VOL. 95

2003

NO. 2

AN EXTENSION THEOREM FOR A MATKOWSKI–SUTÔ PROBLEM

ΒY

ZOLTÁN DARÓCZY (Debrecen), GABRIELLA HAJDU (Debrecen) and CHE TAT NG (Waterloo, ON)

Abstract. Let *I* be an interval, $0 < \lambda < 1$ be a fixed constant and $A(x, y) = \lambda x + (1 - \lambda)y, x, y \in I$, be the weighted arithmetic mean on *I*. A pair of strict means *M* and *N* is complementary with respect to *A* if A(M(x, y), N(x, y)) = A(x, y) for all $x, y \in I$. For such a pair we give results on the functional equation f(M(x, y)) = f(N(x, y)). The equation is motivated by and applied to the Matkowski–Sutô problem on complementary weighted quasi-arithmetic means *M* and *N*.

1. Introduction. We call a convex subset I of \mathbb{R} an *interval*. An interval is *proper* when it has more than one element. We shall assume that I is proper. A function $M: I^2 \to I$ is said to be a *mean* on I if it satisfies the following conditions:

(M1) $\min\{x, y\} \le M(x, y) \le \max\{x, y\}$ for all $x, y \in I, x \ne y$; (M2) M is continuous on I^2 .

A mean is called *strict* if the inequalities in (M1) are strict. If M is a mean on I, then M(x,x) = x for all $x \in I$. Let CM(I) denote the class of all continuous and strictly monotonic real functions defined on I. Let $0 < \lambda < 1$ be a fixed number. A function $M : I^2 \to I$ is called a *weighted quasi-arithmetic mean* on I (see [1]) if there exists $\varphi \in CM(I)$ such that

$$M(x,y) = \varphi^{-1}(\lambda\varphi(x) + (1-\lambda)\varphi(y)) =: A_{\varphi}(x,y;\lambda)$$

for all $x, y \in I$. In this case, $\varphi \in CM(I)$ is called the *generating func*tion of the weighted quasi-arithmetic mean with weight λ . Weighted quasiarithmetic means are strict.

²⁰⁰⁰ Mathematics Subject Classification: 39B22, 39B12, 26A18.

Key words and phrases: functional equation, weighted quasi-arithmetic mean.

This research has been supported by the Hungarian National Research Science Foundation (OTKA) Grant T-030082, the High Educational Research and Development Fund (FKFP) Grant 0310/1997 and by NSERC of Canada Grant OGP 0008212.

If $\varphi, \chi \in CM(I)$ then $A_{\varphi}(x, y; \lambda) = A_{\chi}(x, y; \lambda)$ for all $x, y \in I$ if and only if there exist real constants $\alpha \neq 0$ and β such that

$$\varphi(x) = \alpha \chi(x) + \beta$$
 for all $x \in I$.

If $\varphi, \chi \in CM(I)$ and the above equation holds for some constants $\alpha \neq 0$ and β on a subset $J \subset I$ then we say that φ is *equivalent* to χ on J; and, in this case, we write $\varphi \sim \chi$ on J. For fixed J, it is easy to verify that \sim is indeed an equivalence relation on CM(I), i.e., it is reflexive, symmetric and transitive. When $\varphi(x) = x$ for all $x \in I$, or when φ is equivalent to the identity map id on I, $A_{\varphi}(x, y; \lambda)$ is simply denoted by $A(x, y; \lambda)$ and is the well known weighted arithmetic mean

$$A(x, y; \lambda) := \lambda x + (1 - \lambda)y \quad (x, y \in I).$$

Let M be a strict mean on I and let $0 < \lambda \leq 1/2$. Then the function defined by

$$\widehat{M}_{\lambda}(x,y) := \frac{\lambda}{1-\lambda} x + y - \frac{\lambda}{1-\lambda} M(x,y) \quad (x,y \in I)$$

is also a strict mean on I and for each $x, y \in I$, $M(x, y) = \lambda x + (1 - \lambda)y$ if and only if $\widehat{M}_{\lambda}(x, y) = \lambda x + (1 - \lambda)y$. The pair M, \widehat{M}_{λ} satisfies

(1)
$$\lambda M(x,y) + (1-\lambda)\widehat{M}_{\lambda}(x,y) = A(x,y;\lambda)$$

for all $x, y \in I$. In this sense, \widehat{M}_{λ} is complementary to M with respect to the weighted arithmetic mean.

