AN EXTENSION THEOREM FOR A MATKOWSKI–SUTÓ PROBLEM

BY

ZOLTÁN DARÓCZY (Debrecen), GABRIELLA HAJDU (Debrecen) and CHE TAT NG (Waterloo, ON)

Abstract. Let I be an interval, $0 < \lambda < 1$ be a fixed constant and $A(x, y) = \lambda x + (1 - \lambda)y$, $x, y \in I$, be the weighted arithmetic mean on I. A pair of strict means M and N is complementary with respect to A if $A(M(x, y), N(x, y)) = A(x, y)$ for all $x, y \in I$. For such a pair we give results on the functional equation $f(M(x, y)) = f(N(x, y))$. The equation is motivated by and applied to the Matkowski–Sutó problem on complementary weighted quasi-arithmetic means M and N.

1. Introduction. We call a convex subset I of \mathbb{R} an interval. An interval is proper when it has more than one element. We shall assume that I is proper. A function $M : I^2 \to I$ is said to be a mean on I if it satisfies the following conditions:

(M1) $\min \{x, y\} \leq M(x, y) \leq \max \{x, y\}$ for all $x, y \in I, x \neq y$;

(M2) M is continuous on I^2.

A mean is called strict if the inequalities in (M1) are strict. If M is a mean on I, then $M(x, x) = x$ for all $x \in I$. Let $\text{CM}(I)$ denote the class of all continuous and strictly monotonic real functions defined on I. Let $0 < \lambda < 1$ be a fixed number. A function $M : I^2 \to I$ is called a weighted quasi-arithmetic mean on I (see [1]) if there exists $\varphi \in \text{CM}(I)$ such that

$$M(x, y) = \varphi^{-1}(\lambda \varphi(x) + (1 - \lambda)\varphi(y)) =: A_\varphi(x, y; \lambda)$$

for all $x, y \in I$. In this case, $\varphi \in \text{CM}(I)$ is called the generating function of the weighted quasi-arithmetic mean with weight λ. Weighted quasi-arithmetic means are strict.

2000 Mathematics Subject Classification: 39B22, 39B12, 26A18.

Key words and phrases: functional equation, weighted quasi-arithmetic mean.

This research has been supported by the Hungarian National Research Science Foundation (OTKA) Grant T-030082, the High Educational Research and Development Fund (FKFP) Grant 0310/1997 and by NSERC of Canada Grant OGP 0008212.
If $\varphi, \chi \in \text{CM}(I)$ then $A_\varphi(x; y; \lambda) = A_\chi(x; y; \lambda)$ for all $x, y \in I$ if and only if there exist real constants $\alpha \neq 0$ and β such that

$$\varphi(x) = \alpha \chi(x) + \beta \quad \text{for all } x \in I.$$

If $\varphi, \chi \in CM(I)$ and the above equation holds for some constants $\alpha \neq 0$ and β on a subset $J \subset I$ then we say that φ is equivalent to χ on J; and, in this case, we write $\varphi \sim \chi$ on J. For fixed J, it is easy to verify that \sim is indeed an equivalence relation on $\text{CM}(I)$, i.e., it is reflexive, symmetric and transitive. When $\varphi(x) = x$ for all $x \in I$, or when φ is equivalent to the identity map id on I, $A_\varphi(x; y; \lambda)$ is simply denoted by $A(x; y; \lambda)$ and is the well known weighted arithmetic mean

$$A(x; y; \lambda) := \lambda x + (1 - \lambda) y \quad (x, y \in I).$$

Let M be a strict mean on I and let $0 < \lambda \leq 1/2$. Then the function defined by

$$\widehat{M}_\lambda(x, y) := \frac{\lambda}{1 - \lambda} x + y - \frac{\lambda}{1 - \lambda} M(x, y) \quad (x, y \in I)$$

is also a strict mean on I and for each $x, y \in I$, $M(x, y) = \lambda x + (1 - \lambda) y$ if and only if $\widehat{M}_\lambda(x, y) = \lambda x + (1 - \lambda) y$. The pair M, \widehat{M}_λ satisfies

$$(1) \quad \lambda M(x, y) + (1 - \lambda) \widehat{M}_\lambda(x, y) = A(x, y; \lambda)$$

for all $x, y \in I$. In this sense, \widehat{M}_λ is complementary to M with respect to the weighted arithmetic mean.

