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ON STRONG UNIFORM DIMENSION
OF LOCALLY FINITE GROUPS

BY

A. SAKOWICZ (Białystok)

Abstract. We give the description of locally finite groups with strongly balanced
subgroup lattices and we prove that the strong uniform dimension of such groups exists.
Moreover we show how to determine this dimension.

1. Lattice preliminaries. All lattices considered in this paper have
the least and the greatest element, denoted by 0 and 1 respectively. They
do not need to be finite (in contrast to [1, 9]). We will apply also some other
notation and terminology about lattices, as in [2, 9]. In particular if L is a
lattice we will say that L is balanced if for all x, y, z ∈ L we have

x ∧ y = 0 & (x ∨ y) ∧ z = 0 ⇒ (y ∨ z) ∧ x = 0 & (z ∨ x) ∧ y = 0,

and L is strongly balanced if all nonempty intervals of L are balanced.
It is easy to show that every distributive and even modular lattice is

strongly balanced. Hence strong balancedness can be considered as a gener-
alization of modularity. In [5], with motivation coming from Theorem 6.1.10
of [12], nearly modular lattices were introduced, also as a generalization of
modular ones. In the last section of this paper we indicate that there is
no inclusion between the class of strongly balanced and the class of nearly
modular lattices.

Further properties of balanced and strongly balanced lattices can be
found in [9, 10, 13].

If a, u ∈ L then, as in [6, 10], we will say that a is essential in L if
a ∧ x 6= 0 for every 0 6= x ∈ L, and u is uniform in L if u 6= 0 and every
element from (0, u] is essential in [0, u]. For example any atom is a uniform
element and 1 is an essential element in every nontrivial lattice.

Let L be a lattice. It will be called locally uniform ([10]) if any nontrivial
interval [0, a] ⊆ L contains a uniform element, and strongly locally uniform
if any of its nontrivial intervals is locally uniform. Clearly every (strongly)
atomic lattice is (strongly) locally uniform. Notably, any finite lattice is
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strongly locally uniform. However, even in a distributive locally uniform
lattice, a sublattice need not be locally uniform.

Example 1.1. Let A be an infinite set and A be the set of all subsets
of A. ThenA is a Boolean algebra, hence it is a distributive lattice. Moreover,
for any proper subsets B ⊂ C ⊆ A we can construct an atom in the interval
[B,C] by adding a one-element set {c} to B where c ∈ C \B. Hence A is a
strongly locally uniform lattice.

Now let A1, A2 be infinite subsets of A such that A1 ∩ A2 = ∅ and
A1 ∪ A2 = A. Analogously we define infinite subsets A11, A12, A21, A22
of A such that A11 ∩ A12 = ∅, A11 ∪ A12 = A1, A21 ∩ A22 = ∅, and
A21 ∪ A22 = A2. Continuing this process we obtain a family of infinite
subsets {A1, A2, A11, A12, A21, A22, . . .} such that the Boolean subalgebra
B = 〈A1, A2, A11, A12, A21, A22, . . .〉 ⊂ A has the same 0 = ∅ and has no
uniform element ([7]).

Let L be a lattice and let X ⊂ L \ {0} be a subset. As in [6, 10], if
X = {x1, . . . , xn} for some n < ∞ then we will say that X is independent
(in L) if for every 1 ≤ i ≤ n, xi ∧ (

∨
k 6=i xk) = 0. If X is infinite then we

will say that X is independent if each of its finite subsets is independent in
the previous sense. Further a subset B ⊂ L will be called a base of L if any
element of B is uniform and B is a maximal independent subset of L. If B
is a base of L then the cardinality of B will be called the uniform dimension
of L and will be denoted by u(L). The following result about bases and the
uniform dimension is crucial.

Theorem 1.2 ([10]). Let L be a balanced and locally uniform lattice.

(a) There exists a base in L.

(b) Every independent set of uniform elements in L can be extended to
a base of L.

(c) Any two bases of L have the same cardinality. Hence u(L) is well
defined.

It is known from [10] that for nonbalanced lattices, or balanced but not
locally uniform ones, the uniform dimension cannot be well defined.

Now let L be a strongly balanced and strongly locally uniform lattice.
Then u([a, 1]) for every a ∈ L is well defined. In this case the smallest
cardinal number α such that u([a, 1]) ≤ α for all a ∈ L will be called the
strong uniform dimension of L and will be denoted by us(L).

