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ALMOST PERFECT DOMAINS

BY

S. BAZZONI and L. SALCE (Padova)

Abstract. Commutative rings all of whose quotients over non-zero ideals are per-
fect rings are called almost perfect. Revisiting a paper by J. R. Smith on local domains
with TTN, some basic results on these domains and their modules are obtained. Various
examples of local almost perfect domains with different features are exhibited.

Introduction. A commutative ring R with 1 is called almost perfect
if every quotient of R over a non-zero ideal is a perfect ring. In a recent
paper [6] we characterized the commutative integral domains R which are
almost perfect as those domains such that all R-modules have a strongly
flat cover, or equivalently, such that all flat R-modules are strongly flat.
The last property amounts to saying that weakly cotorsion modules (that
is, cotorsion in Matlis’ sense) are cotorsion (in Enochs’ sense).

The goal of this paper is to investigate more deeply almost perfect com-
mutative rings. In the local case, almost perfect domains have already been
introduced by J. R. Smith in [17] under the name of domains with TTN. We
will reconsider here some of his results. We concentrate on almost perfect
domains, because we show in Section 1 that an almost perfect ring that is
not a domain is perfect.

J. R. Smith [17] proved that if every torsion module over a domain R
is semi-artininan, then R is locally almost perfect. An important property
is missing in order to prove the converse, namely, h-locality (see [6]). We
show that a classical example of almost Dedekind domain constructed by
Heinzer–Ohm [12], which fails to be h-local, has all its torsion modules
semi-artinian. If R is a local almost perfect domain and Q denotes its field
of quotients, we prove that the Loewy length of Q/R equals ω if and only if
the maximal ideal of R is almost nilpotent.

In Section 3 we exhibit three different types of construction of almost
perfect local domains. The first construction enables us to provide an ex-
ample of an integrally closed local almost perfect domain which is not a
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valuation domain, different from that obtained by Smith [17]. The second
construction, due to Smith [17], deals with simple integral extensions of lo-
cal almost perfect domains. Our contribution is the converse of the relevant
proposition (see Proposition 3.5). The third construction, which considers
semigroup rings with coefficients in fields of positive characteristic, leads
us to an example of a local almost perfect domain R such that the Loewy
length of Q/R is ω2.

1. Preliminaries. H. Bass defined in [3] an arbitrary ring R with 1 to
be a left-perfect ring if every left R-module has a projective cover. Among
the many characterizations of left-perfect rings, we recall here the one we
use more often when dealing with almost perfect rings: R is left-perfect if
and only if R/J is semisimple (J denotes the Jacobson radical of R) and J
is T -nilpotent; the last condition means that, given any sequence {xn}n∈ω
of elements of J , a suitable finite product x1 · . . . ·xn vanishes. We collect the
characterizations of commutative perfect rings that we use in the following.
Recall that an R-moduleM is called semi-artinian if every non-zero quotient
of M has a non-zero socle, and a ring R is semi-artinian if it is semi-artinian
as an R-module.

Theorem 1.1. Let R be a commutative ring. The following are equiva-
lent :

(1) R is a perfect ring ;
(2) R satisfies the DCC on principal ideals;
(3) R is a finite direct product of local rings with T -nilpotent maximal

ideals;
(4) R is semilocal and every localization of R at a maximal ideal is a

perfect ring ;
(5) R is semilocal and semi-artinian.

Furthermore, R is a perfect domain if and only if it is a field.

Proof. For the equivalences (1)⇔(2)⇔(3) see for instance [13, Ch. 8,
Theorems 23.20 and 23.24].

The implication (3)⇒(4) is obvious. Concerning the converse implica-
tion, let {P1, . . . , Pn} be the maximal ideals of R. Clearly R/J is semisimple.
We must prove that J is T -nilpotent. Let {xn}n∈ω be a sequence of elements
of J . Considering its image in each localization RPi (1 ≤ i ≤ n), since every
ideal PiRPi is T -nilpotent, we can find an index k such that the image of
the product x1 · . . . · xk vanishes in each RPi . This implies that x1 · . . . · xk
vanishes in R.

For the equivalence (1)⇔(5) see [18, Proposition 5.1]. The last statement
is an immediate consequence of (3).
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The following result will be very useful in what follows.

Lemma 1.2. Let R be a local ring with maximal ideal P such that R/aR
is a perfect ring for some a ∈ R. Then R/anR is perfect for every n ∈ N.

Proof. It is clearly enough to assume that 0 6= a ∈ P . Let {bi + a2R}i∈N
be a sequence of elements in P/a2R and consider the corresponding sequence
{bi+aR}i∈N. By hypothesis there exists an indexm such that b1·. . .·bm ∈ aR.
Consider now the sequence {bm + aR, bm+1 + aR, . . .}; there exists k such
that bm+1 · . . . · bm+k ∈ aR. Thus b1 · . . . · bmbm+1 · . . . · bm+k ∈ a2R and so
R/a2R is a perfect ring. An easy induction completes the proof.

The next proposition reduces the study of almost perfect rings to the
domain case.

Proposition 1.3. Let R be an almost perfect commutative ring. If R is
not a domain, then R is a perfect ring.

