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ON WEAKLY GIBSON Fσ-MEASURABLE MAPPINGS

BY

OLENA KARLOVA and VOLODYMYR MYKHAYLYUK (Chernivtsi)

Abstract. A function f : X → Y between topological spaces is said to be a weakly

Gibson function if f(U) ⊆ f(U) for any open connected set U ⊆ X. We prove that if X is
a locally connected hereditarily Baire space and Y is a T1-space then an Fσ-measurable
mapping f : X → Y is weakly Gibson if and only if for any connected set C ⊆ X with
dense connected interior the image f(C) is connected. Moreover, we show that each weakly
Gibson Fσ-measurable mapping f : Rn → Y , where Y is a T1-space, has a connected graph.

1. Introduction. The classical theorem of Kuratowski and Sierpiński [8]
states that any Darboux Baire-one function f : R → R has a connected
graph.

In 2010 K. Kellum [6] introduced Gibson and weak Gibson properties for
a mapping f between topological spaces X and Y . He calls f [weakly] Gibson
if f(U) ⊆ f(U) for an arbitrary open [and connected] set U ⊆ X. Since every
Darboux function has the weak Gibson property [5], it is natural to ask
whether the theorem of Kuratowski–Sierpiński remains valid if we replace
the Darboux property by the weak Gibson property. It was shown in [5] that
any weakly Gibson barely continuous mapping (in the sense that for each
non-empty closed subspace F ⊆ X the restriction f |F has a continuity point)
defined on a connected and locally connected space X and with values in a
topological space Y has a connected graph. It turns out that the condition
of bare continuity in the above mentioned result from [5] is not necessary
(see Example 4.4).

In this paper we consider weakly Gibson mappings f : X → Y which
are Fσ-measurable, i.e. the preimage f−1(V ) of an open set V ⊆ Y is an

Fσ-set in X. Note that in the case when Y is a perfectly normal space,
every Baire-one mapping f : X → Y is Fσ-measurable (see for instance
[7, p. 394]). In Section 2 we introduce the notions of G-closed and W-closed
sets and prove that the Euclidean space Rn cannot be written as a union of
two non-empty disjoint Fσ and Gδ W-closed subsets; moreover, a connected
and locally connected hereditarily Baire space cannot be written as a union
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of two non-empty disjoint Fσ and Gδ G-closed subsets. Using these facts,
we prove in Section 3 that each Fσ-measurable mapping f between a locally
connected hereditarily Baire space X and a T1-space Y is weakly Gibson
if and only if for any connected set C ⊆ X with dense connected interior
the image f(C) is connected. This generalizes a result of M. Evans and
P. Humke [3] who proved similar theorem for X = Rn and Y = R. We also
prove that each weakly Gibson Fσ-measurable mapping f : Rn → Y , where
Y is a T1-space, has a connected graph.

2. A-closed sets and their properties. Let X be a topological space
and let

• T (X) be the collection of all open subsets of X,
• C(X) be the collection of all connected subsets of X,
• G(X) be the collection of all connected open subsets of X.

Let X be a topological vector space and let

• W(X) be the collection of all open convex subsets of X.

Let A(X) be a collection of subsets of X. A subset E ⊆ X is called
closed with respect to A(X), or briefly A-closed, if for any A ∈ A(X) with
A ⊆ E we have A ⊆ E.

Proposition 2.1. Let X be a connected and locally connected space and
U be an open G-closed subset of X. Then U = ∅ or U = X.

Proof. Consider a component C of U . The local connectedness of U
implies that C is clopen in U , and consequently C is open in X. Since U is
G-closed, C ⊆ U . Therefore, C = C because C is a component. Hence, C is
clopen in a connected space X. Therefore, C = ∅ or C = X. Since U is the
union of all of its components, U = ∅ or U = X.

We need the following auxiliary fact.

Lemma 2.2 ([7, p. 136]). Let A and B be subsets of a topological space X
such that A is connected and A ∩B 6= ∅ 6= A \B. Then A ∩ frB 6= ∅.

For a point x0 of a normed space X and for ε > 0 we denote by B(x0, ε)
(resp. B[x0, ε]) the open (resp. closed) ball with center at x0 and radius ε.

If a subset of a topological space is simultaneously Fσ and Gδ, then it is
said to be ambiguous.

