COLLOQUIUM MATHEMATICUM

ON THE EXISTENCE
 OF PSEUDOSYMMETRIC KÄHLER MANIFOLDS

By
ZBIGNIEW OLSZAK (Wrocław)

Abstract

It is proved that there exists a non-semisymmetric pseudosymmetric Kähler manifold of dimension 4.

1. Preliminaries. Let (M, g) be a Riemannian manifold. Let $\mathfrak{X}(M)$ be the Lie algebra of smooth vector fields on M. If $U \in \mathfrak{X}(M)$, then U^{b} denotes the 1 -form defined by $U^{b}(X)=g(U, X)$ for any $X \in \mathfrak{X}(M)$. For $U, V \in \mathfrak{X}(M)$, we consider the curvature transformation $R(U, V)$ and an auxiliary transformation $R^{\circ}(U, V)$ defined by

$$
R(U, V)=\left[\nabla_{U}, \nabla_{V}\right]-\nabla_{[U, V]}, \quad R^{\circ}(U, V)=U \otimes V^{b}-V \otimes U^{b},
$$

where ∇ is the Levi-Civita connection of (M, g). We extend $R(U, V)$ and $R^{\circ}(U, V)$ to derivations of the tensor algebra on M, assuming that they commute with contractions and $R(U, V) f=0, R^{\circ}(U, V) f=0$ for every smooth function f on M. Consequently, for the curvature (0,4)-tensor field (which is also traditionally denoted by R), $R(U, V) R$ and $R^{\circ}(U, V) R$ are $(0,4)$-tensor fields such that for any $W_{1}, \ldots, W_{4} \in \mathfrak{X}(M)$,

$$
\begin{aligned}
(R(U, V) R)\left(W_{1}, \ldots, W_{4}\right) & =-\sum_{s=1}^{4} R\left(W_{1}, \ldots, R(U, V) W_{s}, \ldots, W_{4}\right) \\
\left(R^{\circ}(U, V) R\right)\left(W_{1}, \ldots, W_{4}\right) & =-\sum_{s=1}^{4} R\left(W_{1}, \ldots, R^{\circ}(U, V) W_{s}, \ldots, W_{4}\right)
\end{aligned}
$$

A Riemannian manifold is called semisymmetric if $R(U, V) R=0$ for every $U, V \in \mathfrak{X}(M)$ (see [6], [1]).

A Riemannian manifold is said to be pseudosymmetric (see [4]) if there exists a function f on M such that for every $U, V \in \mathfrak{X}(M)$,

$$
\begin{equation*}
\left(R(U, V)-f R^{\circ}(U, V)\right) R=0 . \tag{1}
\end{equation*}
$$

[^0]References concerning examples of Riemannian pseudosymmetric manifolds which are not semisymmetric can be found in [4].

By a Kähler manifold (M, J, g) is meant a differentiable manifold M of real dimension $2 n$, which is endowed with a Kähler structure (J, g). That is, J is an almost complex structure (i.e., a $(1,1)$-tensor field such that $J^{2}=$ - Id $), g$ is a Riemannian metric compatible with $J(g(J X, J Y)=g(X, Y)$, $X, Y \in \mathfrak{X}(M))$ and $\nabla J=0$; equivalently, J comes from a complex structure on M and the fundamental 2-form $\Phi(\Phi(X, Y)=g(X, J Y), X, Y \in \mathfrak{X}(M))$ is closed.

By constructing an appropriate example, we show the following:
Proposition. There exists a non-semisymmetric pseudosymmetric 4dimensional Kähler manifold.

This contradicts Theorem 4 of J. Deprez, R. Deszcz and L. Verstraelen [3], and Propositions 3.2 and 3.3 of F. Defever, R. Deszcz and L. Verstraelen [2] (these two propositions concern a slightly wider class of manifolds).

Precisely, it is claimed in [3] and [2] that the class of pseudosymmetric Kähler manifolds is non-essential in the sense that they are necessarily semisymmetric in any dimension $N=2 n$. Unfortunately, the proof of Theorem 4 of [3] fails in dimension $N=4$ (formula (6.3) needs a correction). This theorem remains true in any dimension $N \geq 6$. The proof of Proposition 3.2 of [2] also fails in dimension 4 because its final part requires the dimension to be ≥ 6. Consequently, also Proposition 3.3 of [2] cannot be true in dimension 4 .
2. Example. Let (x, y, z, t) denote the Cartesian coordinates in \mathbb{R}^{4}. Let $\left(\theta^{i}\right)$ be the frame of differential 1-forms on \mathbb{R}^{4} given by

$$
\theta^{1}=e^{t} d x, \quad \theta^{2}=e^{t} d y, \quad \theta^{3}=e^{-t}(-2 x d y+d z), \quad \theta^{4}=e^{3 t} d t
$$

and let $\left(e_{i}\right)$ be the dual frame of vector fields,

$$
e_{1}=e^{-t} \frac{\partial}{\partial x}, \quad e_{2}=e^{-t}\left(\frac{\partial}{\partial y}+2 x \frac{\partial}{\partial z}\right), \quad e_{3}=e^{t} \frac{\partial}{\partial z}, \quad e_{4}=e^{-3 t} \frac{\partial}{\partial t}
$$