Let
∏
i∈I Li be the cartesian product of lattices Li, i ∈ I. For any k ∈ I,

let ϕk : Lk →
∏
i∈I Li be the map such that

ϕk(x) = {xi}i∈I and xi =
{
x if i = k,

0 if i 6= k.
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Then Lk is isomorphic to ϕk(Lk) for any k ∈ I and we will identify these
lattices.

It is not difficult to show that if for any i ∈ I, Bi is a base of the lattice
Li then the set

⋃
i∈I Bi is a base of

∏
i∈I Li (see [10, 1.7]). Moreover u is a

uniform element in
∏
i∈I Li if and only if u is a uniform element in Li for

some i ∈ I.
From these facts we obtain the following:

Proposition 1.3. Let {Li | i ∈ I} be a set of lattices and let L =∏
i∈I Li. All lattices Li are (strongly) balanced or (strongly) locally uniform

if and only if L has the same property.

Proposition 1.4. Let {Li | i ∈ I} be a set of lattices and let L =∏
i∈I Li.

(a) If L is balanced and locally uniform then u(L) =
∑

i∈I u(Li).
(b) If L is strongly balanced and strongly locally uniform then us(L) =∑
i∈I us(Li).

Proposition 1.5. Let L be a lattice and K ⊆ L its sublattice.

(a) If K and L are balanced and locally uniform and 0 ∈ K then u(K) ≤
u(L).

(b) If K and L are strongly balanced and strongly locally uniform then
us(K) ≤ us(L).

(c) If K is an interval in L and L is strongly balanced and strongly
locally uniform then us(K) ≤ us(L).

From Example 1.1 we know that, in contrast to the finite case (see [1, 9]),
the assumptions on K in Proposition 1.5 are necessary.

2. Strongly balanced groups. In this section we will find the descrip-
tion of locally finite groups whose subgroup lattices are strongly balanced
and show that these lattices are strongly atomic. As usual (see [2, 12]), we de-
note by L(G) the lattice of all subgroups of a group G. Most of our notation
about groups is standard and can be found in [11, 12]. In particular, in [12]
groups with modular subgroup lattices are called modular groups. Similarly,
groups with (strongly) balanced subgroup lattices will be called (strongly)
balanced groups and groups with (strongly) atomic subgroup lattices will be
called (strongly) atomic.

In view of properties of (strongly) balanced lattices, we know that a sub-
group of a (strongly) balanced or (strongly) atomic group has the same prop-
erty. Furthermore, any homomorphic image of a strongly balanced (resp.
strongly atomic) group is strongly balanced (resp. strongly atomic). How-
ever, from [9] we know that a homomorphic image of a balanced group need
not be balanced.
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For brevity, the group G will be called an exceptional strongly balanced
group (ESB-group) if G is the semidirect product of an elementary abelian
p-group P by a group Q = 〈y | yqm = e〉 with y−1xy = xk for all x ∈ P,
where k is an integer such that kq

m ≡ 1 (mod p) and k 6≡ 1 (mod p).
All strongly balanced finite groups are described in [1] as follows:

Theorem 2.1. Let G be a finite group. Then G is strongly balanced if
and only if it is one of the following groups:

(a) a modular p-group;
(b) an ESB-group;
(c) a direct product of groups given in (a) and (b), with pairwise coprime

orders.

The next lemma is helpful in the study of strongly balanced and strongly
atomic groups.

Lemma 2.2. Let G be a group, P be a normal subgroup of G and H ≤ K
be subgroups of G.

(a) If HX is a subgroup of G for any subgroup X of P then the intervals
[H,HP ] and [H ∧ P,P ] are isomorphic.

(b) If K∩HP = H then the intervals [H,K] and [HP,KP ] are isomor-
phic.

Proof. (a) We consider the mapping ϕ : [H ∧ P,P ] → [H,HP ] defined
by ϕ(X) = X ∨H. By assumption ϕ(X) = XH is a subgroup of G for every
X ∈ [H ∧ P,P ]. Hence by elementary coset calculation one can see that ϕ
is an isomorphism of [H ∧ P,P ] and [H,HP ].