Proof. First of all we note that R has Krull dimension 0. In fact, a
prime ideal L of R is non-zero and it is maximal, since R/L is a domain
and a perfect ring, hence a field. We now show that R is semilocal. This
is trivial if the Jacobson radical J of R is non-zero, since in this case R/J
is a perfect ring by hypothesis, hence semilocal. If J = 0, then R is von
Neumann regular, since it is zero-dimensional and reduced. Thus, if 0 6= r is
a non-invertible element of R, then rR = eR for some non-trivial idempotent
e ∈ R. So R = eR ⊕ (1 − e)R, where eR and (1 − e)R are perfect rings,
being non-zero homomorphic images of R. We conclude that they are both
semilocal and the same holds for R. Moreover, it is easily shown that every
localization of R at a maximal ideal is almost perfect. Thus, by Theorem 1.1,
it is enough to show that a local almost perfect ring S which is not a domain
is a perfect ring. Let P be the maximal ideal of S. Consider 0 6= t ∈ P ; by
hypothesis S/tS is a perfect ring and, by the preceding lemma, so is S/t2S.
But, since S is not a domain and P is the only prime ideal of S, we conclude
that P is the nilradical of S. So there exists a non-zero t ∈ P such that
t2 = 0. By the above argument we conclude that S is a perfect ring.

The last result is reminiscent of similar situations valid for valuation and
local rings: as proved by Gill [10] (see also [9, II 6.4]), an almost maximal
valuation ring which is not a domain is indeed a maximal valuation ring;
and a local almost henselian ring that is not a domain is henselian (see [19]
or [9, II 7, p. 85]).

From now on, we will consider almost perfect domains only. We collect
the basic facts on almost perfect domains already proved in [6] in the next
theorem.
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Theorem 1.4. (1) If R is an almost perfect domain, then R is a Matlis
domain (that is, the projective dimension of Q equals 1) and has Krull
dimension 1 [6, Proposition 4.5].

(2) The domain R is almost perfect if and only if it is h-local and every
localization of R at a maximal ideal is almost perfect [6, Theorem 4.4].

(3) R is a coherent and almost perfect domain if and only if it is 1-
dimensional and Noetherian [6, Propositions 4.3 and 4.5].

Point (2) in the preceding theorem reduces the investigation of almost
perfect domains and their torsion modules to the local case. Point (3) shows
that the only Prüfer (resp., valuation) domains which are almost perfect are
the Dedekind (resp., DVR) domains.

2. Almost perfect domains and semi-artinian modules. In [17]
J. R. Smith proved that a local domain R is almost perfect if and only if
every R-module which is not torsion-free contains a simple submodule; this
condition is clearly equivalent to the fact that all (cyclic) torsion R-modules
are semi-artinian. We now give an example that shows that this is no longer
the case for non-local almost perfect domains.

Example 2.1. Let R be the almost Dedekind domain constructed in
Example 2.2 of [12] (see also [9, III 5.5]). R is not h-local, hence it is not
almost perfect, and has countably many maximal ideals Pn which are finitely
generated, and exactly one maximal ideal P∞ which is not finitely generated.
We claim that for every non-zero ideal I of R, R/I has non-zero socle, hence
Q/R is semi-artinian (see next Theorem 2.2). In fact, let P be a maximal
ideal of R containing I. Since R is locally a DVR, it is locally almost perfect,
so RP /IP contains a simple RP -module; thus there exists r ∈ R such that
0 6= r + IP and rP ⊆ IP . Assume first that I is contained in at least
one finitely generated maximal ideal Pn; setting P = Pn in the previous
argument, we can find s 6∈ Pn such that rsPn ⊆ I and thus rs+ I generates
a non-zero simple submodule of R/I. If I is contained only in the maximal
ideal P∞, then the equality IP∞ ∩ R = I holds locally, since R has Krull
dimension one; hence, the equality holds in R. Thus, setting P = P∞ in the
previous argument, we obtain rP∞ ⊆ IP∞ ∩ R = I, hence R/I contains a
simple R-module.

We now want to establish a connection between almost perfect domains
and semi-artinian modules. In [17] Smith claimed that every torsion module
over a domain R is semi-artinian if and only if R is locally almost perfect.
The necessity of this condition is obviously true, while the proof of the
converse is not correct. We do not know if the converse holds in general. In
connection with this result, Enochs showed in [7] that the domains R such
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that direct products of torsion-free covers are still torsion-free covers are
exactly the domains R such that every torsion R-module is semi-artininan.

We need the following result.

Theorem 2.2 ([8, Theorem 4.4.1]). Let R be a commutative domain.
The following are equivalent :

(1) every non-zero torsion module contains a simple module;
(2) every torsion R-module is semi-artinian;
(3) for every non-zero ideal I of R, R/I contains a simple module;
(4) for every non-zero R-submodule A of Q, Q/A contains a simple

module;
(5) Q/R is semi-artinian.

We can now easily prove the next result.

Theorem 2.3. Let R be a commutative domain. The following are equiv-
alent :

(1) R is almost perfect ;
(2) R is h-local and R satisfies one of the equivalent conditions of The-

orem 2.2.