The Matkowski–Sutô problem for weighted quasi-arithmetic means is the following: When will two complementary means M and \widehat{M} be weighted quasi-arithmetic means with the same weight λ on I? In more detail, this means finding those functions $\varphi, \psi \in \text{CM}(I)$ which satisfy

$$(2) \quad \lambda \varphi^{-1}(\lambda \varphi(x) + (1 - \lambda) \varphi(y)) + (1 - \lambda) \psi^{-1}(\lambda \psi(x) + (1 - \lambda) \psi(y)) = \lambda x + (1 - \lambda) y$$

for all $x, y \in I$.

The case $\lambda = 1/2$ is the original Matkowski–Sutô problem (see [7], [8], [2], [4]), which has recently been solved in [5] completely. The case $\lambda \neq 1/2$ has been solved in [6] under the assumptions that I is open and the generating functions are continuously differentiable on I with nonvanishing derivatives. Under this assumption, the conclusion is that $\varphi \sim \text{id}$ and $\psi \sim \text{id}$ on I. Conversely, it is easy to verify that when $\varphi \sim \text{id}$ and $\psi \sim \text{id}$ on I, (2) is satisfied. It is natural to ask if the differentiability assumption in the forward statement can be reduced.

Without loss of generality we can suppose that $\lambda \leq 1/2$, otherwise we change the roles of φ and ψ, and of x and y. So in what follows $\lambda \leq 1/2$ is assumed.
We ask the following local versus global question. Suppose that \(\varphi, \psi \in \mathrm{CM}(I) \) satisfy (2) on \(I \) and there exists a proper interval \(J \subset I \) such that \(\varphi \sim \text{id} \) and \(\psi \sim \text{id} \) on \(J \). Is it true then that \(\varphi \sim \text{id} \) and \(\psi \sim \text{id} \) on \(I \)? In this paper we give an affirmative answer. With this result, the differentiability conditions on \(I \) used in [6] can be relaxed to their holding on some open subinterval of \(I \). In Section 2 we solve an equivariance functional equation which is later applied in Section 3 to give the main result.

2. An equivariance equation on complementary means. Let \(M \) be a strict mean on \(I \) and let \(0 < \lambda \leq 1/2 \). A function \(f : I \to \mathbb{R} \) is called \((M, \lambda)\)-associate if it has the following property:

\((\text{MA})\) If \(x, y \in I \) satisfy \(M(x, y) = \lambda x + (1 - \lambda) y \) and \(f(x) = f(\lambda x + (1 - \lambda) y) \) then \(f(y) = f(x) \).

One can easily check that if \(f \) is \((M, \lambda)\)-associate then it is also \((\tilde{M}_\lambda, \lambda)\)-associate.

In this section we solve the equivariance functional equation

\[
f(M(x, y)) = f(\tilde{M}_\lambda(x, y)) \quad (x, y \in I),
\]

where \(0 < \lambda \leq 1/2 \) is fixed.

Theorem 1. Let \(M \) be a strict mean on \(I \), \(0 < \lambda \leq 1/2 \), and let \(f : I \to \mathbb{R} \) be a function satisfying the functional equation

\[(3) \quad f(M(x, y)) = f\left(\frac{\lambda}{1 - \lambda} x + y - \frac{\lambda}{1 - \lambda} M(x, y)\right)\]

for all \(x, y \in I \). Then

(a) For all \(x, y \in I \) where \(M(x, y) \neq A(x, y; \lambda) \), \(f \) is locally constant at \(A(x, y; \lambda) \).