The Matkowski–Sutô problem for weighted quasi-arithmetic means is the following: When will two complementary means M and \widehat{M} be weighted quasi-arithmetic means with the same weight λ on I? In more detail, this means finding those functions $\varphi, \psi \in CM(I)$ which satisfy

(2)
$$\lambda \varphi^{-1}(\lambda \varphi(x) + (1-\lambda)\varphi(y)) + (1-\lambda)\psi^{-1}(\lambda \psi(x) + (1-\lambda)\psi(y))$$

= $\lambda x + (1-\lambda)y$

for all $x, y \in I$.

The case $\lambda = 1/2$ is the original Matkowski–Sutô problem (see [7], [8], [2], [4]), which has recently been solved in [5] completely. The case $\lambda \neq 1/2$ has been solved in [6] under the assumptions that I is open and the generating functions are continuously differentiable on I with nonvanishing derivatives. Under this assumption, the conclusion is that $\varphi \sim$ id and $\psi \sim$ id on I. Conversely, it is easy to verify that when $\varphi \sim$ id and $\psi \sim$ id on I, (2) is satisfied. It is natural to ask if the differentiability assumption in the forward statement can be reduced.

Without loss of generality we can suppose that $\lambda \leq 1/2$, otherwise we change the roles of φ and ψ , and of x and y. So in what follows $\lambda \leq 1/2$ is assumed.

We ask the following local versus global question. Suppose that $\varphi, \psi \in CM(I)$ satisfy (2) on I and there exists a proper interval $J \subset I$ such that $\varphi \sim id$ and $\psi \sim id$ on J. Is it true then that $\varphi \sim id$ and $\psi \sim id$ on I? In this paper we give an affirmative answer. With this result, the differentiability conditions on I used in [6] can be relaxed to their holding on some open subinterval of I. In Section 2 we solve an equivariance functional equation which is later applied in Section 3 to give the main result.

2. An equivariance equation on complementary means. Let M be a strict mean on I and let $0 < \lambda \leq 1/2$. A function $f: I \to \mathbb{R}$ is called (M, λ) -associate if it has the following property:

(MA) If
$$x, y \in I$$
 satisfy $M(x, y) = \lambda x + (1 - \lambda)y$ and $f(x) = f(\lambda x + (1 - \lambda)y)$ then $f(y) = f(x)$.

One can easily check that if f is (M, λ) -associate then it is also $(\widehat{M}_{\lambda}, \lambda)$ -associate.

In this section we solve the equivariance functional equation

$$f(M(x,y)) = f(M_{\lambda}(x,y)) \quad (x,y \in I),$$

where $0 < \lambda \leq 1/2$ is fixed.

THEOREM 1. Let M be a strict mean on I, $0 < \lambda \leq 1/2$, and let $f : I \to \mathbb{R}$ be a function satisfying the functional equation

(3)
$$f(M(x,y)) = f\left(\frac{\lambda}{1-\lambda}x + y - \frac{\lambda}{1-\lambda}M(x,y)\right)$$

for all $x, y \in I$. Then

(a) For all $x, y \in I$ where $M(x, y) \neq A(x, y; \lambda)$, f is locally constant at $A(x, y; \lambda)$.

(b) If f is continuous and (M, λ) -associate then either

- (i) f is constant on I, or
- (ii) f is injective on I and $M(x, y) = A(x, y; \lambda)$ for all $x, y \in I$.

Proof. Denote by I_{xy} the closed interval joining M(x, y) and $\widehat{M}_{\lambda}(x, y)$ and recall that $A(x, y; \lambda) := \lambda x + (1 - \lambda)y$ is the weighted arithmetic mean on *I*. We also recall that $\lambda M(x, y) + (1 - \lambda)\widehat{M}_{\lambda}(x, y) = A(x, y; \lambda)$.

CLAIM 1. For all $x_0, y_0 \in I$ two cases are possible:

(I) If $M(x_0, y_0) \leq \widehat{M}_{\lambda}(x_0, y_0)$ then

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda}s\right)$$

for all $0 \le s \le A(x_0, y_0; \lambda) - M(x_0, y_0)$.

(II) If $\widehat{M}_{\lambda}(x_0, y_0) < M(x_0, y_0)$ then

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{1 - \lambda}{\lambda}s\right)$$

for all $0 \le s \le A(x_0, y_0; \lambda) - \widehat{M}_{\lambda}(x_0, y_0).$

Proof. The assertion is trivial when $I_{x_0y_0}$ is a singleton. Suppose $I_{x_0y_0}$ is proper. There are two cases: either $x_0 < y_0$ or $y_0 < x_0$. First let $x_0 < y_0$.