Proof. (1)⇒(2) follows by Theorem 1.4(2) and, as noted above, by the
equivalence (1)⇔(5) in Theorem 1.1.

(2)⇒(1). Assume R is h-local and satisfies condition (3) of Theorem 2.2.
Let 0 6= I ≤ R. Since R is h-local, R/I is a semilocal ring and every quotient
of R/I has non-zero socle, by hypothesis. Hence, R/I is semi-artinian; thus,
by Theorem 1.1, R/I is a perfect ring, i.e., R is almost perfect.

In particular, since an almost perfect domain R is h-local, Q/R is the
direct sum of the submodules Q/RP with P ranging over the maximal ideals
of R (see [14]).

The following consequence, partly due to J. R. Smith, is immediate.

Corollary 2.4. Let R be a commutative local domain. The following
are equivalent :

(1) R is almost perfect ;
(2) Q/R is semi-artinian;
(3) every non-zero torsion module is semi-artinian.

Summarizing the situation illustrated above, we have the following im-
plications for a domain R:

R almost perfect ⇒ Q/R semi-artinian ⇒ R locally almost perfect.

The first implication cannot be reversed, as shown by Example 2.1, while
we do not know whether the second implication can be reversed. The two
implications are trivially equivalences in the local case.
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We now give some conditions on a local 1-dimensional domain R in order
that R is almost perfect.

Proposition 2.5. Let R be a local 1-dimensional domain with maximal
ideal P . Then

(1) Q/R =
⋃
n a
−nR/R for every 0 6= a ∈ P , so, in particular , Q/R is

countably generated ;
(2) R is almost perfect if and only if there exists 0 6= a ∈ P such that

R/aR is perfect ;
(3) if P is a principal ideal of its endomorphism ring , then R is almost

perfect.

Proof. (1) Obvious.
(2) The necessity of the condition is trivial. So assume R/aR is perfect

for a non-zero element a ∈ P . By Lemma 1.2, R/anR is perfect for every
n ∈ N, hence a−nR/R is semi-artinian. As noted above, Q/R =

⋃
n a
−nR/R,

since R is 1-dimensional. Thus Q/R is also semi-artinian, and we conclude
by Corollary 2.4.

(3) Let P = aE, where E is the endomorphism ring of P . Then P 2 =
aP ⊆ aR; hence the maximal ideal of R/aR is nilpotent. Then (2) yields
the conclusion.

We now give an application of the preceding proposition. First recall that
an ideal of a domain is stable if it is invertible over its endomorphism ring,
and a domain is finitely stable if every finitely generated ideal of R is stable.
In [16] it is proved that every overring of a finitely stable local domain is
semilocal. Thus, if R is a finitely stable local domain of Krull dimension
one with stable maximal ideal P , then E = End(P ) is semilocal, so P is
principal over E; whence, by the above proposition, R is almost perfect.

A condition which implies that an almost perfect domain is Noetherian
is illustrated in the next result. Recall that a domain is called divisorial if
for every fractional non-zero ideal I, R : (R : I) = I.

Proposition 2.6. (1) If R is almost perfect and divisorial , then R is
Noetherian.

(2) If R is almost perfect and Q/R is an injective module, then R is
Noetherian.

Proof. (1) It is well known (see [15] or [11]) that a divisorial domain is
h-local and locally divisorial, thus by Theorem 1.4(2) we may assume that R
is local. Since R is divisorial, R/I is a module satisfying the AB-5∗ condition
for every non-zero ideal I of R (see [5, Sec. 2]). Since R/I is semi-artinian
it has non-zero essential socle; moreover its socle is finitely generated, since
R/I is a module satisfying the AB-5∗ condition (see [1, Theorem 1.2]). This
implies that, for every 0 6= r ∈ R, every epimorphic image of R/rR is
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finitely cogenerated, hence R/rR is an artinian ring. We conclude that the
maximal ideal of R is finitely generated, thus R is Noetherian. Recall that,
by Theorem 1.4(1), every non-zero prime ideal is maximal.

(2) Since R is h-local, R is Noetherian if and only if it is locally Noethe-
rian, so we may assume that R is local. Since Q/R is semi-artinian and
injective, Q/R is an injective cogenerator of ModR. By [15, Theorem 2.1],
R is a reflexive domain, hence in particular a divisorial domain. Thus the
preceding proposition applies.

We now recall the notions of Loewy series and Loewy length of a module.
For every module M let s(M) denote the socle of M , that is, the sum of the
simple submodules of M ; then we can define a continuous ascending chain
of submodules of M indexed by the ordinal numbers, in the following way:

s0(M) = s(M),

sα+1(M)/sα(M) = s(M/sα(M)),

sα(M) =
∑

β<α

sβ(M) for a limit ordinal α.

It is well known that M is semi-artinian if and only if M = sλ(M) for
some ordinal λ (see, for instance, [18]). The minimum ordinal λ such that
M = sλ(M) is called the Loewy length of M and is denoted by l(M). If R
is a one-dimensional domain, the length of the Loewy series of Q/R is an
ordinal λ of countable cofinality, by Proposition 2.5. Obviously, λ is a limit
ordinal. In fact, assume by way of contradiction that λ = α+1. Let x+R ∈
sα+1(Q/R)\sα(Q/R), p ∈ P and y = p−1x. Then y+R 6∈ sα+1(Q/R), since
otherwise x+R = p(y+R) ∈ sα(Q/R), so we get the desired contradiction.