(b) If \(f \) is continuous and \((M, \lambda)\)-associate then either

(i) \(f \) is constant on \(I \), or

(ii) \(f \) is injective on \(I \) and \(M(x, y) = A(x, y; \lambda) \) for all \(x, y \in I \).

Proof. Denote by \(I_{xy} \) the closed interval joining \(M(x, y) \) and \(\tilde{M}_\lambda(x, y) \) and recall that \(A(x, y; \lambda) := \lambda x + (1 - \lambda) y \) is the weighted arithmetic mean on \(I \). We also recall that \(\lambda M(x, y) + (1 - \lambda) \tilde{M}_\lambda(x, y) = A(x, y; \lambda) \).

Claim 1. For all \(x_0, y_0 \in I \) two cases are possible:

(I) If \(M(x_0, y_0) \leq \tilde{M}_\lambda(x_0, y_0) \) then

\[
f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda} s\right)
\]

for all \(0 \leq s \leq A(x_0, y_0; \lambda) - M(x_0, y_0) \).
(II) If $\widetilde{M}_\lambda(x_0, y_0) < M(x_0, y_0)$ then

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{1 - \lambda}{\lambda} s\right)$$

for all $0 \leq s \leq A(x_0, y_0; \lambda) - \widetilde{M}_\lambda(x_0, y_0)$.

Proof. The assertion is trivial when $I_{x_0y_0}$ is a singleton. Suppose $I_{x_0y_0}$ is proper. There are two cases: either $x_0 < y_0$ or $y_0 < x_0$. First let $x_0 < y_0$.

Consider $x_t := x_0 + t, y_t := y_0 - \frac{\lambda}{1 - \lambda} t$ for $0 \leq t \leq A(x_0, y_0; \lambda) - x_0$. We note that for all $t \in [0, A(x_0, y_0; \lambda) - x_0]$ we have $\lambda x_t + (1 - \lambda) y_t = A(x_0, y_0; \lambda)$, and consequently $\lambda M(x_t, y_t) + (1 - \lambda) \widetilde{M}_\lambda(x_t, y_t) = A(x_0, y_0; \lambda)$.

Now suppose $M(x_0, y_0) < \widetilde{M}_\lambda(x_0, y_0)$. This immediately implies $M(x_0, y_0) < A(x_0, y_0; \lambda)$. The function $t \mapsto M(x_t, y_t)$ is continuous and takes the values $M(x_0, y_0)$ and $A(x_0, y_0; \lambda)$. By the Intermediate Value Theorem, for each $0 \leq s \leq A(x_0, y_0; \lambda) - M(x_0, y_0)$, there exists $t \in [0, A(x_0, y_0; \lambda) - x_0]$ such that $M(x_t, y_t) = A(x_0, y_0; \lambda) - s$ and $\widetilde{M}_\lambda(x_t, y_t) = A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda} s$. Thus by (3),

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda} s\right).$$

A similar argument proves that if $\widetilde{M}_\lambda(x_0, y_0) < M(x_0, y_0)$ then for each $0 \leq s \leq A(x_0, y_0; \lambda) - \widetilde{M}_\lambda(x_0, y_0)$, there exists $t \in [0, A(x_0, y_0; \lambda) - x_0]$ such that $\widetilde{M}_\lambda(x_t, y_t) = A(x_0, y_0; \lambda) - s$ and $M(x_t, y_t) = A(x_0, y_0; \lambda) + \frac{1 - \lambda}{\lambda} s$. Then again by (3),

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{1 - \lambda}{\lambda} s\right).$$

If $y_0 < x_0$ then let $x_t := x_0 - \frac{1 - \lambda}{\lambda} t, y_t := y_0 + t$ for $0 \leq t \leq A(x_0, y_0; \lambda) - y_0$.

