists a unique $x \in[\beta-\varepsilon, \beta[$ such that $A(x, y ; \lambda)=\beta$. If the interval $I_{x y}$ were proper then f would be constant in a neighbourhood of β by Claim 2 and so J would not be maximal. Therefore $I_{x y}$ is a singleton, that is, $M(x, y)=\widehat{M}_{\lambda}(x, y)$. So

$$
M(x, y)=A(x, y ; \lambda)=\beta
$$

Because x and β belong to J,

$$
f(x)=f(\beta)=c
$$

and since f is (M, λ)-associate, we get $f(y)=c$. As $\left.y \in] \beta, \beta+\frac{\lambda}{1-\lambda} \varepsilon\right]$ is arbitrary, this implies that $\beta+\frac{\lambda}{1-\lambda} \varepsilon$ is in J, contradicting the assumption that $\beta=\sup J$. Thus $\sup J=\sup I$. One can similarly prove that $\inf J=$ $\inf I$. Since J is closed in I, we have $J=I$.

Claim 4. If f is nonconstant on I, then $M(x, y)=A(x, y ; \lambda)$ for all $x, y \in I$.

Proof. By Claim 3, $I_{x y}$ is a singleton for all $x, y \in I$, that is, $M(x, y)=$ $\widehat{M}_{\lambda}(x, y)$. As $A(x, y ; \lambda)=\lambda M(x, y)+(1-\lambda) \widehat{M}_{\lambda}(x, y)$, we get $A(x, y ; \lambda)=$ $M(x, y)$.

Claim 5. If f is nonconstant, then it is injective on I.

Proof. By Claim 4, the continuous and nonconstant function $f: I \rightarrow \mathbb{R}$ satisfies the condition (MA):

$$
\begin{equation*}
f(y)=f(x) \text { whenever } f(x)=f(A(x, y ; \lambda)), \quad x, y \in I \tag{4}
\end{equation*}
$$

(I) Case 1. Suppose $\lambda=1 / 2$. This has been dealt with in [3], where the proof of injectivity of f on all closed $[a, b] \subset I$ is given. So f is injective on I.
(II) Case 2. Suppose $0<\lambda<1 / 2$. Let $\varrho:=\frac{\lambda}{1-\lambda}$. Since $0<\lambda<1 / 2$, we have $0<\varrho<1$. We rewrite (4) in the form

$$
\begin{align*}
& f(u)=f(v) \text { implies } \quad f(u+\varrho(u-v))=f(u)=f(v) \tag{5}\\
& u, v, u+\varrho(u-v) \in I
\end{align*}
$$

Suppose to the contrary that f is not injective. Then there exist $x_{1}<x_{2}$ in the interior of I which are as close as we wish so that

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

Let them be chosen close enough that $x_{2}+\varrho\left(x_{2}-x_{1}\right)$ stays in I. We shall now argue that

$$
\begin{equation*}
f \text { is constant on }\left[x_{1}, x_{2}\right] . \tag{6}
\end{equation*}
$$

If this were not true, then there would exist a proper connected component interval $] x_{3}, x_{4}\left[\right.$ of the nonempty open set $\{t \in] x_{1}, x_{2}\left[\mid f(t) \neq f\left(x_{1}\right)\right\}$ for which

$$
\begin{equation*}
\left.f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)=f\left(x_{4}\right), \text { but } f(t) \neq f\left(x_{1}\right) \text { for all } t \in\right] x_{3}, x_{4}[\tag{7}
\end{equation*}
$$

Since $x_{2}+\varrho\left(x_{2}-x_{1}\right) \in I$, this implies $x_{5}:=x_{4}+\varrho\left(x_{4}-x_{3}\right) \in I$. Applying (5) once we get $f\left(x_{5}\right)=f\left(x_{4}\right)=f\left(x_{3}\right)$. Let $x_{6}:=x_{4}+\varrho\left(x_{4}-x_{5}\right)$. Then $x_{6}=x_{4}+\varrho\left(-\varrho\left(x_{4}-x_{3}\right)\right)=x_{4}-\varrho^{2}\left(x_{4}-x_{3}\right)$ where $0<\varrho^{2}<1$; we have $\left.x_{6} \in\right] x_{3}, x_{4}\left[\right.$. Applying (5) once more we get $f\left(x_{6}\right)=f\left(x_{4}\right)=f\left(x_{5}\right)$, i.e. $f\left(x_{6}\right)=f\left(x_{1}\right)$ while $\left.x_{6} \in\right] x_{3}, x_{4}[$. This is a contradiction to (7). This proves (6).

Let K be the maximal interval containing $\left[x_{1}, x_{2}\right]$ on which f is constant. Then K is proper, and is closed relative to I. It is easy to see that K must be equal to I. For otherwise, say $k:=\sup K$ is an interior point in I; then by (5), f will remain constant on $\left[k, k+\varrho\left(k-x_{1}\right)\right] \cap I$ and K will not be maximal. This contradiction shows that $\sup K=\sup I$. Similarly, $\inf K=\inf I$ holds. K being closed in I, this gives $K=I$. Thus f is constant on I, and this is a contradiction.