Theorem 2.3. Let X be a hereditarily Baire space, and let X1 and X2

be ambiguous disjoint A-closed subsets of X such that X = X1 ∪X2. If

(1) X is a connected and locally connected space and A(X) = G(X), or
(2) X = Rn, n ≥ 1, and A(X) =W(X),

then X1 = X or X2 = X.
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Proof. To obtain a contradiction, suppose that X1 6= X and X2 6= X.
Let F = X1 ∩ X2. Since X is connected, F 6= ∅. We show that X1 ∩ F is
dense in F . Supposing otherwise, choose x0 ∈ F and an open neighborhood
U of x0 in X such that

U ∩ F ⊆ X2.

Then x0 ∈ X1 ∩X2.
(1) Since X is locally connected, we may assume that U is connected.

Note that U ∩X1 6= ∅ and select a ∈ U ∩X1. Then a 6∈ X2. Let G be the
component of X \ X2 which contains a. Then G is open in X. Note that
U ∩G 6= ∅ 6= U \G. Lemma 2.2 implies that U ∩ frG 6= ∅. Since G is closed
in X \ X2, frG ⊆ X2. Moreover, G ⊆ X1. Therefore, frG ⊆ F . Choose
b ∈ U ∩ frG. Then b ∈ X2. Since X1 is G-closed, b ∈ G ⊆ X1, which is
impossible.

(2) We may suppose that U = B(x0, ε). Take a ∈ B(x0, ε/2) ∩X1. Let

R = sup{r : B(a, r) ⊆ X1}.
Note that R ≤ ε/2, since x0 ∈ X2. We have

d(x, x0) ≤ d(x, a) + d(a, x0) < R+ ε/2 < ε/2 + ε/2 = ε

for all x ∈ B[a,R]. Hence, B[a,R] ⊆ U . It is not hard to verify that
B[a,R]∩X2 6= ∅, as B[a,R] is compact. Therefore, there is b ∈ B[a,R]∩X2.
Since B(a,R) is open and convex and X1 isW-closed, b ∈ X1. But b ∈ U∩F ,
which implies that b ∈ X2. Thus, b ∈ X1 ∩X2, which is impossible.

Hence, X1 ∩ F is dense in F . It can be proved similarly that X2 ∩ F is
dense in F . Thus X1∩F and X2∩F are disjoint dense Gδ-subsets of a Baire
space F , which is a contradiction. Therefore, X1 = X or X2 = X.

3. Applications of A-closed sets. We say that a mapping f : X → Y
has the Gibson property with respect to a collection A(X), or f is A-Gibson,
if for any A ∈ A(X) we have

f(A) ⊆ f(A).

If A(X) = T (X) then f is said to be a Gibson mapping, and if A(X) = G(X)
then f is a weakly Gibson mapping (see [6]).

A mapping f : X → Y is strongly Gibson with respect to A(X), or
strongly A-Gibson, if for any x ∈ X and A ∈ A(X) such that x ∈ A we have

f(x) ∈ f(A ∩ U)

for every neighborhood U of x in X.

Theorem 3.1. Let X be a topological space, Y a T1-space, and f :X→ Y
a mapping such that for any connected set C ⊆ X with dense connected
interior the set f(C) is connected. Then f is a weakly Gibson mapping.
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If, moreover, X is a locally convex space then f has the strong Gibson
property with respect to the collection W(X).

Proof. Fix an arbitrary open connected set U ⊆ X, a point x0 ∈ U
and an open neighborhood V of f(x0) in Y . Denote C = U ∪ {x0}. Then
the inclusions U ⊆ C ⊆ U imply that f(C) is a connected set. Assume
f(U) ∩ V = ∅. Then

f(C) = f(U ∪ {x0}) = f(U) ∪ {f(x0)} ⊆ (Y \ V ) ∪ {f(x0)},
which contradicts the connectedness of f(C).

Now letX be a locally convex space. Fix a setG ∈ W(X), a point x0 ∈ G,
an open convex neighborhood W of x0 in X and an open neighborhood V
of f(x0) in Y . Denote U = W ∩G. Clearly, U ∈ G(X). The rest of the proof
runs as before.

The converse is true for Fσ-measurable mappings defined on a locally
connected hereditarily Baire space.

Theorem 3.2. Let X be a locally connected hereditarily Baire space, Y a
topological space, and f : X → Y a weakly Gibson Fσ-measurable mapping.
Then for any connected set C ⊆ X with dense connected interior the set
f(C) is connected.

Proof. Let C ∈ C(X), U = intC and C ⊆ U .