The rest of the proof goes as above. ■

Claim 2. Suppose $I_{x_0y_0}$ is proper. Then f is locally constant at the point $A(x_0, y_0; \lambda)$; i.e., there exists a neighbourhood of $A(x_0, y_0; \lambda)$ on which f is constant.

Proof. We only examine case (I), when $M(x_0, y_0) < \widetilde{M}_\lambda(x_0, y_0)$. Let $x_0 < y_0$, say. For some sufficiently small $\delta > 0$, we have $[A(x_0, y_0; \lambda) - \delta, A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda} \delta] \subset I_{x_0y_0}$ for all $x \in [x_0, x_0 + \delta]$.

Now for all $x \in [x_0, x_0 + \delta], I_{x_0y_0}$ is proper, and by Claim 1,

$$f(A(x, y_0; \lambda) - s) = f\left(A(x, y_0; \lambda) + \frac{\lambda}{1 - \lambda} s\right).$$
whenever both arguments are in \([A(x_0, y_0; \lambda) - \delta, A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda} \delta]\). The point \(A(x, y_0; \lambda)\) being arbitrary in \([A(x_0, y_0; \lambda), A(x_0, y_0; \lambda) + \delta]\), this gives the constancy of \(f\) on \([A(x_0, y_0; \lambda) - \delta, A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda} \delta]\).

The other cases, when \(y_0 < x_0\) and (II) holds, can be proved similarly.

The above proves (a) of Theorem 1. To prove (b), in what follows we assume that \(f\) is continuous and \((M, \lambda)\)-associate.

Claim 3. Suppose there exist \(x_0 < y_0\) such that \(I_{x_0 y_0}\) is proper. Then \(f\) is constant on \(I\).

Proof. Let \(J \subset I\) be the maximal interval containing \(A(x_0, y_0; \lambda)\) on which \(f\) is constant, i.e.,

\[J := \{ x \in I \mid f(y) = c \text{ for all } y \text{ in the closed interval joining } x \text{ and } A(x_0, y_0; \lambda) \}, \]

where \(c := f(A(x_0, y_0; \lambda))\). By the continuity of \(f\), \(J\) is closed relative to \(I\); and by Claim 2, it is a proper interval neighbourhood of \(A(x_0, y_0; \lambda)\). We shall argue that \(J = I\); thus \(f\) is constant on \(I\).

Suppose that \(\beta := \sup J\) is an interior point of \(I\). Then there exists \(\varepsilon > 0\) such that \(\beta - \varepsilon \in J\) and \(\beta + \frac{\lambda}{1 - \lambda} \varepsilon \in I\). Now for each \(y \in \] \beta, \beta + \frac{\lambda}{1 - \lambda} \varepsilon \] \) there exists a unique \(x \in [\beta - \varepsilon, \beta]\) such that \(A(x, y; \lambda) = \beta\). If the interval \(I_{xy}\) were proper then \(f\) would be constant in a neighbourhood of \(\beta\) by Claim 2 and so \(J\) would not be maximal. Therefore \(I_{xy}\) is a singleton, that is, \(M(x, y) = \tilde{M}_\lambda(x, y)\). So

\[M(x, y) = A(x, y; \lambda) = \beta. \]

Because \(x\) and \(\beta\) belong to \(J\),

\[f(x) = f(\beta) = c, \]

and since \(f\) is \((M, \lambda)\)-associate, we get \(f(y) = c\). As \(y \in \] \beta, \beta + \frac{\lambda}{1 - \lambda} \varepsilon \] \) is arbitrary, this implies that \(\beta + \frac{\lambda}{1 - \lambda} \varepsilon \) is in \(J\), contradicting the assumption that \(\beta = \sup J\). Thus \(\sup J = \sup I\). One can similarly prove that \(\inf J = \inf I\). Since \(J\) is closed in \(I\), we have \(J = I\).