(b) Now we consider the mapping ψ : [H,K] → [HP,KP ] defined by
ψ(X) = X ∨ P. Since P is a normal subgroup of G, ψ(X) = XP is a
subgroup for every X ∈ [H,K]. By assumption HP ∩K = H. Hence by the
isomorphism theorem, ψ is an isomorphism of [H,K] and [HP,KP ].

It is obvious that any torsion group is atomic. Hence any abelian torsion
group is strongly atomic. Below we extend this observation.

Lemma 2.3. Let G be a torsion group. If there exists an abelian normal
subgroup P and an element g of G such that G = P 〈g〉 and g induces a
power automorphism on P then G is strongly atomic.

Proof. Let H ≤ K be subgroups of G. Suppose first that HP ∩K = H.
Then, from Lemma 2.2, [H,K] is isomorphic to [HP,KP ]. Since [HP,KP ]
is isomorphic to an interval of L(G/P ) and G/P is abelian and torsion,
[H,K] has an atom.

Now let HP ∩K = J > H. Since g induces a power automorphism on
P, XH is a subgroup for any subgroup X of P. Then the intervals [H,HP ]
and [H ∧ P,P ] are isomorphic, by Lemma 2.2. Hence [H,J ] ⊂ [H,HP ] is
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isomorphic to an interval of L(P ) and P is strongly atomic by assumption.
So [H,J ] has an atom and hence [H,K] also has an atom.

In [1, 2.9] it was proved that every finite ESB-group is strongly balanced.
The criterion for being a strongly balanced lattice which was used in this
proof can be extended from finite to strongly atomic lattices (see [13]). Using
this criterion and Lemma 2.3 we obtain:

Theorem 2.4. If G is an ESB-group then G is strongly balanced and
strongly atomic.

It was observed in [1] that even in the finite case, ESB-groups need not
be modular. It turns out that the situation is different in the case of locally
finite and strongly balanced p-groups.

Lemma 2.5. Let G be a locally finite p-group. The following conditions
are equivalent :

(a) G is strongly balanced.
(b) G is modular.
(c) G is one of the following groups:

(i) abelian or
(ii) a hamiltonian 2-group or

(iii) G contains an abelian normal subgroup A of exponent pk with
cyclic factor group G/A of order pm (k,m ∈ N) and there exists
b ∈ G with G = A〈b〉 and an integer s which is at least 2 in
case p = 2 such that s < k ≤ s + m and b−1ab = a1+ps for all
a ∈ A.

Proof. (a) follows from (b) even on the lattice level, and (b) is equivalent
to (c) in view of the result of Iwasawa [12, 2.4.14], because G is locally finite.

Hence, it is enough to prove that (a) implies (b). Let G be a strongly
balanced p-group. Let H,K be any subgroups of G and h ∈ H, k ∈ K.
Then 〈h, k〉 is a finite strongly balanced p-group. Hence 〈h, k〉 is modular,
by Theorem 2.1. In view of [12, 2.3.2], any two subgroups of 〈h, k〉 commute.
In particular 〈h〉〈k〉 = 〈k〉〈h〉. Thus HK = KH and HK = H ∨ K is a
subgroup of G. Hence, from [11, 1.3.14], G is a modular group.

We will say thatG is decomposable ifG is a direct product of its nontrivial
subgroups. Otherwise we will say that G is indecomposable. Moreover, as in
[12] we will say that the groups Gi, i ∈ I, are coprime if (o(gi), o(gj)) = 1
for all gi ∈ Gi, gj ∈ Gj with i 6= j. Dri∈I Gi will denote the direct product
of groups Gi, i ∈ I. In [12] it was proved that if G = Dri∈I Gi and Gi, i ∈ I,
are coprime then L(G) ' ∏i∈I L(Gi). We will denote by Π(G) the set of all
primes dividing the orders of elements from G.
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Lemma 2.6. Let G be a locally finite strongly balanced group, q ∈ Π(G),
and let Q be the subgroup generated by all q-elements of G. If Q is not a
q-group then there exists a prime p > q such that :

(i) Q contains the subgroup P generated by all p-elements of G.
(ii) If g ∈ G and (o(g), pq) = 1 then g ∈ CG(Q) \Q.

(iii) Q is an indecomposable group.
(iv) Q is an ESB-group.