Consider $x_t := x_0 + t, y_t := y_0 - \frac{\lambda}{1-\lambda}t$ for $0 \le t \le A(x_0, y_0; \lambda) - x_0$. We note that for all $t \in [0, A(x_0, y_0; \lambda) - x_0]$ we have $\lambda x_t + (1-\lambda)y_t = A(x_0, y_0; \lambda)$, and consequently $\lambda M(x_t, y_t) + (1-\lambda)\widehat{M}_{\lambda}(x_t, y_t) = A(x_0, y_0; \lambda)$.

Now suppose $M(x_0, y_0) < \widehat{M}_{\lambda}(x_0, y_0)$. This immediately implies $M(x_0, y_0) < A(x_0, y_0; \lambda)$. The function $t \mapsto M(x_t, y_t)$ is continuous and takes the values $M(x_0, y_0)$ and $A(x_0, y_0; \lambda)$. By the Intermediate Value Theorem, for each $0 \le s \le A(x_0, y_0; \lambda) - M(x_0, y_0)$, there exists $t \in [0, A(x_0, y_0; \lambda) - x_0]$ such that $M(x_t, y_t) = A(x_0, y_0; \lambda) - s$ and $\widehat{M}_{\lambda}(x_t, y_t) = A(x_0, y_0; \lambda) + \frac{\lambda}{1-\lambda}s$. Thus by (3),

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{\lambda}{1 - \lambda}s\right).$$

A similar argument proves that if $\widehat{M}_{\lambda}(x_0, y_0) < M(x_0, y_0)$ then for each $0 \leq s \leq A(x_0, y_0; \lambda) - \widehat{M}_{\lambda}(x_0, y_0)$, there exists $t \in [0, A(x_0, y_0; \lambda) - x_0]$ such that $\widehat{M}_{\lambda}(x_t, y_t) = A(x_0, y_0; \lambda) - s$ and $M(x_t, y_t) = A(x_0, y_0; \lambda) + \frac{1-\lambda}{\lambda}s$. Then again by (3),

$$f(A(x_0, y_0; \lambda) - s) = f\left(A(x_0, y_0; \lambda) + \frac{1 - \lambda}{\lambda}s\right).$$

If $y_0 < x_0$ then let $x_t := x_0 - \frac{1-\lambda}{\lambda}t$, $y_t := y_0 + t$ for $0 \le t \le A(x_0, y_0; \lambda) - y_0$.

The rest of the proof goes as above. \blacksquare

CLAIM 2. Suppose $I_{x_0y_0}$ is proper. Then f is locally constant at the point $A(x_0, y_0; \lambda)$; i.e., there exists a neighbourhood of $A(x_0, y_0; \lambda)$ on which f is constant.

Proof. We only examine case (I), when $M(x_0, y_0) < \widehat{M}_{\lambda}(x_0, y_0)$. Let $x_0 < y_0$, say. For some sufficiently small $\delta > 0$, we have $\left[A(x_0, y_0; \lambda) - \delta, A(x_0, y_0; \lambda) + \frac{\lambda}{1-\lambda}\delta\right] \subset I_{xy_0}$ for all $x \in [x_0, x_0 + \delta]$.

Now for all $x \in [x_0, x_0 + \delta]$, I_{xy_0} is proper, and by Claim 1,

$$f(A(x, y_0; \lambda) - s) = f\left(A(x, y_0; \lambda) + \frac{\lambda}{1 - \lambda}s\right)$$

whenever both arguments are in $\left[A(x_0, y_0; \lambda) - \delta, A(x_0, y_0; \lambda) + \frac{\lambda}{1-\lambda}\delta\right]$. The point $A(x, y_0; \lambda)$ being arbitrary in $\left[A(x_0, y_0; \lambda), A(x_0, y_0; \lambda) + \lambda\delta\right]$, this gives the constancy of f on $\left[A(x_0, y_0; \lambda) - \delta, A(x_0, y_0; \lambda) + \frac{\lambda}{1-\lambda}\delta\right]$.

The other cases, when $y_0 < x_0$ and (II) holds, can be proved similarly.

The above proves (a) of Theorem 1. To prove (b), in what follows we assume that f is continuous and (M, λ) -associate.

CLAIM 3. Suppose there exist $x_0 < y_0$ such that $I_{x_0y_0}$ is proper. Then f is constant on I.

