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ON THE EXISTENCE
OF PSEUDOSYMMETRIC KÄHLER MANIFOLDS

BY

ZBIGNIEW OLSZAK (Wrocław)

Abstract. It is proved that there exists a non-semisymmetric pseudosymmetric
Kähler manifold of dimension 4.

1. Preliminaries. Let (M,g) be a Riemannian manifold. Let X(M)
be the Lie algebra of smooth vector fields on M . If U ∈ X(M), then U [

denotes the 1-form defined by U [(X) = g(U,X) for any X ∈ X(M). For
U, V ∈ X(M), we consider the curvature transformation R(U, V ) and an
auxiliary transformation R◦(U, V ) defined by

R(U, V ) = [∇U ,∇V ]−∇[U,V ], R◦(U, V ) = U ⊗ V [ − V ⊗ U [,
where ∇ is the Levi-Civita connection of (M,g). We extend R(U, V ) and
R◦(U, V ) to derivations of the tensor algebra on M , assuming that they
commute with contractions and R(U, V )f = 0, R◦(U, V )f = 0 for every
smooth function f on M . Consequently, for the curvature (0, 4)-tensor field
(which is also traditionally denoted by R), R(U, V )R and R◦(U, V )R are
(0, 4)-tensor fields such that for any W1, . . . ,W4 ∈ X(M),

(R(U, V )R)(W1, . . . ,W4) = −
4∑

s=1

R(W1, . . . , R(U, V )Ws, . . . ,W4),

(R◦(U, V )R)(W1, . . . ,W4) = −
4∑

s=1

R(W1, . . . , R
◦(U, V )Ws, . . . ,W4).

A Riemannian manifold is called semisymmetric if R(U, V )R = 0 for every
U, V ∈ X(M) (see [6], [1]).

A Riemannian manifold is said to be pseudosymmetric (see [4]) if there
exists a function f on M such that for every U, V ∈ X(M),

(R(U, V )− fR◦(U, V ))R = 0.(1)

2000 Mathematics Subject Classification: 53C25, 53C55.
Research supported by the State Committee for Scientific Research (KBN), grant no.

2P03A00617.

[185]



186 Z. OLSZAK

References concerning examples of Riemannian pseudosymmetric manifolds
which are not semisymmetric can be found in [4].

By a Kähler manifold (M,J, g) is meant a differentiable manifold M of
real dimension 2n, which is endowed with a Kähler structure (J, g). That is,
J is an almost complex structure (i.e., a (1, 1)-tensor field such that J 2 =
− Id), g is a Riemannian metric compatible with J (g(JX, JY ) = g(X,Y ),
X,Y ∈ X(M)) and ∇J = 0; equivalently, J comes from a complex structure
on M and the fundamental 2-form Φ (Φ(X,Y ) = g(X,JY ), X,Y ∈ X(M))
is closed.

By constructing an appropriate example, we show the following:

Proposition. There exists a non-semisymmetric pseudosymmetric 4-
dimensional Kähler manifold.

This contradicts Theorem 4 of J. Deprez, R. Deszcz and L. Verstraelen
[3], and Propositions 3.2 and 3.3 of F. Defever, R. Deszcz and L. Verstraelen
[2] (these two propositions concern a slightly wider class of manifolds).

Precisely, it is claimed in [3] and [2] that the class of pseudosymmet-
ric Kähler manifolds is non-essential in the sense that they are necessarily
semisymmetric in any dimension N = 2n. Unfortunately, the proof of The-
orem 4 of [3] fails in dimension N = 4 (formula (6.3) needs a correction).
This theorem remains true in any dimension N ≥ 6. The proof of Propo-
sition 3.2 of [2] also fails in dimension 4 because its final part requires the
dimension to be ≥ 6. Consequently, also Proposition 3.3 of [2] cannot be
true in dimension 4.

2. Example. Let (x, y, z, t) denote the Cartesian coordinates in R4. Let
(θi) be the frame of differential 1-forms on R4 given by

θ1 = etdx, θ2 = etdy, θ3 = e−t(−2xdy + dz), θ4 = e3tdt,

and let (ei) be the dual frame of vector fields,

e1 = e−t
∂

∂x
, e2 = e−t

(
∂

∂y
+ 2x

∂

∂z

)
, e3 = et

∂

∂z
, e4 = e−3t ∂

∂t
.

On R4, define an almost complex structure J and a Riemannian metric g by

J = e2 ⊗ θ1 − e1 ⊗ θ2 + e4 ⊗ θ3 − e3 ⊗ θ4, g =
∑

i

θi ⊗ θi.

