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SPACES OF σ-FINITE LINEAR MEASURE

BY

IHOR STASYUK (North Bay) and EDWARD D. TYMCHATYN (Saskatoon)

Abstract. Spaces of finite n-dimensional Hausdorff measure are an important gen-
eralization of n-dimensional polyhedra. Continua of finite linear measure (also called con-
tinua of finite length) were first characterized by Eilenberg in 1938. It is well-known that
the property of having finite linear measure is not preserved under finite unions of closed
sets. Mauldin proved that if X is a compact metric space which is the union of finitely
many closed sets each of which admits a σ-finite linear measure then X admits a σ-finite
linear measure. We answer in the strongest possible way a 1989 question (private commu-
nication) of Mauldin. We prove that if a separable metric space is a countable union of
closed subspaces each of which admits finite linear measure then it admits σ-finite linear
measure. In particular, it can be embedded in the 1-dimensional Nöbeling space ν31 so that
the image has σ-finite linear measure with respect to the usual metric on ν31 .

1. Introduction. Mauldin in 1990 [9] proved that if a compact metric
space may be expressed as a finite union of closed subsets each admitting σ-
finite linear Hausdorff measure, then the whole space admits σ-finite linear
Hausdorff measure. He asked for a characterization of spaces that admit
σ-finite linear Hausdorff measure. We answer in the strongest possible way
a 1989 question of Mauldin. We prove that if a separable metric space is
a countable union of closed subspaces each of which admits finite linear
measure then it can be embedded in the 1-dimensional Nöbeling space ν31 so
that the image has σ-finite linear measure with respect to the usual metric
on ν31 . The proof relies significantly on the construction of Buskirk, Nikiel
and Tymchatyn [2].

Eilenberg and Harrold [6] asked for a characterization of continua ad-
mitting finite n-dimensional Hausdorff measure. They obtained a number
of characterizations of continua of finite linear measure. Most useful for us
they proved that a space X admits a finite linear Hausdorff measure if and
only if it is totally regular, i.e. for each x ∈ X and for each neighbourhood
U of x there exist uncountably many nested neighbourhoods {Uα} of x with
Uα ⊂ U such that Bd(Uα) ∩ Bd(Uβ) = ∅ for α 6= β and with Bd(Uα) finite.
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In particular, X is hereditarily locally connected, i.e. each connected subset
of X is locally connected.

All spaces in this paper are separable and metric. We let (R3, d) denote
the Euclidean 3-space with its usual metric.

2. Preliminaries

Definition 2.1. Let (X, ρ) be a separable metric space and α ≥ 0. Then
the α-dimensional Hausdorff measure Hα

ρ on X is defined by

Hα
ρ (A) = sup

δ>0
inf
{ ∞∑
i=1

(diamρ(Ui))
α
∣∣∣ A ⊂ ∞⋃

i=1

Ui ⊆ X,

diamρ(Ui) < δ for every i ∈ N
}

for any A ⊂ X. We call H1
ρ the linear Hausdorff measure on (X, ρ).

Definition 2.2. The n-dimensional Nöbeling space ν2n+1
n is the sub-

space of the Euclidean space R2n+1 which consists of all points with at most
n rational coordinates.

The space ν2n+1
n is universal for separable metric spaces of dimension at

most n.
Fremlin [7, Theorem 5H] proved that a space of finite linear measure

embeds in (R3, d) so its image has finite linear measure with respect to the
metric d. We shall need the following strengthening of Fremlin’s result:

Theorem 2.3. Let C ′ be a space which admits a metric ρ such that
H1
ρ (C ′) <∞. Then

(i) C ′ embeds in a continuum C ⊂ ν31 with H1
d(C) <∞.

(ii) If K ⊂ C is a discrete set such that each point x ∈ K has an
uncountable local basis in C of open sets with two-point boundaries
in C and if K is contained in ν31 , then the embedding may be taken
to be the identity on K.

Proof. The proof essentially depends on the ideas from [2, Theorems 3
and 4].