We conclude this section by showing that, for a local almost perfect do-
main R, the Loewy length of Q/R is related to the property of the maximal
ideal P of being almost nilpotent, i.e., for every non-zero ideal I, P n ⊆ I
for some n ∈ N.

Proposition 2.7. Let R be a local almost perfect domain with maximal
ideal P . The following are equivalent.

(1) The Loewy length l(Q/R) of Q/R is ω;
(2) P is almost nilpotent ;
(3) there exists an element 0 6= a ∈ P such that P n ⊆ aR for some

natural number n.

Proof. (1)⇒(2). By Corollary 2.4, Q/R is semi-artinian. Clearly sn(Q/R)
= (R : Pn+1)/R, for every n ≥ 1. If l(Q/R) = ω, then for every 0 6= a ∈ P
there exists a natural number n such that a−1 ∈ R : Pn; consequently,
Pn ⊆ aR, i.e., P is almost nilpotent.

(2)⇒(3). Obvious.
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(3)⇒(1). By hypothesis, a−1 ∈ R : Pn, so a−m ∈ R : Pnm for all m ∈ N.
Since the elements a−m +R generate Q/R, by Proposition 2.5, we conclude
that l(Q/R) = ω.

Obviously, the equivalent conditions in Proposition 2.7 are satisfied if R
is a local 1-dimensional Noetherian domain, since, for 0 6= a ∈ R, the factor
ring R/aR is artinian. We can add the following information on the Loewy
length of the module Q/R.

Proposition 2.8. Let R be a local almost perfect domain with maximal
ideal P and let 0 6= a ∈ P . Then

l(Q/R) = sup
n∈N
{l(a−nR/R)}.

Proof. Clearly, if N is a submodule of a semi-artinian module M , then
sα(N) = sα(M) ∩ N for every ordinal α. Using the fact that Q/R =⋃
n a
−nR/R it is easy to conclude the proof by induction.

We remark that since the Loewy length of a−nR/R is a non-limit ordinal
(say αn+1) where αn is the Loewy length of a−nP/R, {αn}n is an increasing
sequence of ordinals and it is not stationary, since l(Q/R) is a limit ordinal.

3. Constructions of almost perfect domains. In this section we
exhibit three different ways of obtaining (non-Noetherian) almost perfect
local domains: using the D+M construction; considering suitable simple
integral extensions of almost perfect domains; using semigroup rings over
submonoids of the non-negative real numbers.

D + M construction. This construction allows us to answer to a ques-
tion raised in [17], namely, whether an integrally closed almost perfect local
domain is necessarily a valuation domain. This question is natural, since
the integral closure of a local domain is the intersection of all the valuation
domains dominating it and contained in its field of quotients. In [17, p. 243]
a counterexample is given, but, as noted by Griffin in the review (see [MR
40] 130]), its proof is inadequate. As a consequence of the next Lemma 3.1,
we will give an easy example of an integrally closed local almost perfect
domain which is not a valuation domain.

The construction is as follows.
Let V = K[[Y ]] be the power series ring in the indeterminate Y with

coefficients in the field K. For every local subring D of K with maximal
ideal P consider the domain R = D + M , where M = Y K[[Y ]]. Clearly, R
is a local domain with maximal ideal P +M .

Lemma 3.1. Let R be as defined above. Then R is almost perfect if and
only if D is a field.
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Proof. Assume D is a field. Then R is 1-dimensional and its maximal
ideal is M . By Proposition 2.5, it is enough to show that, given 0 6= a ∈M ,
a suitable power of M is contained in aR. We have a = Y nv for some unit
v ∈ V and some integer n ≥ 1, and it is immediate to see that Mn+1 ⊆
aM ⊆ aR. Conversely, if D is not a field, then R has Krull dimension ≥ 2,
so it is not almost perfect, by Theorem 1.4(1).

Example 3.2. Let F be a field, X an indeterminate over F and let
K = F (X). By Lemma 3.1, the domain R = F+M (where M = Y K[[Y ]]) is
an almost perfect local domain. R is integrally closed, since F is algebraically
closed in K; moreover R is not a valuation domain, since F ( K (see [4,
Theorem 2.1]).

Example 3.3. In the preceding notation, the domain R = D + M is
Noetherian if and only if the degree [K : D] is finite (see, for instance
[4, Theorem 2.1]). Thus, if [K : D] is infinite, R is an example of a non-
Noetherian almost perfect domain. Note that in this case the residue field
D of R is properly contained in the residue field K of V = K[[Y ]], which is
a valuation domain dominating R.

Integral extensions. This second type of construction is due to J. R.
Smith [17, Sec. 5], who proved the sufficiency in the next Proposition 3.5.
We first consider a general situation on local domains.