Claim 4. If \(f\) is nonconstant on \(I\), then \(M(x, y) = A(x, y; \lambda)\) for all \(x, y \in I\).

Proof. By Claim 3, \(I_{xy}\) is a singleton for all \(x, y \in I\), that is, \(M(x, y) = \tilde{M}_\lambda(x, y)\). As \(A(x, y; \lambda) = \lambda M(x, y) + (1 - \lambda) \tilde{M}_\lambda(x, y)\), we get \(A(x, y; \lambda) = M(x, y)\).

Claim 5. If \(f \) is nonconstant, then it is injective on \(I \).

Proof. By Claim 4, the continuous and nonconstant function \(f : I \to \mathbb{R} \) satisfies the condition (MA):

\[
(4) \quad f(y) = f(x) \text{ whenever } f(x) = f(A(x, y; \lambda)), \quad x, y \in I.
\]

(I) Case 1. Suppose \(\lambda = 1/2 \). This has been dealt with in [3], where the proof of injectivity of \(f \) on all closed \([a, b] \subset I \) is given. So \(f \) is injective on \(I \).

(II) Case 2. Suppose \(0 < \lambda < 1/2 \). Let \(\rho := \frac{\lambda}{1-\lambda} \). Since \(0 < \lambda < 1/2 \), we have \(0 < \rho < 1 \). We rewrite (4) in the form

\[
(5) \quad f(u) = f(v) \quad \text{implies} \quad f(u + \rho(u - v)) = f(u) = f(v),
\]

\[u, v, u + \rho(u - v) \in I. \]

Suppose to the contrary that \(f \) is not injective. Then there exist \(x_1 < x_2 \) in the interior of \(I \) which are as close as we wish so that \(f(x_1) = f(x_2) \).

Let them be chosen close enough that \(x_2 + \rho(x_2 - x_1) \) stays in \(I \). We shall now argue that

\[
(6) \quad f \text{ is constant on } [x_1, x_2].
\]

If this were not true, then there would exist a proper connected component interval \(]x_3, x_4[\) of the nonempty open set \(\{ t \in]x_1, x_2[\mid f(t) \neq f(x_1) \} \) for which

\[
(7) \quad f(x_1) = f(x_2) = f(x_3) = f(x_4), \text{ but } f(t) \neq f(x_1) \text{ for all } t \in]x_3, x_4[.
\]

Since \(x_2 + \rho(x_2 - x_1) \in I \), this implies \(x_5 := x_4 + \rho(x_4 - x_3) \in I \). Applying (5) once we get \(f(x_5) = f(x_4) = f(x_3) \). Let \(x_6 := x_4 + \rho(x_4 - x_5) \). Then \(x_6 = x_4 + \rho(-\rho(x_4 - x_3)) = x_4 - \rho^2(x_4 - x_3) \) where \(0 < \rho^2 < 1 \); we have \(x_6 \in]x_3, x_4[\). Applying (5) once more we get \(f(x_6) = f(x_4) = f(x_5) \), i.e. \(f(x_6) = f(x_1) \) while \(x_6 \in]x_3, x_4[\). This is a contradiction to (7). This proves (6).

Let \(K \) be the maximal interval containing \(]x_1, x_2[\) on which \(f \) is constant. Then \(K \) is proper, and is closed relative to \(I \). It is easy to see that \(K \) must be equal to \(I \). For otherwise, say \(k := \sup K \) is an interior point in \(I \); then by (5), \(f \) will remain constant on \([k, k + \rho(k - x_1)] \cap I \) and \(K \) will not be maximal. This contradiction shows that \(\sup K = \sup I \). Similarly, \(\inf K = \inf I \) holds. \(K \) being closed in \(I \), this gives \(K = I \). Thus \(f \) is constant on \(I \), and this is a contradiction. ■

