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ON WEAKLY GIBSON F,-MEASURABLE MAPPINGS

BY

OLENA KARLOVA and VOLODYMYR MYKHAYLYUK (Chernivtsi)

Abstract. A function f: X — Y between topological spaces is said to be a weakly

Gibson function if f(U) C f(U) for any open connected set U C X. We prove that if X is
a locally connected hereditarily Baire space and Y is a Ti-space then an F,-measurable
mapping f : X — Y is weakly Gibson if and only if for any connected set C' C X with
dense connected interior the image f(C) is connected. Moreover, we show that each weakly
Gibson F,-measurable mapping f : R" — Y, where Y is a T1-space, has a connected graph.

1. Introduction. The classical theorem of Kuratowski and Sierpinski [§]
states that any Darboux Baire-one function f : R — R has a connected
graph.

In 2010 K. Kellum [6] introduced Gibson and weak Gibson properties for
a mapping f between topological spaces X and Y. He calls f [weakly] Gibson
if f(U) C f(U) for an arbitrary open [and connected] set U C X. Since every
Darboux function has the weak Gibson property [5], it is natural to ask
whether the theorem of Kuratowski—Sierpinski remains valid if we replace
the Darboux property by the weak Gibson property. It was shown in [5] that
any weakly Gibson barely continuous mapping (in the sense that for each
non-empty closed subspace F' C X the restriction f|p has a continuity point)
defined on a connected and locally connected space X and with values in a
topological space Y has a connected graph. It turns out that the condition
of bare continuity in the above mentioned result from [5] is not necessary
(see Example [4.4)).

In this paper we consider weakly Gibson mappings f : X — Y which
are F,-measurable, i.e. the preimage f~1(V) of an open set V C Y is an
F,-set in X. Note that in the case when Y is a perfectly normal space,
every Baire-one mapping f : X — Y is F,-measurable (see for instance
[T, p. 394]). In Section [2| we introduce the notions of G-closed and W-closed
sets and prove that the Euclidean space R” cannot be written as a union of
two non-empty disjoint F, and G5 W-closed subsets; moreover, a connected
and locally connected hereditarily Baire space cannot be written as a union
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of two non-empty disjoint F, and Gs G-closed subsets. Using these facts,
we prove in Section [3|that each F,-measurable mapping f between a locally
connected hereditarily Baire space X and a Ti-space Y is weakly Gibson
if and only if for any connected set C' C X with dense connected interior
the image f(C) is connected. This generalizes a result of M. Evans and
P. Humke [3] who proved similar theorem for X = R™ and ¥ = R. We also
prove that each weakly Gibson F,-measurable mapping f : R"™ — Y, where
Y is a T1-space, has a connected graph.

2. A-closed sets and their properties. Let X be a topological space
and let

e 7(X) be the collection of all open subsets of X,
e C(X) be the collection of all connected subsets of X,
e G(X) be the collection of all connected open subsets of X.

Let X be a topological vector space and let
e W(X) be the collection of all open convex subsets of X.

Let A(X) be a collection of subsets of X. A subset E C X is called
closed with respect to A(X), or briefly A-closed, if for any A € A(X) with
A C FE we have A C E.

PRrROPOSITION 2.1. Let X be a connected and locally connected space and
U be an open G-closed subset of X. Then U =0 or U = X.

Proof. Consider a component C' of U. The local connectedness of U
implies that C is clopen in U, and consequently C' is open in X. Since U is
G-closed, C' C U. Therefore, C = C because C' is a component. Hence, C is
clopen in a connected space X. Therefore, C' = ) or C' = X. Since U is the
union of all of its components, U = or U = X. u

We need the following auxiliary fact.

LEMMA 2.2 ([7, p. 136]). Let A and B be subsets of a topological space X
such that A is connected and ANB # () # A\ B. Then ANfr B # (.

For a point xo of a normed space X and for ¢ > 0 we denote by B(xo, )
(resp. Blzo,¢]) the open (resp. closed) ball with center at z¢ and radius e.