Let us prove part (i) first. By [5], the space C ′ is totally regular. Let C ′′

be the Freudenthal compactification of C ′ (see [8, p. 109]). Then C ′′ is a
totally regular, metric compactum because finite separators of C ′ separate
the distinct points of C ′′. The components of C ′′ form a null family of
locally connected continua. By a standard argument one can adjoin to C ′′ a
countable null sequence of arcs to obtain a totally regular metric continuum
C which contains C ′′. By [2, Theorem 3] the space C is the inverse limit
of an inverse sequence (Cn, f

n+1
n ) of finite connected graphs and monotone,
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surjective bonding maps so that each fn+1
n : Cn+1 → Cn has at most one

non-degenerate fibre.
Represent the 1-dimensional Nöbeling space ν31 as R3 \

⋃∞
i=1Ai where

each Ai is a straight line in R3 with each point of Ai having at least two
rational coordinates. We equip ν31 with the restriction of the usual metric d
from R3.

We may assume that C and
⋃∞
n=1Cn are embedded in ν31 so that C is

also the limit of the sequence {Cn} in the Hausdorff metric generated by d.
Indeed, suppose that C1 is embedded as a polygonal graph in ν31 . Let ε1 be
less than half the distance from the compact set C1 to A1. Assume that n
is a positive integer and that C1, . . . , Cn are embedded as polygonal graphs
in ν31 and ε1 > 2ε2 > · · · > 2n−1εn are positive numbers such that for all
1 ≤ i ≤ n− 1,

(1) |H1
d(Ci+1)−H1

d(Ci)| < 2−i−1,
(2) the Hausdorff distance from Ci+1 to Ci is less than 2−i−2,
(3) the non-degenerate fiber of f i+1

i has length less than 2−i−1,
(4) f i+1

i is the identity off a sufficiently small neighbourhood of the
non-degenerate element of f i+1

i ,
(5) the distance from Ci to Aj is greater than 2εj for j ≤ i ≤ n.

Let εn+1 > 0 be smaller than 1
2 min{εn, d(C1 ∪ · · · ∪ Cn, A1 ∪ · · · ∪ An+1)}.

We may take Cn+1 to be a polygonal graph in ν31 so that conditions (1)–(5)
are satisfied for 1 ≤ i ≤ n.

It follows that the sequence {Cn} converges to C in the Hausdorff metric.
The limit limH1

d(Cn) exists as the limit of a Cauchy sequence of real
numbers. In particular, limH1

d(Cn) = H1
d(C) by (1) and (4) because for each

n we have C ⊂ Cn∪
⋃∞
m=n+1Bm where Bm is a ball and

∑∞
m=n+1 diamd(Bm)

< 2−nε1.
By (5), C ⊂ ν31 .
Now we show that part (ii) of the theorem is true. For each x ∈ K let

Vx be an open neighbourhood of x with two-point boundary {ax, bx}. Let

E(ax, bx, Vx) = {y ∈ Vx | y separates ax and bx in Vx} ∪ {ax, bx}.
By [10, III, 4.2], E(ax, bx, Vx) is compact. By [10, III, 1.31], E(ax, bx, Vx)
is naturally ordered. Let F 0(ax, bx, Vx) be the set of condensation points of
E(ax, bx, Vx). Then in the decomposition Gx of Vx to an arc it is easy to
see that we may take the equivalence class of x in Gx to be {x}. With this
additional observation the proof of (ii) goes through as in [2, Theorem 3].

It follows trivially from Theorem 2.3 that every space of finite length has
a compactification of finite length in (ν31 , d).

Definition 2.4. A closed subset A of a complete metric space Y is called
a Z-set if for each open cover U of Y there is a function f : Y → Y \A which



248 I. STASYUK AND E. D. TYMCHATYN

is U-close to IdY , i.e. for every y ∈ Y there is U ∈ U with y, f(y) ∈ U . If
the map f can be chosen in such a way that f(Y ) ∩A = ∅ then A is called
a strong Z-set.

Definition 2.5. For a space A and a complete metric space Y an em-
bedding g : A→ Y is called a Z-embedding if its image is a Z-set in Y .

Definition 2.6. Let Y and Z be topological spaces and let C(Y,Z) de-
note the set of all continuous functions from Y to Z. For each map f : Y →Z
and for each open cover S of Z we let B(f,S) denote the set of all maps in
C(Y,Z) that are S-close to f . Define a collection T of subsets of C(Y,Z) by
the rule: a subset U ⊂ C(Y,Z) is an element of T if for every f ∈ U , there
exists an open cover U of Z such that B(f,U) ⊂ U . If U and V are elements
of T such that B(f,U) ⊂ U and B(f,V) ⊂ V for open covers U and V of Z,
then B(f,W) ⊂ U ∩ V for any open cover W which refines both U and V.
The collection T is called the limitation topology on C(Y,Z).