This completes the proof of Theorem 1. ■
3. The extension theorem

Lemma 1. Let $\varphi, \psi \in CM(I)$ satisfy (2) on I and let $J \subset I$ be a proper subinterval on which $\varphi \sim id$ and $\psi \sim id$. Then there exist $\tilde{\varphi}, \tilde{\psi} \in CM(I)$ satisfying (2) such that $\varphi \sim \tilde{\varphi}$ and $\psi \sim \tilde{\psi}$ on I and

$$\tilde{\varphi}(x) = x, \quad \tilde{\psi}(x) = x \quad \text{for all } x \in J.$$

Proof. There exist constants $\alpha_i \neq 0$ and β_i $(i = 1, 2)$ such that

$$\alpha_1 \varphi(x) + \beta_1 = x, \quad \alpha_2 \psi(x) + \beta_2 = x$$

for all $x \in J$. Then $\tilde{\varphi} := \alpha_1 \varphi + \beta_1$ and $\tilde{\psi}(x) := \alpha_2 \psi + \beta_2$ have the asserted properties. \blacksquare

Theorem 2. Let $\varphi, \psi \in CM(I)$ satisfy (2) for all $x, y \in I$ and let J be a proper subinterval of I such that $\varphi \sim id$ and $\psi \sim id$ on J. Then $\varphi \sim id$ and $\psi \sim id$ on I.

Proof. According to Lemma 1, we can suppose that

$$\varphi(x) = x, \quad \psi(x) = x \quad (x \in J)$$

and we need to show that $\varphi = \psi = id$ on the full interval I. Let $K \subset I$ be the maximal interval containing J such that

$$\varphi(x) = x, \quad \psi(x) = x \quad (x \in K).$$

We are going to show that $K = I$. By the continuity of φ and ψ, K is closed in I. Suppose to the contrary that $K \neq I$; then either $\inf K$ or $\sup K$ is an interior point of I. Say, $a := \inf K$ is an interior point of I.

Choose another element $b \in K$ which is above a, i.e. $a < b$. Then $]a, b[$ is an open neighbourhood of $A_\varphi(a, b; \lambda)$ and $A_\psi(a, b; \lambda)$ because the two means are strict. By the continuity of $A_\varphi(\cdot, b; \lambda)$ and $A_\psi(\cdot, b; \lambda)$, and the fact that a is an interior point of I, there exists $\delta > 0$ such that $]a - \delta, a[\subset I$ and $A_\varphi(x, b; \lambda)$ and $A_\psi(x, b; \lambda)$ are both in $]a, b[$ for all $x \in]a - \delta, a[$.

Let $x \in [a - \delta, a]$. Then from (2) and (8) we have

$$\lambda(\lambda \varphi(x) + (1 - \lambda)b) + (1 - \lambda)(\lambda \psi(x) + (1 - \lambda)b) = \lambda x + (1 - \lambda)b,$$

which implies $\lambda \varphi(x) + (1 - \lambda)\psi(x) = x$. The latter also holds true for $x \in [a, b]$ where $\varphi(x) = \psi(x) = x$ and so we have

$$\lambda \varphi(x) + (1 - \lambda)\psi(x) = x \quad \text{for all } x \in [a - \delta, b].$$

