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ON NEAR-PERFECT AND DEFICIENT-PERFECT NUMBERS

BY

MIN TANG (Wuhu), XIAO-ZHI REN (Nanjing) and MENG LI (Wuhu)

Abstract. For a positive integer n, let σ(n) denote the sum of the positive divisors
of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n+d, and
a deficient-perfect number if σ(n) = 2n − d. We show that there is no odd near-perfect
number with three distinct prime divisors and determine all deficient-perfect numbers
with at most two distinct prime factors.

1. Introduction. For a positive integer n, let ω(n) and σ(n) denote the
number of distinct prime factors of n and the sum of the positive divisors
of n, respectively. A positive integer n is called abundant if σ(n) > 2n
and deficient if σ(n) < 2n. In 2012, Pollack and Shevelev [Po] introduced
the concept of a near-perfect number. A positive number n is called near-
perfect if it is the sum of all of its proper divisors except one of them.
Pollack and Shevelev presented an upper bound on the count of near-perfect
numbers and constructed three types of near-perfect numbers. Recently,
Ren and Chen [Re] determined all near-perfect numbers with two distinct
prime factors, and one sees from this classification that all such numbers are
even. On the other hand, D. Johnson found an explicit example of an odd
near-perfect number with four distinct prime factors (see [Sl, A181595]). It
is natural to consider whether or not there is an odd near-perfect number
with three distinct prime divisors.

Motivated by the concept of a near-perfect number, we also study
deficient-perfect numbers, a very special kind of deficient numbers. We call
n a deficient-perfect number with deficiency divisor d if σ(n) = 2n − d,
where d is a proper divisor of n. For related problems, see [Pom], [C80],
[Co], [Ha], [T].

In this paper, we obtain the following results:

Theorem 1.1. There is no odd near-perfect number with three distinct
prime divisors.

Theorem 1.2. If n is deficient-perfect and ω(n) ≤ 2, then

(i) n = 2α with deficiency divisor d = 1;
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(ii) n = 2α(2α+1+2s−1) with deficiency divisor d = 2s, where 1 ≤ s ≤ α
and 2α+1 + 2s − 1 is an odd prime.

2. Lemmas

Lemma 2.1. If n = pα is a deficient-perfect number with deficiency
divisor d = pβ, then n = 2α and d = 1.

Proof. Assume that σ(pα) = 2pα − pβ, where 0 ≤ β < α. Then pα+1 −
2pα − pβ+1 + pβ = −1, which implies that β = 0. Thus

pα+1 − 2pα − p = p(pα − 2pα−1 − 1) = −2,

and we have p = 2, n = 2α and d = 1.

Lemma 2.2. If n = 2αqβ is a deficient number with deficiency divisor
d, then n = 2α(2α+1 +2s−1) and d = 2s, where 1 ≤ s ≤ α and 2α+1 +2s−1
is an odd prime.

Proof. Assume that

(2.1) σ(2αqβ) = (2α+1 − 1)(1 + q + · · ·+ qβ) = 2α+1qβ − 2sqt,

where s+ t < α+ β. Then

(2.2) (2α+1 − q)(1 + q + · · ·+ qβ−1) = 1− 2sqt,

thus t = 0. In fact, if t ≥ 1, then by (2.1) we have 2α+1 − 1 ≡ 0 (mod q),
q < 2α+1. Hence, the left side of (2.2) is positive and the right side of (2.2)
is negative, a contradiction.

Now we consider the following two cases.

Case 1: β = 1. Then σ(n) = (2α+1−1)(1+q) = 2α+1q−2s. Thus s ≥ 1
and q = 2α+1 + 2s − 1.

Case 2: β ≥ 2. If β ≡ 0 (mod 2), then σ(n) ≡ 1 (mod 2), thus by (2.1)
we have s = 0. By (2.2) we have q = 2α+1, which is impossible.

If β ≡ 1 (mod 4), then

1 + q + · · ·+ qβ = (1 + q)(1 + q2 + q4 + · · ·+ qβ−1)

and

1 + q2 + q4 + · · ·+ qβ−1 ≡ β + 1

2
6≡ 0 (mod 2).

Noting that t = 0, by (2.1) we have

(2α+1 − 1)(1 + q)(1 + q2 + q4 + · · ·+ qβ−1) = 2s(2α+1−sqβ − 1).