Let R be a local domain. Let x be an element of a field extension F of
the quotient field Q of R. Assume x is integral over R and let

f(X) = Xn+1 + rnX
n + . . .+ r1X + r0 (ri ∈ R)

be a monic polynomial of R[X] of minimum degree such that f(x) = 0.
Denote by P the maximal ideal of R and by K the residue field R/P . If
− : R → K is the canonical homomorphism and f ∈ R[X], f will denote
the polynomial in K[X] whose coefficients are the images under − of the
coefficients of f . The following lemma likely exists in the literature, but for
the sake of completeness we give its proof; it describes the maximal ideals
of the extension ring R[x].

Lemma 3.4. Let the notations be as above. The ring R[x] is semilocal
and its maximal ideals are the ideals Pi = fi(x)R[x]+P [x], where f i are the
irreducible factors of f in K[X].

Proof. It is immediate to check that − induces an isomorphism

φ :
R[X]

P [X] + (f)
→ K[X]

(f)
.

Let now I be the ideal of R[X] consisting of the polynomials which have x
as a root. If S = R[x], then S ∼= R[X]/I and S/PS ∼= R[X]/(P [X] + I). We
claim that P [X] + (f) = P [X] + I. Let g(X) ∈ I; by the division algorithm
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we can write g(X) = f(X)h(X) + l(X) for some polynomials h, l ∈ R[X]
such that the degree of l is less than the degree of f . Thus l(x) = 0 and we
show that l(X) ∈ P [X]. Write l(X) =

∑
i aiX

i +
∑

j bjX
j with ai units of

R and bj ∈ P ; then
∑

i aix
i = −(

∑
j bjx

j) ∈ P [x]. Let i0 be the maximum
integer such that ai0 is a unit; then i0 < n, otherwise a−1

i0
l(X) would be

a monic polynomial of degree ≤ n with x as a root. Consider the element
xn−i0(

∑
i aix

i); it is a linear combination with unit coefficients of powers
of x up to the nth power, and since it coincides with −xn−i0(

∑
j bjx

j), it
belongs to P [x]. Using the relation xn+1 = −(rnxn + . . . + r1x + r0), we
can write xn−i0(

∑
i aix

i) =
∑

0≤m≤n cmx
m with the coefficients cm ∈ P .

Thus we obtain a linear combination of powers xm, m ≤ n, whose leading
coefficient is ai0−cn. Since R is local and cn ∈ P , ai0−cn is a unit, thus x is
a root of a monic polynomial of degree n, a contradiction. We conclude that
S/PS is isomorphic to K[X]/(f). So the maximal ideals of S/PS correspond
to the irreducible factors f i of f in K[X]. Moreover, since S is integral over
R, every maximal ideal of S contains PS, thus the conclusion follows.

We can now state Smith’s result and prove its converse.

Proposition 3.5. Let R be an almost perfect local domain. Then, in
the above notation, R[x] is an almost perfect domain if and only if all the
coefficients of f (except the leading one) are in the maximal ideal of R, in
which case R[x] is local.

Proof. The sufficiency has been proved in [17, Sec. 5]. If S = R[x] is
almost perfect, then a suitable power of x is contained in PS and, in view of
the isomorphism S/PS ∼= K[X]/(f) established in Lemma 3.4, some power
of the element X ∈ K[X] is contained in the ideal fK[X]. Clearly this is
possible only if f = Xm for some m ≥ 1, i.e., all the coefficients of f ∈ R[X]
except the leading one are in P . In this case the maximal ideal of S/PS
corresponds to the only irreducible factor X of f in K[X]; thus S is local
with maximal ideal xS + PS = P +Rx+ . . .+Rxn.

It is an easy exercise to show that if the sufficient condition of the preced-
ing proposition is satisfied and the almost perfect local domain R has almost
nilpotent maximal ideal, then also R[x] has almost nilpotent maximal ideal.

Semigroup rings. This type of construction is similar to that used in [17];
it differs by the fact that we use semigroup rings instead of formal power
series rings with exponent in a semigroup.

For every submonoid Σ of the non-negative real numbers, let Σ+ denote
the set of the strictly positive elements of Σ. If K is a field, consider the
semigroup ring K[Σ]. It is well known that since Σ is a cancellative torsion-
free semigroup, K[Σ] is a domain. Let R be the localization of K[Σ] at the
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maximal ideal M generated by the set {Xσ | σ ∈ Σ+}, and let P be its
maximal ideal.

Let Γ be the subgroup of the additive group of real numbers generated
by Σ. Then the same construction as above, replacing Σ by Γ , produces
a valuation domain V contained in the field of quotients Q of R, which
dominates R, in the sense that the maximal ideal of V intersects R in P .
The value of a polynomial with exponents in Γ is, as usual, the minimum
of the support.

In the above notation we have the following

Lemma 3.6. Assume the field K has characteristic p 6= 0.

(1) R is 1-dimensional , provided that Σ satisfies the condition:

(I) if σ, τ ∈ Σ are such that σ − τ > 0, then m(σ − τ) ∈ Σ for all
m ∈ N large enough.

(2) If Σ satisfies (I) and the condition:

(II) there exist an element σ0 ∈ Σ+ and an integer n ∈ N such that
σ1 + . . .+ σn − σ0 ∈ Σ, for every choice of n elements σi ∈ Σ+,

then P is almost nilpotent ; in particular , R is almost perfect.