The frame (ei) is orthonormal with respect g, Je1 = e2, Je2 = −e1, Je3 = e4,
Je4 = −e3 and g is compatible with J . Let NJ be the Nijenhuis torsion
tensor of J ,

NJ(X,Y ) = [JX, JY ]− J [X,JY ]− J [JX, Y ] + J2[X,Y ],

[·, ·] being the Lie bracket of vector fields. By direct calculations, one checks
that NJ(e1, e3) = 0. Consequently, by the antisymmetry of NJ and the
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general identity NJ(JX, Y ) = −JNJ(X,Y ), we obtain NJ(ei, ej) = 0 for
all 1 ≤ i, j ≤ 4. Thus, NJ = 0 and consequently J comes from a complex
structure on R4. Moreover, in our example, the fundamental form Φ has the
shape

Φ = −2(θ1 ∧ θ2 + θ3 ∧ θ4) = 2e2t(−dx ∧ dy − dz ∧ dt+ 2xdy ∧ dt),
so it is closed (dΦ = 0). Thus, the pair (J, g) is a Kähler structure on R4.

Let (ωji ) be the skew-symmetric matrix of Pfaff forms representing the
Levi-Civita connection of g (see e.g. [5], [7]),

dθj = −
∑

s

ωjs ∧ θs, ωji + ωij = 0.

The non-zero forms ωji are

ω2
1 = −ω4

3 = −e−3tθ3, ω3
1 = ω4

2 = −e−3tθ2, ω4
1 = −ω3

2 = −e−3tθ1.

Let (Ωj
i ) be the skew-symmetric matrix of differential 2-forms corresponding

to the curvature of ∇ (ibidem),

Ωj
i = dωji −

∑

s

ωsi ∧ ωjs, Ωj
i +Ωi

j = 0.

The non-zero forms Ωj
i are

Ω2
1 = −Ω4

3 = 4e−6t(θ1 ∧ θ2 − θ3 ∧ θ4),

Ω3
1 = Ω4

2 = −2e−6t(θ1 ∧ θ3 + θ2 ∧ θ4),

Ω4
1 = −Ω3

2 = −2e−6t(θ1 ∧ θ4 − θ2 ∧ θ3).

Let Rhijk be the components of the curvature tensor with respect to (ei),
R(eh, ei)ej =

∑
sRhijses. They are related to the curvature forms by

Ωk
j (eh, ei) =

1
2
Rhijk, or Ωk

j =
∑

h<i

Rhijkθ
h ∧ θi.

Therefore, the non-zero components Rhijk are

R1212 = −R1234 = R3434 = 4e−6t,

R1313 = R1324 = R1414 = R2323 = R2424 = −R1423 = −2e−6t.

We now show that our metric g satisfies (1) with f(t) = 4e−6t. To do this,
consider the auxiliary transformation Q(U, V ), defined for any U, V ∈ X(R4)
by

Q(U, V ) = R(U, V )− fR◦(U, V ),

f being as above. Let Qhijk be the components of Q with respect to (ei),
Q(eh, ei)ej =

∑
sQhijses, and note that (1) is fulfilled if and only if
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(2) (Q(ep, eq)R)(eh, ei, ej , ek)

= −
∑

s

(QpqhsRsijk +QpqisRhsjk +QpqjsRhisk +QpqksRhijs) = 0.

To shorten verification of (2), define the skew-symmetric matrix (Ω̃k
j ) of

differential 2-forms by

Ω̃k
j =

∑

h<i

Qhijkθ
h ∧ θi, Ω̃k

j + Ω̃j
k = 0.

Since
Qhijk = Rhijk − f(δijδhk − δhjδik),

we have Ω̃k
j = Ωk

j + fθj ∧ θk, and consequently the non-zero forms Ω̃k
j are

Ω̃2
1 = 4e−6t(2θ1 ∧ θ2 − θ3 ∧ θ4),

Ω̃4
3 = 4e−6t(−θ1 ∧ θ2 + 2θ3 ∧ θ4),

Ω̃3
1 = −Ω̃4

2 = 2e−6t(θ1 ∧ θ3 − θ2 ∧ θ4),

Ω̃4
1 = Ω̃3

2 = 2e−6t(θ1 ∧ θ4 + θ2 ∧ θ3).

Now to prove (2) it is necessary and sufficient to check the following:
∑

s

(Ω̃s
hRsijk + Ω̃s

iRhsjk + Ω̃s
jRhisk + Ω̃s

kRhijs) = 0.

This is done by direct calculations for certain indices only because of the
(anti-)symmetry properties of the curvature tensor of a Kähler manifold.

Thus, the Kähler manifold (R4, J, g) is pseudosymmetric. Moreover it is
non-semisymmetric, since e.g.

(R(e1, e3)R)(e1, e2, e1, e4) = −24e−12t 6= 0.
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