Thus 2s | 1 + q, 2s − 1 ≤ q. Since β ≥ 5, we have

|(2α+1 − q)(1 + q + · · ·+ qβ−1)| > 1 + q,

but |1− 2s| ≤ q, which contradicts (2.2).
If β ≡ 3 (mod 4), then

1 + q + · · ·+ qβ = (1 + q2)(1 + q + q4 + q5 + · · ·+ qβ−3 + qβ−2)
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and 4 - 1+q2. It follows from (2.1) that 2s−1 | 1+q+q4+q5+· · ·+qβ−3+qβ−2.
Since β ≥ 3, we have

|(2α+1 − q)(1 + q + · · ·+ qβ−1)|
> 2(1 + q + q4 + q5 + · · ·+ qβ−3 + qβ−2) ≥ 2s,

but |1− 2s| < 2s, which contradicts (2.2).

3. Proof of Theorem 1.1. Assume that n = pα1
1 pα2

2 pα3
3 is an odd

near-perfect number, then

σ(n) = 2n+ d,

where d |n and d < n. Since σ(n) ≡ 1 (mod 2), we have αi ≡ 0 (mod 2),
i = 1, 2, 3.

If p1 ≥ 5, then

2 =
σ(n)

n
− d

n
<

5

4
· 7

6
· 11

10
< 2,

which is impossible. Thus p1 = 3. If p2 ≥ 7, then

2 =
σ(n)

n
− d

n
<

3

2
· 7

6
· 11

10
< 2,

which is also impossible. Thus p2 = 5. If p3 ≥ 17, then

2 =
σ(n)

n
− d

n
<

3

2
· 5

4
· 17

16
< 2,

a contradiction. Thus p3 ≤ 13. Hence, if n is an odd near-perfect number
with three distinct prime divisors, then

(3.1) σ(n)=
3α1+1 − 1

2
· 5α2+1 − 1

4
· p

α3+1
3 − 1

p3 − 1
=2 · 3α15α2pα3

3 + 3β15β2pβ33 ,

where β1 + β2 + β3 < α1 + α2 + α3.
Since αi’s are even, we have

3α1+1 − 1, 7α3+1 − 1, 13α3+1 − 1 ≡ 1, 2 (mod 5),(3.2)

3α1+1 − 1, 5α2+1 − 1 ≡ 2, 4, 5 (mod 7),(3.3)

5α2+1 − 1, 11α3+1 − 1 ≡ 1 (mod 3).(3.4)

Let

f(α1, α2, α3) =

(
1− 1

3α1+1

)(
1− 1

5α2+1

)(
1− 1

pα3+1
3

)
.

Now we consider the following three cases.

Case 1: p3 = 7. Then by (3.1)–(3.3), we have β2 = β3 = 0 and

(3.5) f(α1, α2, α3) =
32

35
+

243β1+1

3α1+15α2+17α3+1
.
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We have

f(α1, α2, α3) ≥
(

1− 1

33

)(
1− 1

53

)(
1− 1

73

)
= 0.952 . . .

and
32

35
+

243β1+1

3α1+15α2+17α3+1
≤ 32

35
+

24

5373
= 0.914 . . . ,

a contradiction.

Case 2: p3 = 11. Then by (3.1) and (3.4), we have β1 = 0 and

(3.6) f(α1, α2, α3) =
32

33
+

245β2+111β3

3α1+15α2+111α3+1
.

If α1 = 2, then f(α1, α2, α3) < 1 − 1/33 < 32/33, thus (3.6) cannot hold.
Hence α1 ≥ 4 and

f(α1, α2, α3) ≥
(

1− 1

35

)(
1− 1

53

)(
1− 1

113

)
= 0.987 . . .

and
32

33
+

245β2+111β3

3α1+15α2+111α3+1
≤ 32

33
+

24

3511
= 0.975 . . . ,

a contradiction.

Case 3: p3 = 13. Then by (3.1) and (3.2), we have β2 = 0 and

(3.7) f(α1, α2, α3) =
64

65
+

253β1+113β3

3α1+15α2+113α3+1
.

If α1 = 2, then f(α1, α2, α3) < 1 − 1/33 < 64/65, thus (3.7) cannot hold.
Hence α1 ≥ 4.