We first prove that f(U) is a connected set. Suppose, contrary to our
claim, that f(U) = W1∪W2, where W1 and W2 are non-empty disjoint open
subsets of f(U). Set g = f |U . Evidently, g : U → f(U) is a weakly Gibson
Fσ-measurable mapping. Let Ai = g−1(Wi) for i = 1, 2. Then every set Ai is
G-closed in U , as g is weakly Gibson. Moreover, every Ai is ambiguous in U ,
U = A1 ∪A2 and A1 ∩A2 = ∅. Taking into account that U is a hereditarily
Baire connected and locally connected space, we obtain A1 = U or A2 = U
according to Theorem 2.3(1). Then W1 = ∅ or W2 = ∅, a contradiction.
Therefore, f(U) is a connected set.

Since f is weakly Gibson, f(U) ⊆ f(C) ⊆ f(U) ⊆ f(U). Consequently,
the set f(C) is connected.

For a mapping f : X → Y we define γf : X → X × Y by

γf (x) = (x, f(x)).

Note that if X is a connected and locally connected hereditarily Baire space
and γf is an Fσ-measurable weakly Gibson mapping then Theorem 3.2 im-
plies that f has a connected graph Γ , since Γ = γf (X). It is not hard
to prove that γf remains weakly Gibson for any weakly Gibson mapping
f : R → R. But Example 4.2 shows that γf need not be weakly Gibson for
a weakly Gibson Fσ-measurable mapping f : R2 → R.
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Theorem 3.3. Let X = Rn with n ≥ 1 and let Y be a T1-space. If
f : X → Y is a weakly Gibson Fσ-measurable mapping then f has a con-
nected graph.

Proof. We first observe that by Theorem 3.2 for any U ∈ G(X) and
for any C with U ⊆ C ⊆ U the set f(C) is connected. Hence f has the
strong Gibson property with respect to the collection W(X) according to
Theorem 3.1. It is easy to see that γf is also W-strongly Gibson.

We show that γf : X → X × Y is Fσ-measurable. Let {Bk : k ∈ N} be a
base of open sets in X and W be an arbitrary open set in X × Y . Put

Vk =
⋃
{V : V is open in Y and Bk × V ⊆W}.

Then W =
⋃∞
k=1(Bk × Vk). Since γ−1f (W ) =

⋃∞
k=1(Bk ∩ f−1(Vk)), γ

−1
f (W )

is an Fσ-subset of X.

Now assume that Y0 = γf (X) is not connected and choose open disjoint
non-empty subsets W1 and W2 of Y0 such that Y0 = W1 ∪W2. Let Xi =
γ−1f (Wi) for i = 1, 2. It is easy to check that X1 and X2 are W-closed

ambiguous subsets of X. Moreover, X1 ∩X2 = ∅ and X = X1 ∪X2. Hence
X1 = X or X2 = X by Theorem 2.3(2). Consequently, W1 = ∅ or W2 = ∅,
a contradiction.

The following question is open.

Question 3.4. Let X be a normed space, Y a T1-space, and f : X → Y
a weakly Gibson Fσ-measurable mapping. Is the graph of f a connected set?

4. Examples. Our first example shows that the class of all Fσ-mea-
surable Darboux mappings is strictly wider than the class of all Baire-one
Darboux mappings.

Example 4.1. There exist a connected subset Y ⊆ R2 and an Fσ-
measurable Darboux function f : R→ Y which is not Baire-one.

Proof. Let Q = {rn : n ∈ N} be the set of all rational numbers. For
every n ∈ N we consider the function ϕn : R→ R defined by

ϕn(x) =

 sin
1

x− rn
, x 6= rn,

0, x = rn.

Define g : R→ R by

g(x) =
∞∑
n=1

1

2n
ϕn(x).

Let

Y = {(x, y) ∈ R2 : y = g(x)} and f = γg.
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Observe that for every n the function

gn(x) =
n∑
k=1

1

2k
ϕk(x)

is a Baire-one Darboux function. Since the sequence (gn)∞n=1 is uniformly

convergent to g on R, g is a Baire-one Darboux function [1, Theorem 3.4].
Consequently, the graph of g|C is connected for every connected subset
C ⊆ R according to [1, Theorem 1.1]. Therefore, f : R → Y is a Dar-
boux function. Moreover, f : R→ R2 is a Baire-one mapping, which implies
that f : R→ Y is Fσ-measurable.

Note that the space Y is punctiform (i.e., Y does not contain any contin-
uum of cardinality larger than one), since g is discontinuous on everywhere
dense set Q (see [8]). Hence each continuous mapping between R and Y is
constant. Therefore, f : R→ Y is not a Baire-one mapping.