Proof. Let $J \subset I$ be the maximal interval containing $A(x_0, y_0; \lambda)$ on which f is constant, i.e.,

 $J := \{x \in I \mid f(y) = c \text{ for all } y \text{ in the closed interval joining } \}$

x and $A(x_0, y_0; \lambda)$ },

where $c := f(A(x_0, y_0; \lambda))$. By the continuity of f, J is closed relative to I; and by Claim 2, it is a proper interval neighbourhood of $A(x_0, y_0; \lambda)$. We shall argue that J = I; thus f is constant on I.

Suppose that $\beta := \sup J$ is an interior point of I. Then there exists $\varepsilon > 0$ such that $\beta - \varepsilon \in J$ and $\beta + \frac{\lambda}{1-\lambda}\varepsilon \in I$. Now for each $y \in \left[\beta, \beta + \frac{\lambda}{1-\lambda}\varepsilon\right]$ there exists a unique $x \in \left[\beta - \varepsilon, \beta\right]$ such that $A(x, y; \lambda) = \beta$. If the interval I_{xy} were proper then f would be constant in a neighbourhood of β by Claim 2 and so J would not be maximal. Therefore I_{xy} is a singleton, that is, $M(x, y) = \widehat{M}_{\lambda}(x, y)$. So

$$M(x, y) = A(x, y; \lambda) = \beta.$$

Because x and β belong to J,

$$f(x) = f(\beta) = c,$$

and since f is (M, λ) -associate, we get f(y) = c. As $y \in \left[\beta, \beta + \frac{\lambda}{1-\lambda}\varepsilon\right]$ is arbitrary, this implies that $\beta + \frac{\lambda}{1-\lambda}\varepsilon$ is in J, contradicting the assumption that $\beta = \sup J$. Thus $\sup J = \sup I$. One can similarly prove that $\inf J =$ $\inf I$. Since J is closed in I, we have J = I.

CLAIM 4. If f is nonconstant on I, then $M(x,y) = A(x,y;\lambda)$ for all $x, y \in I$.

Proof. By Claim 3, I_{xy} is a singleton for all $x, y \in I$, that is, $M(x, y) = \widehat{M}_{\lambda}(x, y)$. As $A(x, y; \lambda) = \lambda M(x, y) + (1 - \lambda)\widehat{M}_{\lambda}(x, y)$, we get $A(x, y; \lambda) = M(x, y)$.

CLAIM 5. If f is nonconstant, then it is injective on I.

Proof. By Claim 4, the *continuous* and *nonconstant* function $f: I \to \mathbb{R}$ satisfies the condition (MA):

(4)
$$f(y) = f(x)$$
 whenever $f(x) = f(A(x, y; \lambda)), \quad x, y \in I.$

(I) CASE 1. Suppose $\lambda = 1/2$. This has been dealt with in [3], where the proof of injectivity of f on all closed $[a, b] \subset I$ is given. So f is injective on I.

(II) CASE 2. Suppose $0 < \lambda < 1/2$. Let $\varrho := \frac{\lambda}{1-\lambda}$. Since $0 < \lambda < 1/2$, we have $0 < \varrho < 1$. We rewrite (4) in the form

(5)
$$f(u) = f(v)$$
 implies $f(u + \varrho(u - v)) = f(u) = f(v),$
 $u, v, u + \varrho(u - v) \in I.$

Suppose to the contrary that f is not injective. Then there exist $x_1 < x_2$ in the interior of I which are as close as we wish so that

$$f(x_1) = f(x_2).$$

Let them be chosen close enough that $x_2 + \rho(x_2 - x_1)$ stays in *I*. We shall now argue that

(6) f is constant on $[x_1, x_2]$.

If this were not true, then there would exist a proper connected component interval $]x_3, x_4[$ of the nonempty open set $\{t \in]x_1, x_2[\mid f(t) \neq f(x_1)\}$ for which

(7)
$$f(x_1) = f(x_2) = f(x_3) = f(x_4)$$
, but $f(t) \neq f(x_1)$ for all $t \in [x_3, x_4[$.

Since $x_2 + \rho(x_2 - x_1) \in I$, this implies $x_5 := x_4 + \rho(x_4 - x_3) \in I$. Applying (5) once we get $f(x_5) = f(x_4) = f(x_3)$. Let $x_6 := x_4 + \rho(x_4 - x_5)$. Then $x_6 = x_4 + \rho(-\rho(x_4 - x_3)) = x_4 - \rho^2(x_4 - x_3)$ where $0 < \rho^2 < 1$; we have $x_6 \in]x_3, x_4[$. Applying (5) once more we get $f(x_6) = f(x_4) = f(x_5)$, i.e. $f(x_6) = f(x_1)$ while $x_6 \in]x_3, x_4[$. This is a contradiction to (7). This proves (6).