Proof. 1. Let 0 6= f ∈ P ; we show that a suitable power of f is associated
with an element of the form Xσ for some σ ∈ Σ+. Without loss of generality
we may assume that f ∈ K[Σ], so that we can write f = a1X

σ1 +. . .+anXσn

with σ1 < . . . < σn ∈ Σ and ai ∈ K, a1 = 1. Since K has characteristic p,
we have

fp
m

= Xpmσ1(1 + ap
m

2 Xpm(σ2−σ1) + . . .+ ap
m

n Xpm(σn−σ1))

and if m is large enough, condition (I) guarantees that pm(σi − σ1) ∈ Σ for
every i = 2, . . . , n. Thus, for m large enough, f p

m
= Xpmσ1u, where u is

a unit of R, hence fp
m

is associated with Xσ, σ ∈ Σ+. Let now f, g ∈ P .
Then suitable powers of f and g are associated with the same Xτ , τ ∈ Σ+.
We conclude that fR and gR have the same radical; hence R has Krull
dimension one.

2. By point 1, we know that R is one-dimensional. By Proposition 2.7,
it is enough to show that P/(Xσ0R) is nilpotent. We show that if n is a
natural number satisfying condition (II), then P n ⊆ Xσ0R. In fact, consider
n elements f1, . . . , fn in P ; we may assume that the elements fi are polyno-
mials with coefficients in K and exponents in Σ+. The product f1 . . . fn is
a sum of monomials of the form aXσi1+...+σin , a ∈ K; so, by condition (II),
f1 . . . fnX

−σ0 is an element of K[Σ]. Hence P n ⊆ Xσ0R.

The argument making use of the characteristic p in the preceding lemma
is borrowed from [2]. The situation described above for an almost per-
fect local domain and the valuation domain dominating it, starting from
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a semigroup ring over a submonoid Σ of the non-negative real numbers
and the subgroup Γ generated by it, is quite general. In fact, it is well
known that every local domain R of Krull dimension one is dominated by
an archimedean valuation domain V contained in its field of quotients. Fur-
thermore, J. R. Smith proved in [17, Sec. 2] the following two facts, which
we collect in a single proposition.

Proposition 3.7 ([17, pp. 235–236]). Let V be a rank one valuation do-
main with valuation v onto the subgroup Γ of the reals, dominating the local
domain R with maximal ideal P .

(1) If R is almost perfect , then there exists a strictly positive element
γ0 ∈ Γ such that v(a) ≥ γ0 for every a ∈ P .

(2) If there exists 0 < γ1 ∈ Γ such that {x ∈ V | v(x) ≥ γ1} ⊆ P , then
R is almost perfect.

Smith gave an example showing that condition (2) in Proposition 3.7 is
not necessary. We now give a different example.

Example 3.8. Let {Mi | i ∈ N} be a strictly increasing sequence of
positive integers with M1 ≥ 1. Define a sequence of semigroups as follows:
Σ0 = {0}, Σn = {m/2n | m ∈ N, m/2n ≥ Mn}. Each Σn is a monoid
contained in Σn+1, and Σ =

⋃
nΣn is a semigroup generating the group

Z[1/2] = {m/2n | m ∈ Z, n ∈ N}. Σ has the following properties.

(a) For every 0 < γ ∈ Z[1/2], mγ ∈ Σ for all m large enough.

In fact, let γ = a/2n where a is an odd natural number. Takem0 ∈ N such
that m0a ≥ 2nMn. Then for every m ≥ m0, ma ≥ 2nMn, thus mγ ∈ Σn.

(b) Let σ0 = M1; then σ + τ − σ0 ∈ Σ, for all σ, τ in Σ+.

In fact, by construction τ ≥ M1 for every τ ∈ Σ+. Assume σ ∈ Σn,
τ ∈ Σm with m ≤ n; then σ + τ −M1 ≥ σ and clearly σ + τ − σ0 can be
written in the form m/2n; hence σ + τ −M1 ∈ Σn.

(c) There are arbitrarily large positive elements of Z[1/2] not in Σ.

In fact, for every 0 < h ∈ N choose n ≥ 2 such that Mn > h. Then there
is an odd natural number a satisfying 2nh < a < 2nMn; it is immediate to
check that a/2n 6∈ Σ.

Let now R be the localization of K[Σ] at the maximal ideal generated
by {Xσ | σ ∈ Σ+}, where K is a field of characteristic p and Σ is the
semigroup defined above. Then R is an almost perfect local domain, since
the conditions in Lemma 3.6 are obviously satisfied; in view of property (c),
R does not satisfy condition (2) of Proposition 3.7. Note that the maximal
ideal of R is almost nilpotent, by property (b) and Lemma 3.6.

We now exhibit an example of a semigroup Σ giving rise to an almost
perfect domain whose maximal ideal is not almost nilpotent. Let P be the set
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of prime numbers. For every finite subset F of P set %F = 1+
∑

p∈F 1/p. Let
Σ be the submonoid of the additive group of reals generated by {0, 1, %F |
F ⊆ P}, and Σ1 the submonoid of Σ generated by {0, 1, 1 + 1/p | p ∈ P}.

Using this notation, we give some lemmas concerning properties satisfied
by the monoid Σ. First of all we recall a well known result on integral
numerical semigroups, which is folklore.