Example 4.2. For all (x, y) ∈ R2 define

f(x, y) =

{
sin(1/x), x > 0,

1, x ≤ 0.

Then f : R2 → R is an Fσ-measurable weakly Gibson function, but γf is not
weakly Gibson.

Proof. We show that f is weakly Gibson. It is sufficient to check that f
is weakly Gibson at each point of the set {0} × R. Fix y0 ∈ R and an open
connected set U ⊆ R2 such that p0 = (0, y0) ∈ U \ U . Take an arbitrary
neighborhood V of f(p0) in R. Clearly, f(p) ∈ V for all p ∈ U∩((−∞, 0]×R).
Consider the case U ⊆ (0,∞) × R. Since p0 ∈ U and U is connected,
there exists n ∈ N such that U ∩

({
1

π/2+2πn

}
× R

)
6= ∅. Let y ∈ R with

p =
(

1
π/2+2πn , y

)
∈ U . Then f(p) = 1 and f(p) ∈ V . Hence, f is weakly

Gibson.
Consider the open connected set

U = {(x, y) ∈ R2 : x > 0 and |y − sin(1/x)| < x}
and let C = U ∪ {(0, 0)}. Then U ⊆ C ⊆ U . Note that γf : R2 → R3 is
Fσ-measurable. One easily checks that γf (C) is not connected. Therefore,
γf is not weakly Gibson by Theorem 3.2.

Finally, we give an example of a space Y and an Fσ-measurable Darboux
mapping f : R→ Y which is not barely continuous.

We first need some definitions and auxiliary facts. For a topological
space Y we denote by F(Y ) the space of all non-empty closed subsets of Y
equipped with the Vietoris topology. A multivalued mapping F : X → Y is
said to be upper (resp. lower) continuous at x0 ∈ X if for any open set V in
Y such that F (x0) ⊆ V (resp. F (x0)∩V 6= ∅) there exists a neighborhood U
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of x0 in X such that for every x ∈ U we have F (x) ⊆ V (F (x) ∩ V 6= ∅). A
multivalued mapping f which is upper and lower continuous at x0 is called
continuous at x0.

Lemma 4.3. There exists a continuous mapping f0 : R → F(R) such
that for all x ∈ [0, 1] and p ∈ P = {1/n : n ∈ N} ∪ {0} there are np ∈ N,
a strictly increasing unbounded sequence (vn)n≥np of reals vn > 0 and a
strictly decreasing unbounded sequence (un)n≥np of reals un < 0 such that

f0(un) = f0(vn) = {p} ∪
n⋃
k=1

[k, k + x] ∪
⋃
k>n

{k}

for all n ≥ np.
Proof. Let P = {pn : n ∈ N}. Choose a continuous function ϕ0 : R→ [0, 1]

with ϕ0(x) = pk if |x| ∈
[
n + 2k−1

2n , n + k
n

]
, where n ∈ N and k = 1, . . . , n.

For every n ∈ N define a continuous function ϕn : R→ [n, n+ 1] by

ϕn(x) =

{
n, |x| ≤ n,

n+ sin(4πk|x|), |x| ∈ (k, k + 1], k ≥ n.
Let f0(x) = {ϕ0(x)}∪

⋃∞
n=1[n, ϕn(x)]. Since all the functions ϕn are contin-

uous and ϕk(x) = k for x ∈ [−n, n] and k ≥ n, f0 is continuous.
Fix p = pn ∈ P and x ∈ [0, 1]. Denote np = n. For all k ≥ n choose

vk ∈
[
k + 2n−1

2k , k + n
k

]
such that sin(4πkvk) = x. Then for every k ≥ n we

have ϕ0(vk) = p, ϕ1(vk) = 1+x, . . . , ϕk(vk) = k+x and ϕi(vk) = i for i > k,
i.e., the sequence (vk)k≥n satisfies the condition of the lemma. It remains to
set uk = −vk for all k ∈ N.

Example 4.4. There exists a Baire-one Fσ-measurable Darboux map-
ping f : R → F(R) such that the restriction f |C of f to the Cantor set
C ⊆ R is everywhere discontinuous and f(R) is hereditarily Lindelöf (in
particular, f(R) is perfectly normal).