It is known that the limitation topology coincides with the topology of
uniform convergence with respect to all compatible metrics on Y and Z (see
[3, Lemma 2.1.4]).

Definition 2.7. Let n be a positive integer. A Polish space Y is called an
absolute [neighbourhood ] extensor in dimension n, or briefly, an A[N ]E(n)-
space, if any map f : A→ Y , defined on a closed subspace A of a Polish space
B with dimB ≤ n, can be extended to a map of the space B [respectively,
of a neighbourhood of A in B] into Y .

Definition 2.8. A Polish space Y is called strongly Aω,n-universal if
any map of any at most n-dimensional Polish space into Y can be arbitrarily
closely approximated by closed embeddings.

We will need the following result (see [3, Proposition 5.1.7]).

Proposition 2.9. Let Y be an at most n-dimensional strongly Aω,n-
universal Polish ANE(n)-space, and A a closed subspace of an at most n-
dimensional Polish space B. Then each map f : B → Y such that the re-
striction f |A is a Z-embedding can be arbitrarily closely approximated by Z-
embeddings coinciding with f on A. In particular, the set of all Z-embeddings
of B into Y is a dense Gδ subset of C(B, Y ).

It is known that the n-dimensional Nöbeling space ν2n+1
n is a strongly

Aω,n-universal, ANE(n)-space. The following two statements are proved in
[4] as Proposition 3.6 and Lemma 3.2, respectively.

Proposition 2.10. Let P be an at most n-dimensional Polish space
and let C(P, ν2n+1

n ) denote the set of all continuous functions from P into
ν2n+1
n with the limitation topology. Then the set of all Z-embeddings of P

into ν2n+1
n is a dense Gδ subset of C(P, ν2n+1

n ).
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Proposition 2.11. Each compact subset of ν2n+1
n is a strong Z-set.

Definition 2.12. A point x of a connected space X is a local cut point
of X if it disconnects some connected neighbourhood of x. The local cut
point x is said to be of order 2 in X if it has a basis of neighbourhoods with
two-point boundaries.

Theorem 2.13. If X is a connected and totally regular space then X
has at each point an uncountable local basis {Uα} of open sets with finite
boundaries and such that each boundary point of Uα is a point of order 2
in X.

Proof. Let Y be a totally regular continuum containing X and con-
structed as in the proof of Theorem 2.3. Each local cut point of Y is a local
cut point of X. By [10, III, 9.2] all but at most countably many local cut
points of Y are of order 2 in Y .

Definition 2.14. We say that a space Y admits σ-finite linear measure
if there is a metric ρ on Y and a family {Ai}∞i=1 of closed subsets of Y with
Y =

⋃∞
i=1Ai and H1

ρ (Ai) <∞ for each i.

3. Main result

Theorem 3.1. Let X =
⋃∞
i=1Xi where each Xi is totally regular and

closed in X. Then the space X can be embedded in ν31 so that the image of
X has σ-finite linear measure with respect to the usual metric d on ν31 .

Proof. Let h′1 : X1 → X̃1 ⊂ ν31 be a compactification of X1 where X̃1

has finite length with respect to the metric d by Theorem 2.3. Let π : X →
X∪h′1 X̃1 be the natural projection of X into the adjunction space X∪h′1 X̃1.

Since X̃1 is compact, it is a Z-set in ν31 by Proposition 2.11. Since ν31 is an
ANE(1) and X ∪h′1 X̃1 is one-dimensional, separable metric, idX̃1

extends

to a continuous map ϕ : X ∪h′1 X̃1 → ν31 . By Proposition 2.9, ϕ can be

approximated by a homeomorphism ϕ̃ : X ∪h′1 X̃1 → ν31 . Let h1 : X → ν31 be
the embedding ϕ̃ ◦ π.