This completes the proof of Theorem 1.

3. The extension theorem

Lemma 1. Let $\varphi, \psi \in \mathrm{CM}(I)$ satisfy (2) on I and let $J \subset I$ be a proper subinterval on which $\varphi \sim \mathrm{id}$ and $\psi \sim \mathrm{id}$. Then there exist $\widetilde{\varphi}, \widetilde{\psi} \in \operatorname{CM}(I)$ satisfying (2) such that $\varphi \sim \widetilde{\varphi}$ and $\psi \sim \widetilde{\psi}$ on I and

$$
\widetilde{\varphi}(x)=x, \quad \widetilde{\psi}(x)=x \quad \text { for all } x \in J
$$

Proof. There exist constants $\alpha_{i} \neq 0$ and $\beta_{i}(i=1,2)$ such that

$$
\alpha_{1} \varphi(x)+\beta_{1}=x, \quad \alpha_{2} \psi(x)+\beta_{2}=x
$$

for all $x \in J$. Then $\widetilde{\varphi}:=\alpha_{1} \varphi+\beta_{1}$ and $\widetilde{\psi}(x):=\alpha_{2} \psi+\beta_{2}$ have the asserted properties.

Theorem 2. Let $\varphi, \psi \in \operatorname{CM}(I)$ satisfy (2) for all $x, y \in I$ and let J be a proper subinterval of I such that $\varphi \sim \mathrm{id}$ and $\psi \sim \mathrm{id}$ on J. Then $\varphi \sim \mathrm{id}$ and $\psi \sim \mathrm{id}$ on I.

Proof. According to Lemma 1, we can suppose that

$$
\varphi(x)=x, \quad \psi(x)=x \quad(x \in J)
$$

and we need to show that $\varphi=\psi=$ id on the full interval I. Let $K \subset I$ be the maximal interval containing J such that

$$
\begin{equation*}
\varphi(x)=x, \quad \psi(x)=x \quad(x \in K) \tag{8}
\end{equation*}
$$

We are going to show that $K=I$. By the continuity of φ and ψ, K is closed in I. Suppose to the contrary that $K \neq I$; then either $\inf K$ or $\sup K$ is an interior point of I. Say, $a:=\inf K$ is an interior point of I.

Choose another element $b \in K$ which is above a, i.e. $a<b$. Then $] a, b[$ is an open neighbourhood of $A_{\varphi}(a, b ; \lambda)$ and $A_{\psi}(a, b ; \lambda)$ because the two means are strict. By the continuity of $A_{\varphi}(\cdot, b ; \lambda)$ and $A_{\psi}(\cdot, b ; \lambda)$, and the fact that a is an interior point of I, there exists $\delta>0$ such that $[a-\delta, a] \subset I$ and $A_{\varphi}(x, b ; \lambda)$ and $A_{\psi}(x, b ; \lambda)$ are both in $] a, b[$ for all $x \in[a-\delta, a]$.

Let $x \in[a-\delta, a]$. Then from (2) and (8) we have

$$
\lambda(\lambda \varphi(x)+(1-\lambda) b)+(1-\lambda)(\lambda \psi(x)+(1-\lambda) b)=\lambda x+(1-\lambda) b
$$

which implies $\lambda \varphi(x)+(1-\lambda) \psi(x)=x$. The latter also holds true for $x \in[a, b]$ where $\varphi(x)=\psi(x)=x$ and so we have

$$
\begin{equation*}
\lambda \varphi(x)+(1-\lambda) \psi(x)=x \quad \text { for all } x \in[a-\delta, b] \tag{9}
\end{equation*}
$$

That is,

$$
\psi(x)=-\frac{\lambda}{1-\lambda} \varphi(x)+\frac{x}{1-\lambda}
$$

Since

$$
\begin{aligned}
\lambda A_{\varphi}(x, y ; \lambda)+(1-\lambda) A_{\psi}(x, y ; \lambda) & =\lambda x+(1-\lambda) y, \\
\varphi\left(A_{\varphi}(x, y ; \lambda)\right) & =\lambda \varphi(x)+(1-\lambda) \varphi(y), \\
\psi\left(A_{\psi}(x, y ; \lambda)\right) & =\lambda \psi(x)+(1-\lambda) \psi(y),
\end{aligned}
$$

equation (9) yields

$$
\varphi\left(A_{\psi}(x, y ; \lambda)\right)-A_{\psi}(x, y ; \lambda)=\varphi\left(A_{\varphi}(x, y ; \lambda)\right)-A_{\varphi}(x, y ; \lambda)
$$

for all $x, y \in[a-\delta, b]$. Now let $f(t):=\varphi(t)-t$. Then

$$
\begin{equation*}
f\left(A_{\psi}(x, y ; \lambda)\right)=f\left(A_{\varphi}(x, y ; \lambda)\right) \quad \text { for all } x \in[a-\delta, b] . \tag{10}
\end{equation*}
$$