Lemma 3.9. Let a1, . . . , an be coprime positive integers (n ≥ 2). Then
there exists N ∈ N such that the semigroup generated by a1, . . . , an contains
all the integers m ≥ N .

Lemma 3.10. If σ, τ ∈ Σ are such that σ − τ > 0, then m(σ − τ) ∈ Σ1
for all m large enough.

Proof. The group Γ generated byΣ consists of the rational numbers with
square-free denominator. Thus it is enough to prove that, given finitely many
prime numbers p1, . . . , pn, there exists N0 ∈ N such that m/(p1 . . . pn)∈Σ1
for all m ≥ N0. Consider the subsemigroup of Σ1 generated by {1, 1 +
1/p1, . . . , 1 + 1/pn} and write all these elements in the form ai/(p1 . . . pn)
(i= 0, 1, . . . , n). It is immediate to check that the elements ai (i= 0, 1, . . . , n)
are coprime, hence we conclude by Lemma 3.9.

Lemma 3.11. If m(1 + 1/p)− 1 ∈ Σ for some m ∈ N, then m ≥ p.

Proof. Let σ = m(1+1/p)−1 = α0 +
∑

1≤i≤k αi%Fi , where the Fi are fi-
nite subsets of P and αi ∈ N. Rewrite σ in the form σ = β0+

∑
1≤j≤h βj/(pj),

where 0 ≤ β0 ∈ N and 0 ≤ βj < pj for all j. Multiplying both sides by
p1 . . . ph, we see that pj |βj for all j ≤ h such that pj 6= p, hence βj = 0.
If pj 6= p for every j, then σ = β0 ∈ N, which easily implies that m ≥ p.
Otherwise σ = α0 +α1(1 + 1/p), which implies (m−α1)(1 + 1/p) = α0 + 1;
this shows that p divides m− α1 > 0; hence again m ≥ p.

Lemma 3.12. Let σ =
∑

1≤i≤kmi%Fi ∈ Σ+ with 1 ≤ mi ∈ N, k ≥ 2 and
Fi a finite subset of P for each i. If

⋂
Fi = ∅, then σ − 1 ∈ Σ+.

Proof. We may assume that mk ≥ mi for all i ≤ k. For every p ∈ Fk
there exists i < k such that p 6∈ Fi. In the expression of σ substitute mi%Fi
by mi%Ei , where Ei = Fi ∪ {p}, and mk%Fk by mk%Ek + (mk − mi)(1/p),
where Ek = Fk \ {p}. Repeat this process for all p ∈ Fk, thus obtaining for
new finite subsets F ′i of P:

σ =
∑

1≤i≤k−1

mi%F ′i +mk +
∑

p∈Fk
(mk −mi)

1
p
.

Since mk −mi ≤ mk − 1 for all i, we have

mk − 1 +
∑

p∈Fk
(mk −mi)

1
p
∈ Σ;
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in fact, if 1 ≤ r1 ≤ . . . ≤ rt ≤ r, then

r +
r1

p1
+ . . .+

rt
pt

= r1

(
1+

∑

1≤i≤t

1
pi

)
+(r2−r1)

(
1+

∑

2≤i≤t

1
pi

)
+. . .+(rt−rt−1)

(
1+

1
pt

)
+r−rt.

Thus we have proved that σ − 1 ∈ Σ+.

Let now Σ be the monoid defined above, K[Σ] the semigroup ring over Σ
with coefficients in the field K of positive characteristic, and R the localiza-
tion of K[Σ] at the maximal ideal M generated by the set {Xσ | σ ∈ Σ+};
let P denote the maximal ideal of R, and Q its field of quotients. By Lem-
mas 3.6 and 3.10, R is 1-dimensional. In this notation we shall prove the
following

Proposition 3.13. The ring R constructed above is an almost perfect
local domain whose maximal ideal P is not almost nilpotent.

Proof. If P is almost nilpotent, then P n ⊆ XR for some n ∈ N. This
implies that Xn(1+1/p) ∈ XR for every p ∈ P, therefore n(1 + 1/p)− 1 ∈ Σ
for all p ∈ P. But this is impossible, by Lemma 3.11, hence P is not almost
nilpotent. In order to conclude, in view of Proposition 2.5 it is enough to
prove that R/XR is a perfect ring. Let {fn}n∈N be a sequence of elements
in the maximal ideal of R; we must prove that a suitable product f1 · . . . ·fm
belongs to XR. We can assume that fn ∈ K[Σ+] for all n. For every m ∈ N,
the product f1 · . . . · fm is a finite sum of monomials of the form

aXσ1+...+σm (a ∈ K, σi ∈ Σ+),

where Xσi is a monomial of fi (apart from a factor in K). If we prove the
next claim, we are done.

Claim. There exists an integer n0∈N depending on the sequence {fn}n∈N
such that for all m ≥ n0 and for all monomials aXσ1+...+σm appearing in
the product f1 · . . . · fm (where Xσi is a monomial of fi, apart from a factor
in K), σ1 + . . .+ σm − 1 ∈ Σ.