If a subset of a topological space is simultaneously F, and Gy, then it is
said to be ambiguous.

THEOREM 2.3. Let X be a hereditarily Baire space, and let X1 and Xo
be ambiguous disjoint A-closed subsets of X such that X = X1 U Xs. If

(1) X is a connected and locally connected space and A(X) = G(X), or
(2) X =R",n>1, and A(X) = W(X),

then X1 =X or Xo = X.
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Proof. To obtain a contradiction, suppose that X; # X and X, # X.
Let F = X; N X5. Since X is connected, F' # (). We show that X; N F is
dense in F'. Supposing otherwise, choose x¢ € F' and an open neighborhood
U of xp in X such that

UNF C Xo.

Then zq € Xl N Xs.

(1) Since X is locally connected, we may assume that U is connected.
Note that U N X3 75@ and select @ € U N Xy. Then a € X5. Let G be the
component of X \ X9 which contains a. Then G is open in X. Note that
UNG # 0 # U\ G. Lemma 2.2 implies that U N fr G # (). Since G is closed
in X \ Xo, frG C X5. Moreover, G C X;. Therefore, frG C F. Choose
b e UNfrG. Then b € X5. Since X; is G-closed, b € G C Xy, which is
impossible.

(2) We may suppose that U = B(xg,¢). Take a € B(zg,e/2) N X;. Let

R =sup{r: B(a,r) C X3 }.
Note that R < e/2, since zp € X2. We have
d(z,z0) < d(xz,a)+d(a,x0) < R+e/2<e/24+¢e/2=¢
for all € Bla, R]. Hence, Bla,R] C U. It is not hard to verify that
Bla, RjNn X4 # (), as Bla, R] is compact. Therefore, there is b € Bla, R]N X 5.
Since B(a, R) is open and convex and X7 is W-closed, b € X;. But b € UNF,
which implies that b € Xs. Thus, b € X; N X9, which is impossible.
Hence, X1 N F' is dense in F'. It can be proved similarly that Xo N F' is

dense in F. Thus X1 NF and XoNF are disjoint dense Gs-subsets of a Baire
space F', which is a contradiction. Therefore, X1 =X or Xo = X. =

3. Applications of A-closed sets. We say that a mapping f: X —» Y
has the Gibson property with respect to a collection A(X), or f is A-Gibson,
if for any A € A(X) we have

f(4) C f(A).
If A(X) = T(X) then f is said to be a Gibson mapping, and if A(X) = G(X)
then f is a weakly Gibson mapping (see [6]).
A mapping f : X — Y is strongly Gibson with respect to A(X), or
strongly A-Gibson, if for any z € X and A € A(X) such that x € A we have

f(z) € f(ANU)
for every neighborhood U of x in X.

THEOREM 3.1. Let X be a topological space, Y aTi-space, and f: X =Y
a mapping such that for any connected set C C X with dense connected
interior the set f(C') is connected. Then f is a weakly Gibson mapping.



214 O. KARLOVA AND V. MYKHAYLYUK

If, moreover, X 1is a locally convex space then f has the strong Gibson
property with respect to the collection W(X).

Proof. Fix an arbitrary open connected set U C X, a point zg € U
and an open neighborhood V' of f(z¢) in Y. Denote C = U U {z¢}. Then
the inclusions U C C' C U imply that f(C) is a connected set. Assume
f(U)NV =0. Then

f(C) = F(UU{zo}) = fU) U{f(z0)} € (Y \V)U{f(z0)},
which contradicts the connectedness of f(C).
Now let X be a locally convex space. Fix aset G € W(X), a point zg € G,
an open convex neighborhood W of zg in X and an open neighborhood V'
of f(xp) in Y. Denote U = WNG. Clearly, U € G(X). The rest of the proof
runs as before. m

The converse is true for F,y-measurable mappings defined on a locally
connected hereditarily Baire space.