We show that f is $\left(A_{\varphi}(x, y ; \lambda), \lambda\right)$-associate. Let $x, y \in[a-\delta, a]$ be such that $A_{\varphi}(x, y ; \lambda)=\lambda x+(1-\lambda) y$ and $f(x)=f(\lambda x+(1-\lambda) y)$. Then

$$
\lambda \varphi(x)+(1-\lambda) \varphi(y)=\varphi(\lambda x+(1-\lambda) y)
$$

and

$$
\varphi(x)-x=\varphi(\lambda x+(1-\lambda) y)-(\lambda x+(1-\lambda) y) .
$$

These equations imply

$$
\varphi(y)-y=\varphi(x)-x,
$$

that is, f is $\left(A_{\varphi}(x, y ; \lambda), \lambda\right)$-associate.
By Theorem 1, either f is constant or $A_{\varphi}(x, y ; \lambda)=A(x, y ; \lambda)$ for all $x, y \in[a-\delta, b]$. In both cases $\varphi(x)=\alpha x+\beta$ for all $x \in[a-\delta, b]$ follows for some $\alpha \neq 0$ and β. Comparing this with $\varphi(x)=x$ for all $x \in[a, b]$, we get $\alpha=0$ and $\beta=0$. This in turn implies $\varphi(x)=x$ for all $x \in[a-\delta, b]$. Putting this in (8) we also have $\psi(x)=x$ for all $x \in[a-\delta, b]$. Thus $[a-\delta, b] \cup K$ is an interval larger than K on which (8) holds, and this is a contradiction to the maximality of K. Similarly, sup K cannot be an interior point of I. This proves that $K=I$.

The results of [6] and Theorem 2 yield the following corollary.
Corollary 1. Suppose $\lambda \neq 1 / 2$. Let $\varphi, \psi \in \operatorname{CM}(I)$ satisfy (2) for all $x, y \in I$ and let K be a proper open subinterval of I such that φ and ψ are continuously differentiable on K. Then $\varphi \sim$ id and $\psi \sim \operatorname{id}$ on I.

Proof. Let $H:=\left\{x \mid x \in K, \varphi^{\prime}(x)=0\right\}$, which is a closed set in K. Then $H \neq K$, because $\varphi \in \operatorname{CM}(I)$. Therefore there exists a proper open interval $K_{1} \subset K$ such that $\varphi^{\prime}(x) \neq 0$ if $x \in K_{1}$. Similarly, let $H_{1}:=\{x \mid$ $\left.x \in K_{1}, \psi^{\prime}(x)=0\right\}$. Then there exists a proper open interval $K_{2} \subset K_{1}$ such that $\psi^{\prime}(x) \neq 0$ if $x \in K_{2}$. Thus $\varphi^{\prime}(x) \neq 0$ and $\psi^{\prime}(x) \neq 0$ if $x \in K_{2}$. By [6], $\varphi \sim$ id and $\psi \sim$ id on K_{2}. Now Theorem 2 implies $\varphi \sim$ id and $\psi \sim$ id on I.

REFERENCES

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[2] Z. Daróczy, Gy. Maksa and Zs. Páles, Extension theorems for the Matkowski-Sutô problem, Demonstratio Math. 33 (2000), 547-556.
[3] Z. Daróczy and C. T. Ng, A functional equation on complementary means, Acta Sci. Math. (Szeged) 66 (2000), 603-611.
[4] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), 271-282.
[5] -, 一, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157-218.
[6] -, 一, The Matkowski-Sutô problem for weighted quasi-arithmetic means, submitted.
[7] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.
[8] O. Sutô, Studies on some functional equations I-II, Tôhoku Math. J. 6 (1914), 1-15 and 82-101.

Institute of Mathematics and Informatics
Lajos Kossuth University
H-4010 Debrecen, Pf. 12
Hungary
E-mail: daroczy@math.klte.hu
hajdug@math.klte.hu
E-mail: daroczy@math.klte.hu
hajdug@math.klte.hu

Department of Pure Mathematics University of Waterloo
Waterloo, ON, Canada N2L 3G1
E-mail: ctng@math.uwaterloo.ca

[^0]: 2000 Mathematics Subject Classification: 39B22, 39B12, 26A18.
 Key words and phrases: functional equation, weighted quasi-arithmetic mean.
 This research has been supported by the Hungarian National Research Science Foundation (OTKA) Grant T-030082, the High Educational Research and Development Fund (FKFP) Grant 0310/1997 and by NSERC of Canada Grant OGP 0008212.