Proof. Assume that Q is not a q-group. Then there exist q-elements
y1, y2 ∈ Q such that 〈y1, y2〉 is not a q-group. Since 〈y1, y2〉 is finite and
strongly balanced, there exists p ∈ Π(G) with p > q such that 〈y1, y2〉 is an
ESB-group of order piqj, i, j ≥ 1, by Theorem 2.1.

(i) Let x ∈ G be any p-element. Then the subgroup H = 〈x, y1, y2〉 is also
a finite ESB-group of order pkql, where i ≤ k, j ≤ l. Since x was arbitrarily
chosen, we see from Theorem 2.1 that any p-element of G is contained in a
subgroup generated by q-elements. Hence the subgroup P generated by all
p-elements of G is a subgroup of Q.

(ii) Let y3, y4 ∈ Q be any q-elements. The subgroup K = 〈x, y1, y2, y3, y4〉
is finite and H ≤ K so that K is an ESB-group of order psqt, where k ≤ s,
l ≤ t, by Theorem 2.1. Hence, by the choice of y3, y4, only p, q ∈ Π(Q).

Let r ∈ Π(G), r 6∈ {p, q}, and g ∈ G be any r-element. Now we consider
the subgroup 〈K, g〉. Since 〈K, g〉 is finite and strongly balanced, g ∈ CG(K),
from Theorem 2.1. Again by the choice of x, y3, y4 we obtain g 6∈ Q and
g ∈ CG(Q).

(iii) Assume that Q is decomposable, i.e. there exist subgroups Q1, Q2
such that Q=Q1×Q2. Let Q1 be any finite subgroup of Q1 and Q2 be any fi-
nite subgroup of Q2. We consider the subgroup Q=Q1×Q2. Since Q is finite,
Q is an abelian group or a q-group or Q1, Q2 are coprime, by Theorem 2.1.
Hence any set of q-elements of G generates a q-group so Q is a q-group. This
contradicts our assumption and therefore Q is indecomposable.

(iv) Let x1 ∈ Q be any p-element. Then M = 〈x, x1, y1, y2, y3, y4〉 is a
finite ESB-group of order puqw, where u, w are positive integers such that
i ≤ u, j ≤ w. Since x, x1, y3, y4 were arbitrarily chosen, any two p-elements
of Q commute, have prime orders and every subgroup of P is normalized by
all q-elements of Q. So P is a normal, elementary abelian subgroup of Q.

From the proof of (i) we know that [x, y1] 6= 1 for any p-element x.
Hence P ∩ Z(Q) = {e}. Let H be an arbitrary finite subgroup of Q. Then
PH/P ' H/H ∩ P is a finite subgroup of Q/P . Now P ∩ H is a Sylow
p-subgroup of H and thus, by Theorem 2.1, H/H ∩ P is a cyclic q-group;
this implies that Q/P is a locally cyclic q-group. Since Q is not abelian,
PZ(Q)/P is a proper subgroup of Q/P. Hence PZ(Q)/P is a finite cyclic
q-group and further Z(Q) is a finite cyclic q-group, as Z(Q) ' PZ(Q)/P.
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Now we take a q-element y ∈M with maximal order and let o(y) = qm.
Then M = (M ∩ P )〈y〉 and there exist positive integers k, r such that
m ≥ k and qr | p− 1, kq

r ≡ 1 (mod p), because M is an ESB-group (see [1]).
Moreover for all x ∈ M ∩ P, xy = xk and gq

r ∈ Z(M) for any q-element
g ∈M. Let s be the maximal integer such that qs | p−1. Then, by the choice
of M, for any q-element g ∈ Q we have gq

s ∈ Z(Q). If we take |Z(Q)| = qt

then the order of any q-element g of Q equals at most qs+t.
The above considerations show that if y is a q-element of Q of maximal

order then 〈M,y〉 = (〈M,y〉 ∩ P )〈y〉, as 〈M,y〉 is an ESB-group. Thus Q =
P 〈y〉. Since y acts on P as a power automorphism, Q is an ESB-group.

Now we are in a position to prove the main results of this section.

Theorem 2.7. Let G be a locally finite group. Then G is strongly bal-
anced if and only if it is one of the following groups:

(i) a modular p-group;
(ii) an ESB-group;

(iii) a direct product of coprime groups given in (i) and (ii).

Proof. The groups in (i) are certainly strongly balanced and the groups
from (ii) are strongly balanced by Theorem 2.4. Hence, by Proposition 1.3,
also the groups from (iii) are strongly balanced.