THEOREM 3.2. Let X be a locally connected hereditarily Baire space, Y a
topological space, and f: X — Y a weakly Gibson F,-measurable mapping.
Then for any connected set C' C X with dense connected interior the set
f(C) is connected.

Proof. Let C € C(X), U =intC and C C U.

We first prove that f(U) is a connected set. Suppose, contrary to our
claim, that f(U) = W3 UW,, where W; and W5 are non-empty disjoint open
subsets of f(U). Set g = f|y. Evidently, g : U — f(U) is a weakly Gibson
F,-measurable mapping. Let A; = g~'(W;) for i = 1,2. Then every set A; is
G-closed in U, as g is weakly Gibson. Moreover, every A; is ambiguous in U,
U= AyUA; and A; N Ay = (). Taking into account that U is a hereditarily
Baire connected and locally connected space, we obtain Ay =U or Ay =U
according to Theorem 1). Then W7 = () or W5 = (), a contradiction.
Therefore, f(U) is a connected set.

Since f is weakly Gibson, f(U) C f(C) C f(U) C f(U). Consequently,
the set f(C) is connected. =

For a mapping f : X — Y we define 7y : X — X xY by
v(x) = (2, f ().

Note that if X is a connected and locally connected hereditarily Baire space
and vy is an Fi-measurable weakly Gibson mapping then Theorem @ im-
plies that f has a connected graph I', since I' = 7¢(X). It is not hard
to prove that v, remains weakly Gibson for any weakly Gibson mapping
f:R — R. But Example shows that v need not be weakly Gibson for
a weakly Gibson F,-measurable mapping f : R? — R.
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THEOREM 3.3. Let X = R"™ with n > 1 and let Y be a Ti-space. If
f: X =Y is a weakly Gibson F,-measurable mapping then f has a con-
nected graph.

Proof. We first observe that by Theorem for any U € G(X) and
for any C with U C C C U the set f(C) is connected. Hence f has the
strong Gibson property with respect to the collection W(X) according to
Theorem It is easy to see that 7; is also W-strongly Gibson.

We show that v¢ : X — X x Y is Fy-measurable. Let {By, : k € N} be a
base of open sets in X and W be an arbitrary open set in X x Y. Put

Vk:U{V:VisopeninYandBkXVQW}.

Then W = UUpZ; (B x Vi). Since v, W) = U, (Be N Y (Vi) v o Low)
is an F, -subset of X.

Now assume that Yy = v¢(X) is not connected and choose open disjoint
non-empty subsets W7 and Wy of Yy such that Yo = Wi U Ws. Let X; =
7;1(Wi) for i = 1,2. It is easy to check that X; and Xy are W-closed
ambiguous subsets of X. Moreover, X1 N Xo = () and X = X; U X,. Hence
X1 = X or Xo = X by Theorem [2.3(2). Consequently, Wi = () or Wy = 0,
a contradiction. =

The following question is open.

QUESTION 3.4. Let X be a normed space, Y a Ti-space, and f : X =Y
a weakly Gibson F,-measurable mapping. Is the graph of f a connected set?

4. Examples. Our first example shows that the class of all F,;-mea-
surable Darboux mappings is strictly wider than the class of all Baire-one
Darboux mappings.

EXAMPLE 4.1. There exist a connected subset Y C R? and an F,-
measurable Darbouz function f : R — Y which is not Baire-one.

Proof. Let Q = {r, : n € N} be the set of all rational numbers. For
every n € N we consider the function ¢, : R — R defined by
1

sin , I F T,
on(z) = T —7Tp 7 Tn
0, T =1,
Define g : R — R by
[o¢]
1
ga#n ()
n=1

Let
Y ={(z,y) eR*:y=g(x)} and f =,
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Observe that for every n the function
"1
gnle) = 3 ron(a)
k=1

is a Baire-one Darboux function. Since the sequence (g,)o°; is uniformly
convergent to g on R, g is a Baire-one Darboux function [I, Theorem 3.4].
Consequently, the graph of g|c is connected for every connected subset
C' C R according to [I, Theorem 1.1]. Therefore, f : R — Y is a Dar-
boux function. Moreover, f : R — R? is a Baire-one mapping, which implies
that f: R — Y is F,-measurable.