Let U ′1 be a locally finite cover of R3\X̃1 by open topological 3-balls such
that diamd(U

′) < min{1/4, d(X̃1, U
′)/4} for each U ′ ∈ U ′1. We denote by U1

the cover of ν31 \ X̃1 which is induced by U ′1, i.e. U1 = {U ′ ∩ ν31 | U ′ ∈ U ′1}.
Since h1(X2) \ X̃1 is totally regular, let V2 = {X2,1, X2,2, . . . } be a locally

finite in R3 \ X̃1 closed cover of h1(X2) \ X̃1 and let {I2,1, I2,2, . . . } be finite
sets of local cut points of order 2 in h1(X2) such that

I2,i ⊂ X2,i, X2,i ∩X2,j ⊂ I2,i ∩ I2,j for i 6= j,
∞⋃
i=1

I2,i is discrete in R3 \ X̃1
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and such that V2 refines U1. For each i let U2,i ∈ U1 satisfy X2,i ⊂ U2,i. Also
for each i let T2,i ⊂ U2,i be a polygonal tree in ν31 with set of endpoints I2,i
such that T2,i ∩ T2,j = I2,i ∩ I2,j . For each i let W2,i = W ′2,i ∩ ν31 where W ′2,i
is a closed polyhedral 3-ball in R3 such that

T2,i ⊂W2,i ⊂ U2,i, T2,i ∩ Bd(W2,i) = I2,i

and

W2,i ∩W2,j = I2,i ∩ I2,j for i 6= j.

For each i let h2,i : X2,i → X̃2,i ⊂ Intν31 (W2,i) ∪ I2,i be a compactification

where each X̃2,i has finite length with respect to the metric d and h2,i|I2,i
= IdI2,i . Let X̃2 =

⋃∞
i=1 X̃2,i. Note that X̃1 ∪ X̃2 is compact. Let h′2 : X̃1 ∪

h1(X2)→ X̃1 ∪ X̃2 be an embedding such that h′2|X̃1
= IdX̃1

and h′2|X2,i =
h2,i for all i. Note that h′2|h1(X2\X1) is U1-close to h1|X2\X1

.

Since X̃1 ∪ X̃2 is compact in ν31 , it is a strong Z-set, and so h′2 can be
extended to an embedding h2 of X̃1∪h1(X) such that h2|h1(X)\X̃1

is U1-close

to h1|X\X1
.

Let U ′2 be a locally finite cover of R3 \ (X̃1 ∪ X̃2) by open topological
3-balls such that diamd(U

′) < min{1/8, d(X̃1 ∪ X̃2, U
′)/8} for U ′ ∈ U ′2.

We denote by U2 the cover of ν31 \ (X̃1 ∪ X̃2) which is induced by U ′2, i.e.
U2 = {U ′ ∩ ν31 | U ′ ∈ U ′2}.

Suppose now that for 1 ≤ n ≤ k − 1 the covers Un, the spaces X̃n and
the embeddings hn are defined so that the following conditions are satisfied:

(1) X̃1 ∪ · · · ∪ X̃n is compact and of σ-finite linear measure in (ν31 , d),

(2) Un is a cover of ν31 \ (X̃1 ∪ · · · ∪ X̃n) induced by a locally finite cover
of R3 \ (X̃1 ∪ · · · ∪ X̃n) by open topological 3-balls such that

diamd(U) < min{2−n−1, 2−n−1d(X̃1 ∪ · · · ∪ X̃n, U)}
for each U ∈ Un,

(3) the map

hn : hn−1 ◦ · · · ◦ h1(X) ∪ X̃1 ∪ · · · ∪ X̃n−1 → ν31

is an embedding such that

hn|X̃1∪···∪X̃n−1
= IdX̃1∪···∪X̃n−1

and

hn|hn−1◦···◦h1(X)\(X̃1∪···∪X̃n−1)
is Un−1-close to

hn−1|hn−2◦···◦h1(X)\(X̃1∪···∪X̃n−1)
.