On \mathbb{R}^{4}, define an almost complex structure J and a Riemannian metric g by

$$
J=e_{2} \otimes \theta^{1}-e_{1} \otimes \theta^{2}+e_{4} \otimes \theta^{3}-e_{3} \otimes \theta^{4}, \quad g=\sum_{i} \theta^{i} \otimes \theta^{i}
$$

The frame $\left(e_{i}\right)$ is orthonormal with respect $g, J e_{1}=e_{2}, J e_{2}=-e_{1}, J e_{3}=e_{4}$, $J e_{4}=-e_{3}$ and g is compatible with J. Let N_{J} be the Nijenhuis torsion tensor of J,

$$
N_{J}(X, Y)=[J X, J Y]-J[X, J Y]-J[J X, Y]+J^{2}[X, Y]
$$

$[\cdot, \cdot]$ being the Lie bracket of vector fields. By direct calculations, one checks that $N_{J}\left(e_{1}, e_{3}\right)=0$. Consequently, by the antisymmetry of N_{J} and the
general identity $N_{J}(J X, Y)=-J N_{J}(X, Y)$, we obtain $N_{J}\left(e_{i}, e_{j}\right)=0$ for all $1 \leq i, j \leq 4$. Thus, $N_{J}=0$ and consequently J comes from a complex structure on \mathbb{R}^{4}. Moreover, in our example, the fundamental form Φ has the shape

$$
\Phi=-2\left(\theta^{1} \wedge \theta^{2}+\theta^{3} \wedge \theta^{4}\right)=2 e^{2 t}(-d x \wedge d y-d z \wedge d t+2 x d y \wedge d t)
$$

so it is closed $(d \Phi=0)$. Thus, the pair (J, g) is a Kähler structure on \mathbb{R}^{4}.
Let $\left(\omega_{i}^{j}\right)$ be the skew-symmetric matrix of Pfaff forms representing the Levi-Civita connection of g (see e.g. [5], [7]),

$$
d \theta^{j}=-\sum_{s} \omega_{s}^{j} \wedge \theta^{s}, \quad \omega_{i}^{j}+\omega_{j}^{i}=0
$$

The non-zero forms ω_{i}^{j} are

$$
\omega_{1}^{2}=-\omega_{3}^{4}=-e^{-3 t} \theta^{3}, \quad \omega_{1}^{3}=\omega_{2}^{4}=-e^{-3 t} \theta^{2}, \quad \omega_{1}^{4}=-\omega_{2}^{3}=-e^{-3 t} \theta^{1}
$$

Let $\left(\Omega_{i}^{j}\right)$ be the skew-symmetric matrix of differential 2-forms corresponding to the curvature of ∇ (ibidem),

$$
\Omega_{i}^{j}=d \omega_{i}^{j}-\sum_{s} \omega_{i}^{s} \wedge \omega_{s}^{j}, \quad \Omega_{i}^{j}+\Omega_{j}^{i}=0
$$

The non-zero forms Ω_{i}^{j} are

$$
\begin{aligned}
& \Omega_{1}^{2}=-\Omega_{3}^{4}=4 e^{-6 t}\left(\theta^{1} \wedge \theta^{2}-\theta^{3} \wedge \theta^{4}\right) \\
& \Omega_{1}^{3}=\Omega_{2}^{4}=-2 e^{-6 t}\left(\theta^{1} \wedge \theta^{3}+\theta^{2} \wedge \theta^{4}\right) \\
& \Omega_{1}^{4}=-\Omega_{2}^{3}=-2 e^{-6 t}\left(\theta^{1} \wedge \theta^{4}-\theta^{2} \wedge \theta^{3}\right)
\end{aligned}
$$

Let $R_{h i j k}$ be the components of the curvature tensor with respect to $\left(e_{i}\right)$, $R\left(e_{h}, e_{i}\right) e_{j}=\sum_{s} R_{h i j s} e_{s}$. They are related to the curvature forms by

$$
\Omega_{j}^{k}\left(e_{h}, e_{i}\right)=\frac{1}{2} R_{h i j k}, \quad \text { or } \quad \Omega_{j}^{k}=\sum_{h<i} R_{h i j k} \theta^{h} \wedge \theta^{i}
$$

Therefore, the non-zero components $R_{h i j k}$ are

$$
\begin{aligned}
& R_{1212}=-R_{1234}=R_{3434}=4 e^{-6 t} \\
& R_{1313}=R_{1324}=R_{1414}=R_{2323}=R_{2424}=-R_{1423}=-2 e^{-6 t}
\end{aligned}
$$