Proof. Let R \ C =
⋃∞
n=1 In, where In = (an, bn). Set A = {an : n ∈ N}

and B = C \A. For every n ∈ N we choose a homeomorphism ψn : In → R.
Define

f(x) =



f0(ψn(x)), x ∈ In,

{1/n} ∪
∞⋃
k=1

[k, k + x], n ∈ N, x = an,

{0} ∪
∞⋃
k=1

[k, k + x], x ∈ B,

where f0 is the function from Lemma 4.3.
We show that f is a Baire-one mapping. For every n ∈ N, applying

Lemma 4.3, we find a number mn, a strictly increasing sequence (v
(n)
k )k≥mn
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of v
(n)
k ∈ ((an + bn)/2, bn) and a strictly decreasing sequence (u

(n)
k )k≥mn of

u
(n)
k ∈ (an, (an + bn)/2) such that

f0(ψn(u
(n)
k )) = {1/n} ∪

k⋃
i=1

[i, i+ an] ∪
⋃
i>k

{i}

and

f0(ψn(v
(n)
k )) = {0} ∪

k⋃
i=1

[i, i+ an] ∪
⋃
i>k

{i}

for all i ≥ mn.

For every n ∈ N denote Mn = {k ≤ n : mk ≤ n}. Clearly, Mn ⊆ Mn+1

for all n and N =
⋃∞
n=1Mn. Choose a sequence of continuous functions

gn : R→ [0, 1] which is pointwise convergent to the function

g(x) =

{
0, x ∈ R \A,

1/n, n ∈ N, x = an.

Without loss of generality, we assume that gn(u
(n)
k ) = 1/n and gn(v

(n)
k ) = 0

if n ∈Mk. Now for every k ∈ N define

fk(x) =


f0(ψn(x)), x ∈ [u

(n)
k , v

(n)
k ], n ∈Mk,

{gk(x)} ∪
k⋃
i=1

[i, i+ x] ∪
⋃
i>k

{i}, x ∈ R \
⋃
n∈Mk

[u
(n)
k , v

(n)
k ].

It is easy to see that each fk is continuous and limk→∞ fk(x) = f(x) for all
x ∈ R.

We now prove that f has the Darboux property. Let I ⊆ R be a con-
nected set of cardinality larger than one. If I ⊆ In for some n ∈ N then f(I)
is connected, provided the restriction f |In is continuous. Suppose I 6⊆ In
for every n ∈ N. Let M = {n ∈ N : Jn = In ∩ I 6= ∅}. Note that the
set G =

⋃
n∈M Jn is dense in I. Set f(I) = U ∪ V , where U and V are

disjoint clopen sets in f(R). Denote K = {n ∈ M : f(Jn) ⊆ U} and
L = {n ∈ M : f(Jn) ⊆ V }. Since the restriction of f to each Jn is con-
tinuous, we have G = G1 ∪ G2, where G1 =

⋃
n∈K Jn, G2 =

⋃
n∈L Jn and

G1 ∩ G2 = ∅. Lemma 4.3 implies that f(Gi) ⊆ f(Gi) for i = 1, 2. Hence,

f(G1) ⊆ U and f(G2) ⊆ V . Therefore, I = G1 ∪ G2 and G1 ∩ G2 = ∅.
Consequently, G1 = ∅ or G2 = ∅. Thus, U = ∅ or V = ∅.

To show that Y = f(R) is hereditarily Lindelöf it is sufficient to prove
that so are Y1 = f(R\C) and Y2 = f(C). Note that Y1 = f0(R) is hereditarily
Lindelöf, since Y1 is the continuous image of R under the continuous mapping
f0 with values in the Hausdorff space F(R). Since f(an)∩ [0, 1] = {1/n} for
every n ∈ N, and f(b) ∩ [0, 1] = {0} for each b ∈ B, the space f(A) is
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a countable discrete subspace of Y2. Moreover, for each b ∈ B the sets
f((b− ε, b] ∩ C), where ε > 0, form a base of neighborhoods of f(x0) in Y2.
Since an arbitrary union of sets of the form (u, v] is a union of a sequence
(un, vn], Y2 is hereditarily Lindelöf. Hence, X is hereditarily Lindelöf, so X
is perfectly normal.

Since Y is perfectly normal and f is a Baire-one function, f is Fσ-
measurable [7, p. 394]. It remains to prove that the restriction f |C of f
to the Cantor set C is everywhere discontinuous. Note that f |C is discon-
tinuous everywhere on A, since f(A) is discrete in Y2. Moreover, for every
b ∈ B no set of the form (b−ε, b]∩C is a neighborhood of b in C. Therefore,
f |C is discontinuous at each b ∈ B.
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