Conversely, let G be a strongly balanced group. If p ∈ Π(G) then Gp

will denote the subgroup generated by all p-elements of G. Since Gp is a
normal subgroup in G for any p ∈ Π(G), G is the algebraic product of
subgroups Gp.

Assume that for some q∈Π(G),Gq is not a q-group. Then by Lemma 2.6,
Gq contains an abelian subgroup Gp for some p ∈ Π(G) with q < p, and
furthermore, Gq is an ESB-group. Moreover if an element e 6= g ∈ G is such
that (o(g), pq) = 1 then g ∈ CG(Gq) \Gq. Thus Gp is not a subgroup of Gr
for r ∈ Π(G) \ {p, q}.

Hence for any p ∈ Π(G), Gp is a p-group or an ESB-group and if Gp ∩
Gq = {e} then they are coprime. This means that G is the direct product
of some groups Gp which are coprime. If Gp is a p-group then it is modular,
by Theorem 2.5, and if Gp is not modular, then Gp is an ESB-group by
arguments used earlier in this proof.

The next corollaries are consequences of Theorem 2.7 and Lemmas 2.5
and 2.6.

Corollary 2.8. Let G be a locally finite group. Then G is strongly
balanced if and only if every finite subgroup of G is strongly balanced.

Corollary 2.9. All locally finite strongly balanced groups are metabel-
ian.
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Theorem 2.10. If G is a locally finite and strongly balanced group then
G is strongly atomic.

Proof. We noticed earlier that any periodic abelian group is strongly
atomic. By Theorem 2.4 also any ESB-group is strongly atomic. Hence,
we assume that G is a nonabelian strongly balanced p-group. In this case
from Lemma 2.5 one can easily deduce that G satisfies the assumption of
Lemma 2.3. Hence G is strongly atomic.

Since the direct product of strongly atomic lattices is strongly atomic,
the proof is completed by applying Theorem 2.7.

The above result cannot be extended to all locally finite groups, even
in a weaker form, because there exists a locally finite (hence atomic) group
which is not strongly locally uniform ([8]).

3. Strong uniform dimension of groups. If G is a group then, as
in [9], the uniform dimension (resp. strong uniform dimension) of L(G) will
be called the uniform dimension (resp. strong uniform dimension) of G and
will be denoted by u(G) (resp. us(G)).

In [9], both uniform dimensions were determined for all strongly bal-
anced finite groups. From Theorem 2.10, every locally finite strongly bal-
anced group is strongly locally uniform. Hence, by Theorem 1.2, the (strong)
uniform dimension of such groups exists. Now we determine these dimen-
sions for such groups.

As a consequence of Propositions 1.4, 1.5 and properties of strongly
balanced groups we obtain the following facts:

Proposition 3.1. Let G be a locally finite and strongly balanced group.

(a) If H ≤ G is a subgroup then u(H) ≤ u(G) and us(H) ≤ us(G).
(b) If H ≤ G is a normal subgroup then us(G/H) ≤ us(G).

Proposition 3.2. Let Gi, i ∈ I, be locally finite coprime groups and
G = Dri∈I Gi.

(a) If G is balanced then u(G) =
∑

i∈I u(Gi).
(b) If G is strongly balanced then us(G) =

∑
i∈I us(Gi).

In view of Theorem 2.7 and Proposition 3.2 we only need to determine
the uniform dimensions of modular p-groups and ESB-groups. We start with
the case of abelian p-groups.

Lemma 3.3. If G is an abelian p-group then u(G) = us(G) and both
dimensions are equal to the rank of G.

Proof. Let G be an abelian p-group. Then the rank of G is equal to the
p-rank of G. On the other hand, cyclic p-groups are uniform. Hence the
result follows by the arguments from [4, §16].
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In the case of nonabelian p-groups or ESB-groups we can use the follow-
ing lemma, which is an easy extension of the results from [9].

Lemma 3.4. Let G be a torsion group. If there exists an abelian normal
subgroup P and an element g of G such that G = P 〈g〉 and g induces a
power automorphism on P then us(G) = us(P ) + 1.

It can be checked, as in [9], that for the quaternion group Q8 of order 8
we have us(Q8) = 2 and u(Q8) = 1. Hence Lemma 3.4 is not true for the
uniform dimension. Moreover, Q8 is the only indecomposable group G such
that us(G) 6= u(G).