If β3 = 0, then

f(α1, α2, α3) ≥
(

1− 1

35

)(
1− 1

53

)(
1− 1

133

)
= 0.987 . . .

and
64

65
+

253β1+113β3

3α1+15α2+113α3+1
≤ 64

65
+

25

53133
= 0.984 . . . ,

a contradiction.

If β3 6= 0, then noting that 5α2+1 − 1, 13α3+1 − 1 6≡ 0 (mod 13), by (3.1)
we have 3α1+1 − 1 ≡ 0 (mod 13), thus α1 ≡ 2 (mod 6). Since α1 ≥ 4, we
have α1 ≥ 8. Hence

f(α1, α2, α3) ≥
(

1− 1

39

)(
1− 1

53

)(
1− 1

133

)
= 0.9914 . . . .

Now we consider the following three subcases.
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Subcase 3.1: 0 ≤ β1 ≤ α1 − 1. We have

64

65
+

253β1+113β3

3α1+15α2+113α3+1
≤ 64

65
+

25

3 · 5313
= 0.9911 . . . < f(α1, α2, α3),

a contradiction.

Subcase 3.2: β1 = α1, 1 ≤ β3 ≤ α3 − 1. We have

64

65
+

253β1+113β3

3α1+15α2+113α3+1
≤ 64

65
+

25

53132
= 0.986 . . . < f(α1, α2, α3),

a contradiction.

Subcase 3.3: β1 = α1, β3 = α3. If α2 ≥ 4, then

64

65
+

253β1+113β3

3α1+15α2+113α3+1
≤ 64

65
+

25

5513
= 0.985 . . . < f(α1, α2, α3),

a contradiction. If α2 = 2, then

64

65
+

253β1+113β3

3α1+15α2+113α3+1
=

64

65
+

25

5313
> 1 > f(α1, α2, α3),

a contradiction.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2. By Lemmas 2.1 and 2.2, it is sufficient to
show that there is no odd deficient-perfect number with two distinct prime
divisors.

Assume that n = pα1
1 pα2

2 is an odd deficient-perfect number. Then

σ(n) = 2n− d,
where d |n and d < n. Since σ(n) ≡ 1 (mod 2), we have αi ≡ 0 (mod 2),
i = 1, 2.

If p1 ≥ 5, then

2 =
σ(n)

n
+
d

n
<

5

4
· 7

6
+

1

5
< 2,

which is impossible. Thus p1 = 3. If p2 ≥ 11, then

2 =
σ(n)

n
+
d

n
<

3

2
· 11

10
+

1

3
< 2,

which is also impossible. Thus p2 = 5 or 7. Hence, if n is an odd deficient-
perfect number with two distinct prime divisors, then σ(3α1pα2

2 ) = 2 ·
3α1pα2

2 − 3β1pβ22 , where 0 ≤ β1 + β2 < α1 + α2 and p2 = 5 or 7. We have
β1 = α1 − 1, β2 = α2 or β1 = α1, β2 = α2 − 1. Otherwise,

2 =
σ(n)

n
+

1

3α1−β1pα2−β2
2

<
3

2
· 5

4
+

1

9
< 2.

Now we consider the following two cases.
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Case 1: β1 = α1 − 1, β2 = α2. Then σ(3α1pα2
2 ) = 5 · 3α1−1pα2

2 . Noting
that 3α1+1 − 1 ≡ 1, 2 (mod 5) and 3α1+1 − 1 ≡ 2, 4, 5 (mod 7), we have
p2 - σ(3α1). Moreover, p2 - σ(pα2

2 ). Thus p2 - σ(3α1pα2
2 ), a contradiction.

Case 2: β1 = α1, β2 = α2 − 1. Then σ(3α1pα2
2 ) = 2 · 3α1pα2

2 − 3α1pα2−1
2 .

If p2 = 5, then σ(3α15α2) = 3α1+25α2−1. Since 5α2+1−1 ≡ 1 (mod 3), we
have 3 - σ(5α2). Moreover, 3 - σ(3α1). Thus 3 - σ(3α15α2), a contradiction.

If p2 = 7, then σ(3α17α2) = 3α17α2−113. Since 3α1+1−1 ≡ 2, 4, 5 (mod 7),
we have 7 - σ(3α1). Moreover, 7 - σ(7α2). Thus 7 - σ(3α17α2), a contradiction.

This completes the proof of Theorem 1.2.
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