Note that the space Y is punctiform (i.e., Y does not contain any contin-
uum of cardinality larger than one), since g is discontinuous on everywhere
dense set Q (see [§]). Hence each continuous mapping between R and Y is
constant. Therefore, f : R — Y is not a Baire-one mapping. =

EXAMPLE 4.2. For all (x,y) € R? define
sin(1/x), x>0,
f(z,y) :{ (/)

1, z < 0.

Then f : R? = R is an F,-measurable weakly Gibson function, but Vf 18 not
weakly Gibson.

Proof. We show that f is weakly Gibson. It is sufficient to check that f
is weakly Gibson at each point of the set {0} x R. Fix yp € R and an open
connected set U C R? such that pg = (0,99) € U \ U. Take an arbitrary
neighborhood V of f(pg) in R. Clearly, f(p) € V for all p € UN((—o0, 0] xR).
Consider the case U C (0,00) x R. Since pg € U and U is connected,
there exists n € N such that U N ({m} X ]R) # (. Let y € R with

p = (m,y) € U. Then f(p) = 1 and f(p) € V. Hence, f is weakly
Gibson.
Consider the open connected set

U={(z,y) €R?*:2>0and |y —sin(1/z)| < z}

and let C = U U{(0,0)}. Then U C C C U. Note that v : R? — R? is
F,-measurable. One easily checks that v¢(C) is not connected. Therefore,
7¢ is not weakly Gibson by Theorem .

Finally, we give an example of a space Y and an F,-measurable Darboux
mapping f : R — Y which is not barely continuous.

We first need some definitions and auxiliary facts. For a topological
space Y we denote by F(Y) the space of all non-empty closed subsets of Y
equipped with the Vietoris topology. A multivalued mapping F': X — Y is
said to be upper (resp. lower) continuous at xo € X if for any open set V' in
Y such that F(zg) C V (resp. F(xzg)NV # () there exists a neighborhood U
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of xy in X such that for every € U we have F(z) CV (F(z) NV #0). A
multivalued mapping f which is upper and lower continuous at xq is called
continuous at xTg.

LEMMA 4.3. There ezists a continuous mapping fo : R — F(R) such
that for all x € [0,1] and p € P = {1/n : n € N} U {0} there are n, € N,
a strictly increasing unbounded sequence (Un)nznp of reals v, > 0 and a
strictly decreasing unbounded sequence (un)nZ'er of reals u,, < 0 such that

n
folun) = folvn) = {p}U | Jk, k + 2] U | J{k}
k=1 k>n
for all n > ny,.

Proof. Let P={p, :n € N}. Choose a continuous function ¢y : R — [0, 1]
with ¢o(z) = py if |z] € [n+ 22;1,n+ %], where n € Nand k =1,...,n.
For every n € N define a continuous function ¢, : R — [n,n + 1] by

n, lz| <n,

#nl@) = {n +sin(dnk|z)), |z| € (kK +1], k> n.

Let fo(z) = {po(z)} U, [n, ¢n(z)]. Since all the functions ¢,, are contin-
uous and gg(z) =k for x € [-n,n] and k > n, fy is continuous.

Fix p = p, € P and z € [0,1]. Denote n, = n. For all k& > n choose
v € [k+ 2Lk + 7] such that sin(4nkvg) = 2. Then for every k > n we
have @o(vk) = p, p1(vg) =14z, ..., 0r(vg) = k+x and ¢;(vg) = i for ¢ > k,
i.e., the sequence (vy)g>n satisfies the condition of the lemma. It remains to
set up, = —vp, for all k € N. u

EXAMPLE 4.4. There exists a Baire-one F,-measurable Darboux map-
ping [ : R — F(R) such that the restriction f|c of f to the Cantor set
C C R is everywhere discontinuous and f(R) is hereditarily Lindelof (in
particular, f(R) is perfectly normal).