Let K be the maximal interval containing $[x_1, x_2]$ on which f is constant. Then K is proper, and is closed relative to I. It is easy to see that K must be equal to I. For otherwise, say $k := \sup K$ is an interior point in I; then by (5), f will remain constant on $[k, k+\varrho(k-x_1)] \cap I$ and K will not be maximal. This contradiction shows that $\sup K = \sup I$. Similarly, $\inf K = \inf I$ holds. K being closed in I, this gives K = I. Thus f is constant on I, and this is a contradiction.

This completes the proof of Theorem 1. \blacksquare

3. The extension theorem

LEMMA 1. Let $\varphi, \psi \in CM(I)$ satisfy (2) on I and let $J \subset I$ be a proper subinterval on which $\varphi \sim id$ and $\psi \sim id$. Then there exist $\tilde{\varphi}, \tilde{\psi} \in CM(I)$ satisfying (2) such that $\varphi \sim \tilde{\varphi}$ and $\psi \sim \tilde{\psi}$ on I and

$$\widetilde{\varphi}(x) = x, \quad \widetilde{\psi}(x) = x \quad \text{for all } x \in J.$$

Proof. There exist constants $\alpha_i \neq 0$ and β_i (i = 1, 2) such that

$$\alpha_1 \varphi(x) + \beta_1 = x, \qquad \alpha_2 \psi(x) + \beta_2 = x$$

for all $x \in J$. Then $\tilde{\varphi} := \alpha_1 \varphi + \beta_1$ and $\tilde{\psi}(x) := \alpha_2 \psi + \beta_2$ have the asserted properties.

THEOREM 2. Let $\varphi, \psi \in CM(I)$ satisfy (2) for all $x, y \in I$ and let J be a proper subinterval of I such that $\varphi \sim id$ and $\psi \sim id$ on J. Then $\varphi \sim id$ and $\psi \sim id$ on I.

Proof. According to Lemma 1, we can suppose that

$$\varphi(x) = x, \quad \psi(x) = x \quad (x \in J)$$

and we need to show that $\varphi = \psi = id$ on the full interval I. Let $K \subset I$ be the maximal interval containing J such that

(8)
$$\varphi(x) = x, \quad \psi(x) = x \quad (x \in K).$$

We are going to show that K = I. By the continuity of φ and ψ , K is closed in I. Suppose to the contrary that $K \neq I$; then either inf K or sup K is an interior point of I. Say, $a := \inf K$ is an interior point of I.

Choose another element $b \in K$ which is above a, i.e. a < b. Then]a, b[is an open neighbourhood of $A_{\varphi}(a, b; \lambda)$ and $A_{\psi}(a, b; \lambda)$ because the two means are strict. By the continuity of $A_{\varphi}(\cdot, b; \lambda)$ and $A_{\psi}(\cdot, b; \lambda)$, and the fact that a is an interior point of I, there exists $\delta > 0$ such that $[a - \delta, a] \subset I$ and $A_{\varphi}(x, b; \lambda)$ and $A_{\psi}(x, b; \lambda)$ are both in]a, b[for all $x \in [a - \delta, a]$.

Let $x \in [a - \delta, a]$. Then from (2) and (8) we have

$$\lambda(\lambda\varphi(x) + (1-\lambda)b) + (1-\lambda)(\lambda\psi(x) + (1-\lambda)b) = \lambda x + (1-\lambda)b,$$

which implies $\lambda \varphi(x) + (1-\lambda)\psi(x) = x$. The latter also holds true for $x \in [a, b]$ where $\varphi(x) = \psi(x) = x$ and so we have

(9)
$$\lambda \varphi(x) + (1 - \lambda)\psi(x) = x$$
 for all $x \in [a - \delta, b]$.