Summarizing the results of this section we obtain:

Theorem 3.5. Let G be a locally finite and strongly balanced group.
Then us(G) = u(G) + 1 if and only if G has a direct factor which is the
quaternion group of order 8. In any other case us(G) = u(G).

The theorem below shows that the finiteness of the strong uniform di-
mension gives some other finiteness conditions for strongly balanced locally
finite groups.

Theorem 3.6. Let G be a locally finite and strongly balanced group.
Then the (strong) uniform dimension of G is finite if and only if G is a
direct product of finitely many finite modular p-groups, finite ESB-groups
and quasicyclic groups.

Proof. Let G be a strongly balanced group. If G is a nonabelian infinite
indecomposable group then G is a nonabelian modular p-group or an ESB-
group. Hence G contains an infinite abelian p-subgroup N of finite exponent.
So, from Lemma 3.3, u(N) = us(N) = rp(N) =∞.

IfG is indecomposable and abelian, thenG is a p-group and the rank ofG
is finite if and only if G is a cyclic p-group or a quasicyclic group Cp∞ , by [4].

In the general case, u(G) is finite if and only if G has finitely many direct
factors and the rank of each factor is finite. Thus G is a direct product of
finitely many finite modular p-groups, finite ESB-groups and quasicyclic
groups.

Remarks. The examples of torsion but not locally finite groups which
have modular subgroup lattices are provided in [12]. They are Tarski groups,
that is, infinite groups all of whose nontrivial subgroups have prime order.
Such groups are strongly atomic and both their uniform dimensions are
equal to 2.

In [3] it was proved that for every odd prime p there exists an infinite
simple group whose proper subgroups are cyclic p-groups. Moreover, it was
shown that for every odd prime p there exist continuum many nonisomorphic
such groups with isomorphic subgroup lattices. All these groups are strongly
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balanced and strongly atomic. Among these groups there are ones with
exponent greater than p. Such groups are nonmodular, but strongly atomic.
The uniform dimensions of all these groups are 2.

The above examples show that investigation of strongly balanced but not
locally finite groups requires methods which are completely different from
the ones used in this paper.7

From [5] we know that all finite groups are nearly modular, but from [1, 9]
we know that there exist finite groups which are not strongly balanced. On
the other hand any nonmodular example of Deryabina mentioned above is
strongly balanced but not nearly modular. Hence there is no inclusion be-
tween the class of strongly balanced and the class of nearly modular groups.
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[1] C. Bagiński and A. Sakowicz, Finite groups with globally permutable lattice of sub-
groups, Colloq. Math. 82 (1999), 65–77.

[2] G. Birkhoff, Lattice Theory , 3rd ed., Amer. Math. Soc., Providence, RI, 1967.
[3] G. S. Deryabina, Infinite p-groups with cyclic subgroups, Mat. Sb. (N.S.) 124 (166)

(1984), 495–504.
[4] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.
[5] F. de Giovanni and C. Musella, Groups with nearly modular subgroup lattice, Colloq.

Math. 88 (2001), 13–20.
[6] P. Grzeszczuk and E. R. Puczyłowski, On Goldie and dual Goldie dimension,

J. Pure Appl. Algebra 31 (1984), 47–54.
[7] —, —, On infinite Goldie dimension of modular lattices and modules, ibid. 35 (1985),

151–155.
[8] J. Krempa, personal communication.
[9] J. Krempa and A. Sakowicz, On uniform dimensions of finite groups, Colloq. Math.

89 (2001), 223–231.
[10] J. Krempa and B. Terlikowska-Osłowska, On uniform dimension of lattices, in:

Contributions to General Algebra 9, Holder-Pichler-Tempsky, Wien, 1995, 219–230.
[11] D. J. S. Robinson, A Course in the Theory of Groups, Springer, Berlin, 1982.
[12] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, 1994.
[13] A. P. Zolotarev, Balanced lattices and Goldie numbers in balanced lattices, Sibirsk.

Mat. Zh. 35 (1994), 602–611 (in Russian).

Institute of Mathematics
University of Białystok
Akademicka 2
15-267 Białystok, Poland
E-mail: sakowicz@math.uwb.edu.pl

Received 28 February 2002;
revised 29 August 2002 (4180)