Proof. Let R\ C = J;2; I, where I, = (ay,by). Set A = {a, : n € N}
and B = C'\ A. For every n € N we choose a homeomorphism ,, : I, — R.

Define
fo(?ﬁn(x)), x € In,
{1/n} U U[k,k+x], neN, z=ap,
f(z) = Ook:1
{oyulJlk,k+a], =zeB,
k=1

where fp is the function from Lemma [4.3]
We show that f is a Baire-one mapping. For every n € N, applying

Lemma we find a number m,,, a strictly increasing sequence (v,(ﬂn)) k>mn
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(n)

of v,
u,(cn) € (an, (an + by)/2) such that

€ ((an +bn)/2,b,) and a strictly decreasing sequence (U](Cn))kZmn of

k
Folwn(u™)) = {1/n} U | Jli,i + an] U [ {3}
=1 i>k
and

fo(wn(v(n) = {0}u U 0,1+ ap) U U{z
i>k
for all ¢ > m,,.
For every n € N denote M,, = {k < n : my < n}. Clearly, M,, C M, 11
for all n and N = |J;2 | M,,. Choose a sequence of continuous functions
gn : R — [0, 1] which is pointwise convergent to the function

(2) 0, z€eR\ A,

xTr) =

g 1/n, neN, z=a,.

Without loss of generality, we assume that g, (u,gn)) =1/n and gn(v,g")) =0
if n € M. Now for every k € N define

fO(wn(CU))a . MRS [u,(gn),v,(g )] n € My,
fr(z) = {gr@)} Ul i+l u | J{i}, =€ R\ Upnear, [u”, o],
i=1 i>k

It is easy to see that each fi is continuous and limy_,~ fx(z) = f(x) for all
z eR.

We now prove that f has the Darboux property. Let I C R be a con-
nected set of cardinality larger than one. If I C I,, for some n € N then f([)
is connected, provided the restriction f|7, is continuous. Suppose I ¢ I,
for every n € N. Let M = {n € N: J, = I, N1 # (}. Note that the
set G = (Upear Jn is dense in I. Set f(I) = U UV, where U and V are
disjoint clopen sets in f(R). Denote K = {n € M : f(J,) € U} and
L ={ne M: f(J,) C V}. Since the restriction of f to each J, is con-
tinuous, we have G = G1 U G2, where G1 = J,,cx Jn, G2 = Upep, Jn and

G1 NGy = 0. Lemmalmphes that f(G;) C f(G;) for i = 1,2. Hence,
f(G1) C U and f(G3) C V. Therefore, I = G1 UGy and G1 N Gy = 0.
Consequently, G; = () or Gy = 0. Thus, U =0 or V = ).

To show that Y = f(R) is hereditarily Lindeldf it is sufficient to prove
that soare Y; = f(R\C) and Ys = f(C). Note that Y7 = fp(R) is hereditarily
Lindelof, since Y7 is the continuous image of R under the continuous mapping
fo with values in the Hausdorff space F(R). Since f(a,)N[0,1] = {1/n} for
every n € N, and f(b) N [0,1] = {0} for each b € B, the space f(A) is
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a countable discrete subspace of Y5. Moreover, for each b € B the sets
f((b—e,b)NC), where € > 0, form a base of neighborhoods of f(z¢) in Y>.
Since an arbitrary union of sets of the form (u,v] is a union of a sequence
(un,vy), Yo is hereditarily Lindel6f. Hence, X is hereditarily Lindel6f, so X
is perfectly normal.

Since Y is perfectly normal and f is a Baire-one function, f is Fj,-
measurable [7, p. 394]. It remains to prove that the restriction f|c of f
to the Cantor set C' is everywhere discontinuous. Note that f|c is discon-
tinuous everywhere on A, since f(A) is discrete in Ys. Moreover, for every
b € B no set of the form (b—¢,b]NC is a neighborhood of b in C. Therefore,
f|c is discontinuous at each b € B. m
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