We now show that our metric g satisfies (1) with $f(t)=4 e^{-6 t}$. To do this, consider the auxiliary transformation $Q(U, V)$, defined for any $U, V \in \mathfrak{X}\left(\mathbb{R}^{4}\right)$ by

$$
Q(U, V)=R(U, V)-f R^{\circ}(U, V)
$$

f being as above. Let $Q_{h i j k}$ be the components of Q with respect to (e_{i}), $Q\left(e_{h}, e_{i}\right) e_{j}=\sum_{s} Q_{h i j s} e_{s}$, and note that (1) is fulfilled if and only if

$$
\begin{align*}
& \left(Q\left(e_{p}, e_{q}\right) R\right)\left(e_{h}, e_{i}, e_{j}, e_{k}\right) \tag{2}\\
& =-\sum_{s}\left(Q_{p q h s} R_{s i j k}+Q_{p q i s} R_{h s j k}+Q_{p q j s} R_{h i s k}+Q_{p q k s} R_{h i j s}\right)=0
\end{align*}
$$

To shorten verification of (2), define the skew-symmetric matrix $\left(\widetilde{\Omega}_{j}^{k}\right)$ of differential 2-forms by

$$
\widetilde{\Omega}_{j}^{k}=\sum_{h<i} Q_{h i j k} \theta^{h} \wedge \theta^{i}, \quad \widetilde{\Omega}_{j}^{k}+\widetilde{\Omega}_{k}^{j}=0
$$

Since

$$
Q_{h i j k}=R_{h i j k}-f\left(\delta_{i j} \delta_{h k}-\delta_{h j} \delta_{i k}\right)
$$

we have $\widetilde{\Omega}_{j}^{k}=\Omega_{j}^{k}+f \theta^{j} \wedge \theta^{k}$, and consequently the non-zero forms $\widetilde{\Omega}_{j}^{k}$ are

$$
\begin{aligned}
& \widetilde{\Omega}_{1}^{2}=4 e^{-6 t}\left(2 \theta^{1} \wedge \theta^{2}-\theta^{3} \wedge \theta^{4}\right) \\
& \widetilde{\Omega}_{3}^{4}=4 e^{-6 t}\left(-\theta^{1} \wedge \theta^{2}+2 \theta^{3} \wedge \theta^{4}\right) \\
& \widetilde{\Omega}_{1}^{3}=-\widetilde{\Omega}_{2}^{4}=2 e^{-6 t}\left(\theta^{1} \wedge \theta^{3}-\theta^{2} \wedge \theta^{4}\right) \\
& \widetilde{\Omega}_{1}^{4}=\widetilde{\Omega}_{2}^{3}=2 e^{-6 t}\left(\theta^{1} \wedge \theta^{4}+\theta^{2} \wedge \theta^{3}\right)
\end{aligned}
$$

Now to prove (2) it is necessary and sufficient to check the following:

$$
\sum_{s}\left(\widetilde{\Omega}_{h}^{s} R_{s i j k}+\widetilde{\Omega}_{i}^{s} R_{h s j k}+\widetilde{\Omega}_{j}^{s} R_{h i s k}+\widetilde{\Omega}_{k}^{s} R_{h i j s}\right)=0
$$

This is done by direct calculations for certain indices only because of the (anti-)symmetry properties of the curvature tensor of a Kähler manifold.

Thus, the Kähler manifold $\left(\mathbb{R}^{4}, J, g\right)$ is pseudosymmetric. Moreover it is non-semisymmetric, since e.g.

$$
\left(R\left(e_{1}, e_{3}\right) R\right)\left(e_{1}, e_{2}, e_{1}, e_{4}\right)=-24 e^{-12 t} \neq 0
$$

REFERENCES

[1] E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Sci., Singapore, 1996.
[2] F. Defever, R. Deszcz and L. Verstraelen, On pseudosymmetric para-Kähler manifolds, Colloq. Math. 74 (1997), 253-260.
[3] J. Deprez, R. Deszcz and L. Verstraelen, Pseudo-symmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192.
[4] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belgique Ser. A 44 (1992), 1-34.
[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience and Wiley, New York, 1963.
[6] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, I. The local version; II. Global versions, J. Differential Geom. 17 (1982), 531-582; Geom. Dedicata 19 (1985), 65-108.
[7] W. Ślebodziński, Exterior Forms and Their Applications, PWN-Polish Sci. Publ., Warszawa, 1970.

Institute of Mathematics
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland
E-mail: olszak@im.pwr.wroc.pl

[^0]: 2000 Mathematics Subject Classification: 53C25, 53C55.
 Research supported by the State Committee for Scientific Research (KBN), grant no. 2P03A00617.