Let Vk = {Xk,1, Xk,2, . . . } be a locally finite in R3 \ (X̃1 ∪ · · · ∪ X̃k−1)

closed cover of hk−1 ◦ · · · ◦h1(Xk) \ (X̃1 ∪ · · · ∪ X̃k−1) and let {Ik,1, Ik,2, . . . }
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be finite sets of local cut points of order 2 in hk−1 ◦ · · · ◦ h1(Xk) such that

Ik,i ⊂ Xk,i, Xk,i ∩Xk,j = Ik,i ∩ Ik,j for i 6= j,
∞⋃
i=1

Ik,i is discrete in R3 \ (X̃1 ∪ · · · ∪ X̃k−1)

and such that Vk refines Uk−1. For each i let Uk,i ∈ Uk−1 satisfy Xk,i ⊂
Uk,i and let Tk,i be a polygonal tree in Uk,i with set of endpoints Ik,i with
Tk,i ∩Tk,j = Ik,i ∩ Ik,j . For each i let Wk,i = W ′k,i ∩ ν31 where W ′k,i is a closed

polyhedral 3-ball in R3 such that

Tk,i ⊂Wk,i ⊂ Uk,i, Tk,i ∩ Bd(Wk,i) = Ik,i
and

Wk,i ∩Wk,j = Ik,i ∩ Ik,j for i 6= j.

For each i let hk,i : Xk,i → X̃k,i ⊂ Intν31 (Wk,i) ∪ Ik,i be a compactification

where X̃k,i has finite length with respect to d and hk,i|Ik,i = IdIk,i . Let

X̃k =
⋃∞
i=1 X̃k,i and let

h′k : X̃1 ∪ · · · ∪ X̃k−1 ∪ hk−1 ◦ · · · ◦ h1(Xk)→ X̃1 ∪ · · · ∪ X̃k

be a compactification such that

h′k|X̃1∪···∪X̃k−1
= IdX̃1∪···∪X̃k−1

and h′k|Xk,i
= hk,i for each i.

Note that

h′k|hk−1◦···◦h1(Xk\(X1∪···∪Xk−1)) is Uk−1-close to hk−1 ◦· · ·◦h1|Xk\(X1∪···∪Xk−1).

Since X̃1 ∪ · · · ∪ X̃k is compact in ν31 , h′k can be extended to an embedding

hk of X̃1 ∪ · · · ∪ X̃k−1 ∪ hk−1 ◦ · · · ◦ h1(X) such that

hk|hk−1◦···◦h1(X)\(X̃1∪···∪X̃k−1)
is Uk−1-close to hk−1|hk−2◦···◦h1(X)\(X̃1∪···∪X̃k−1)

.

Let U ′k be a locally finite cover of R3 \ (X̃1 ∪ · · · X̃k) by open polyhedral

3-balls with diamd(U) < min{2−k−1, 2−k−1d(X̃1 ∪ · · · ∪ X̃k, U)} for each
U ∈ U ′k and let Uk be the corresponding induced cover of ν31 \(X̃1∪· · ·∪X̃k).

Then by induction hk is defined for each positive integer k. Let h =
limk→∞ hk ◦ · · · ◦ h1. Since the sequence {hk ◦ · · · ◦ h1}∞k=1 is uniformly con-
vergent, h is a continuous function. Since every function hk ◦ · · · ◦ h1 is
one-to-one, for each x ∈ X there exists a positive integer n such that x ∈ Xn

and hk ◦ · · · ◦ hn ◦ · · · ◦ h1(x) = hn ◦ · · · ◦ h1(x) for k ≥ n. It follows that h is
one-to-one. If x ∈ X \ (X1 ∪ · · · ∪Xk) and hk ◦ · · · ◦ h1(x) ∈ U ∈ Uk−1 then

h(x) ∈ St2(U,Uk−1) ⊂ St2(U,Uk−1) ⊂ h(X) \ (X̃1 ∪ · · · ∪ X̃k)

as in [1, Theorem 4.2]. Hence, h is open. Thus, h is an embedding of X into⋃∞
i=1 X̃i. The space

⋃∞
i=1 X̃i is σ-compact and of σ-finite linear measure.

Note. Theorem 3.1 is sharp in the following sense. It is not true that a
space of σ-finite linear measure embeds in a compact space of σ-finite linear
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measure. For if X = Q × [0, 1] where Q is the space of rational numbers
then X has σ-finite linear measure. It is easy to see that if X̃ is a metric
compactification of X then each separation of X̃ between (0, 0) and (0, 1)
contains a perfect set. However, Mauldin has shown that a space with σ-finite
linear measure has a basis of open sets with countable boundaries.
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