That is,

$$\psi(x) = -\frac{\lambda}{1-\lambda} \varphi(x) + \frac{x}{1-\lambda}.$$

Since

$$\begin{split} \lambda A_{\varphi}(x,y;\lambda) + (1-\lambda)A_{\psi}(x,y;\lambda) &= \lambda x + (1-\lambda)y,\\ \varphi(A_{\varphi}(x,y;\lambda)) &= \lambda \varphi(x) + (1-\lambda)\varphi(y),\\ \psi(A_{\psi}(x,y;\lambda)) &= \lambda \psi(x) + (1-\lambda)\psi(y), \end{split}$$

equation (9) yields

$$\varphi(A_{\psi}(x,y;\lambda)) - A_{\psi}(x,y;\lambda) = \varphi(A_{\varphi}(x,y;\lambda)) - A_{\varphi}(x,y;\lambda)$$

for all $x, y \in [a - \delta, b]$. Now let $f(t) := \varphi(t) - t$. Then

(10)
$$f(A_{\psi}(x,y;\lambda)) = f(A_{\varphi}(x,y;\lambda)) \quad \text{for all } x \in [a-\delta,b].$$

We show that f is $(A_{\varphi}(x, y; \lambda), \lambda)$ -associate. Let $x, y \in [a - \delta, a]$ be such that $A_{\varphi}(x, y; \lambda) = \lambda x + (1 - \lambda)y$ and $f(x) = f(\lambda x + (1 - \lambda)y)$. Then

$$\lambda\varphi(x) + (1-\lambda)\varphi(y) = \varphi(\lambda x + (1-\lambda)y)$$

and

$$\varphi(x) - x = \varphi(\lambda x + (1 - \lambda)y) - (\lambda x + (1 - \lambda)y).$$

These equations imply

$$\varphi(y) - y = \varphi(x) - x,$$

that is, f is $(A_{\varphi}(x, y; \lambda), \lambda)$ -associate.

By Theorem 1, either f is constant or $A_{\varphi}(x, y; \lambda) = A(x, y; \lambda)$ for all $x, y \in [a - \delta, b]$. In both cases $\varphi(x) = \alpha x + \beta$ for all $x \in [a - \delta, b]$ follows for some $\alpha \neq 0$ and β . Comparing this with $\varphi(x) = x$ for all $x \in [a, b]$, we get $\alpha = 0$ and $\beta = 0$. This in turn implies $\varphi(x) = x$ for all $x \in [a - \delta, b]$. Putting this in (8) we also have $\psi(x) = x$ for all $x \in [a - \delta, b]$. Thus $[a - \delta, b] \cup K$ is an interval larger than K on which (8) holds, and this is a contradiction to the maximality of K. Similarly, sup K cannot be an interior point of I. This proves that K = I.

The results of [6] and Theorem 2 yield the following corollary.

COROLLARY 1. Suppose $\lambda \neq 1/2$. Let $\varphi, \psi \in CM(I)$ satisfy (2) for all $x, y \in I$ and let K be a proper open subinterval of I such that φ and ψ are continuously differentiable on K. Then $\varphi \sim id$ and $\psi \sim id$ on I.

Proof. Let $H := \{x \mid x \in K, \varphi'(x) = 0\}$, which is a closed set in K. Then $H \neq K$, because $\varphi \in CM(I)$. Therefore there exists a proper open interval $K_1 \subset K$ such that $\varphi'(x) \neq 0$ if $x \in K_1$. Similarly, let $H_1 := \{x \mid x \in K_1, \psi'(x) = 0\}$. Then there exists a proper open interval $K_2 \subset K_1$ such that $\psi'(x) \neq 0$ if $x \in K_2$. Thus $\varphi'(x) \neq 0$ and $\psi'(x) \neq 0$ if $x \in K_2$. By [6], $\varphi \sim id$ and $\psi \sim id$ on K_2 . Now Theorem 2 implies $\varphi \sim id$ and $\psi \sim id$ on I.

REFERENCES

- J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
- Z. Daróczy, Gy. Maksa and Zs. Páles, Extension theorems for the Matkowski-Sutô problem, Demonstratio Math. 33 (2000), 547–556.
- Z. Daróczy and C. T. Ng, A functional equation on complementary means, Acta Sci. Math. (Szeged) 66 (2000), 603–611.
- [4] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), 271–282.
- [5] —, —, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157–218.
- [6] —, —, The Matkowski-Sutô problem for weighted quasi-arithmetic means, submitted.
- J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87–107.
- [8] O. Sutô, Studies on some functional equations I-II, Tôhoku Math. J. 6 (1914), 1–15 and 82–101.

Institute of Mathematics and Informatics Lajos Kossuth University H-4010 Debrecen, Pf. 12 Hungary E-mail: daroczy@math.klte.hu hajdug@math.klte.hu Department of Pure Mathematics University of Waterloo Waterloo, ON, Canada N2L 3G1 E-mail: ctng@math.uwaterloo.ca

Received 19 February 2002

(4171)