That is,

$$\psi(x) = -\frac{\lambda}{1 - \lambda} \varphi(x) + \frac{x}{1 - \lambda}.$$
Since
\[\lambda A_\varphi(x, y; \lambda) + (1 - \lambda)A_\psi(x, y; \lambda) = \lambda x + (1 - \lambda)y, \]
\[\varphi(A_\varphi(x, y; \lambda)) = \lambda \varphi(x) + (1 - \lambda)\varphi(y), \]
\[\psi(A_\psi(x, y; \lambda)) = \lambda \psi(x) + (1 - \lambda)\psi(y), \]
equation (9) yields
\[\varphi(A_\psi(x, y; \lambda)) - A_\varphi(x, y; \lambda) = \varphi(A_\varphi(x, y; \lambda)) - A_\varphi(x, y; \lambda) \]
for all \(x, y \in [a - \delta, b] \). Now let \(f(t) := \varphi(t) - t \). Then
\[
(10) \quad f(A_\psi(x, y; \lambda)) = f(A_\varphi(x, y; \lambda)) \quad \text{for all } x \in [a - \delta, b].
\]
We show that \(f \) is \((A_\varphi(x, y; \lambda), \lambda)\)-associate. Let \(x, y \in [a - \delta, a] \) be such that \(A_\varphi(x, y; \lambda) = \lambda x + (1 - \lambda)y \) and \(f(x) = f(\lambda x + (1 - \lambda)y) \). Then
\[\lambda \varphi(x) + (1 - \lambda)\varphi(y) = \varphi(\lambda x + (1 - \lambda)y) \]
and
\[\varphi(x) - x = \varphi(\lambda x + (1 - \lambda)y) - (\lambda x + (1 - \lambda)y). \]
These equations imply
\[\varphi(y) - y = \varphi(x) - x, \]
that is, \(f \) is \((A_\varphi(x, y; \lambda), \lambda)\)-associate.

By Theorem 1, either \(f \) is constant or \(A_\varphi(x, y; \lambda) = A(x, y; \lambda) \) for all \(x, y \in [a - \delta, b] \). In both cases \(\varphi(x) = \alpha x + \beta \) for all \(x \in [a - \delta, b] \) follows for some \(\alpha \neq 0 \) and \(\beta \). Comparing this with \(\varphi(x) = x \) for all \(x \in [a, b] \), we get \(\alpha = 0 \) and \(\beta = 0 \). This in turn implies \(\varphi(x) = x \) for all \(x \in [a - \delta, b] \). Putting this in (8) we also have \(\psi(x) = x \) for all \(x \in [a - \delta, b] \). Thus \([a - \delta, b] \cup K\) is an interval larger than \(K \) on which (8) holds, and this is a contradiction to the maximality of \(K \). Similarly, \(\sup K \) cannot be an interior point of \(I \).
This proves that \(K = I \).

The results of [6] and Theorem 2 yield the following corollary.

Corollary 1. Suppose \(\lambda \neq 1/2 \). Let \(\varphi, \psi \in \text{CM}(I) \) satisfy (2) for all \(x, y \in I \) and let \(K \) be a proper open subinterval of \(I \) such that \(\varphi \) and \(\psi \) are continuously differentiable on \(K \). Then \(\varphi \sim \text{id} \) and \(\psi \sim \text{id} \) on \(I \).

Proof. Let \(H := \{ x \mid x \in K, \varphi'(x) = 0 \} \), which is a closed set in \(K \). Then \(H \neq K \), because \(\varphi \in \text{CM}(I) \). Therefore there exists a proper open interval \(K_1 \subset K \) such that \(\varphi'(x) \neq 0 \) if \(x \in K_1 \). Similarly, let \(H_1 := \{ x \mid x \in K_1, \psi'(x) = 0 \} \). Then there exists a proper open interval \(K_2 \subset K_1 \) such that \(\psi'(x) \neq 0 \) if \(x \in K_2 \). Thus \(\varphi'(x) \neq 0 \) and \(\psi'(x) \neq 0 \) if \(x \in K_2 \). By [6], \(\varphi \sim \text{id} \) and \(\psi \sim \text{id} \) on \(K_2 \). Now Theorem 2 implies \(\varphi \sim \text{id} \) and \(\psi \sim \text{id} \) on \(I \).
REFERENCES

Institute of Mathematics and Informatics
Lajos Kossuth University
H-4010 Debrecen, Pf. 12
Hungary
E-mail: daroczy@math.klte.hu

Department of Pure Mathematics
University of Waterloo
H-4010 Debrecen, Pf. 12
Hungary
E-mail: hajdug@math.klte.hu

Received 19 February 2002