In fact, the claim implies that f1 · . . . · fm ∈ XR for m ≥ n0, since all the
monomials Xσ1+...+σm belong to XR. We will show that n0 depends only on
the monomials of f1; since f1 is a finite sum of monomials, it is enough to
find an integer n0 for a fixed exponent σ1 of a monomial Xσ1 of f1 (taking
the maximum of the integers corresponding to all the monomials of f1 we
get the claim). Recall that every σi is an integral linear combination of the
generators 1 and %F . If 1 appears among the generators of σ1, then σ1−1 ∈ Σ
and we are done. Assume this is not the case. Let σ1 = a1%F1 + . . .+ ak%Fk .
List the primes involved in the generators %Fi (i ≤ k): {p1, . . . , ps}. By the
proof of Lemma 3.10, there exists an integer N0 ∈ N such that, for all
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m ≥ N0, m/p ∈ Σ1 for all p ∈ {p1, . . . , ps}. Let n0 = N0 +p1 + . . .+ps; then
m/p−1 ∈ Σ for all m ≥ n0 and for all p ∈ {p1, . . . , ps}. Now n0 is the integer
we are looking for. In fact, let m ≥ n0 and let F be the family of all the
finite subsets F of P indexing the generators %F of the elements σ1, . . . , σm. If⋂
F∈F F = ∅, then the conclusion follows from Lemma 3.12. If p ∈ ⋂F∈F F ,

then 1/p appears in all the generators %F (F ∈ F). Let γ be the sum of all the
1/p’s, each multiplied by its own positive integral coefficient; then γ = k/p
for a k ≥ n0, hence γ − 1 ∈ Σ. If we eliminate 1/p in all the generators %F ,
we get new generators %F ′ and a new family F ′ of finite subsets of P giving
rise to an element τ ∈ Σ. Thus, σ1 + . . . + σm − 1 = γ − 1 + τ ∈ Σ, as
claimed.

The information on the domain R constructed above is improved by the
next proposition. First a technical lemma is required.

Lemma 3.14. Given primes p1, . . . , pk and positive integers m1, . . . ,mk,
there exists a positive integer n such that m1/p1 + . . .+mk/pk+σ1 + . . .+σn
∈ Σ for any σi ∈ Σ+.

Proof. It is clearly enough to prove the claim for k = 1 and m1 = 1.
By Lemma 3.10, there exists an n ∈ N such that m/p1 ∈ Σ for all m ≥ n.
Consider n elements σi ∈ Σ+; they are linear combinations of the generators
%F ; if p1 6∈ F for some F , then 1/p1 can be added to %F , thus yielding an
element of Σ. Otherwise, if p1 ∈

⋂
F then 1/p1 is repeated at least n times

so 1/p1 + σ1 + . . . + σn = m/p1 + σ′1 + . . . + σ′n, where m ≥ n and the
σ′i’s are obtained by subtracting 1/p1 in the generators of the σi’s, thus
m1/p1 + σ1 + . . .+ σn ∈ Σ.

Proposition 3.15. Let R be the almost perfect local domain constructed
above. Then the Loewy length of Q/R is ω2.

Proof. By the preceding proposition, P is not almost nilpotent, so, by
Proposition 2.7, l(Q/R) > ω. By Proposition 2.8, l(X−rR/R) ≥ ω + 1 for
all r ∈ N, and to conclude it is enough to show that l(X−rR/R) = ω+ r for
all positive integers r. Actually, we will show, by induction on r, that

(1) X−r +R ∈ sω+r(Q/R) \ sω+r−1(Q/R).

Clearly X−1 + R 6∈ sω(Q/R), otherwise l(X−1R/R) ≤ ω. Furthermore,
X−1 + R ∈ sω+1(Q/R), since pX−1 + R ∈ sω(Q/R) for all p ∈ P ; in order
to see this, it is enough to show that X%F−1 + R ∈ sω(Q/R) for all finite
subsets F of N, i.e., for every finite set of primes {p1, . . . , pk}, there exists
n ∈ N such that

X1/p1+...+1/pkPn ⊆ R.
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This amounts to showing that 1/p1 + . . .+ 1/pk + σ1 + . . .+ σn ∈ Σ for any
σi ∈ Σ+, and it is clearly enough to prove this fact for k = 1. The preceding
lemma provides the proof.

Assume now that r > 1 and (1) proved for r − 1. Obviously X−r +R 6∈
sω+r−1(Q/R), otherwise X(X−r+R) = X−r+1+R ∈ sω+r−2(Q/R), absurd.
To prove that X−r +R ∈ sω+r(Q/R) it is enough to see that X−rP r +R ∈
sω(Q/R), i.e., for every choice of r generators %Fi of P , there exists n ∈ N
such that

X−rX%F1+...+%FrPn ⊆ R.
This amounts to showing that, for each choice of a finite number of primes
pi’s, there is n ∈ N such that

1/p1 + . . .+ 1/pk + σ1 + . . .+ σn ∈ Σ
for any σi ∈ Σ. This fact follows from the preceding lemma.
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[19] P. Vámos, Decomposition problems for modules over valuation domains, J. London
Math. Soc. 25 (1990), 10–26.

Dipartimento di Matematica Pura e Applicata
Università di Padova
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