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BANACH SPACES WIDELY COMPLEMENTED IN EACH OTHER

BY

ELÓI MEDINA GALEGO (São Paulo)

Abstract. Suppose that X and Y are Banach spaces that embed complementably
into each other. Are X and Y necessarily isomorphic? In this generality, the answer is
no, as proved by W. T. Gowers in 1996. However, if X contains a complemented copy of
its square X2, then X is isomorphic to Y whenever there exists p ∈ N such that Xp can
be decomposed into a direct sum of Xp−1 and Y . Motivated by this fact, we introduce
the concept of (p, q, r) widely complemented subspaces in Banach spaces, where p, q and
r ∈ N. Then, we completely determine when X is isomorphic to Y whenever X is (p, q, r)
widely complemented in Y and Y is (t, u, v) widely complemented in X. This new notion of
complementability leads naturally to an extension of the Square-cube Problem for Banach
spaces, the p-q-r Problem.

1. Introduction. If X and Y are Banach spaces, then X ∼ Y means

that X is isomorphic to Y , and Y
c
↪→ X means that X contains a comple-

mented copy of Y , that is, X contains a subspace isomorphic to Y which is
complemented in X. If n ∈ N = {1, 2, 3, . . .} and X is a Banach space, then
Xn denotes the sum of n copies of X, X⊕· · ·⊕X. It will be useful to define
X0 = {0}.

Pe lczyński [17] proved that if two Banach spaces X and Y satisfy

(1.1) X ∼ X2 and Y ∼ Y 2,

then X is isomorphic to Y whenever

(1.2) Y
c
↪→ X and X

c
↪→ Y.

The problem whether this holds without the hypothesis (1.1) has been
known as Schroeder–Bernstein Problem for Banach spaces. In 1996, W. T.
Gowers [14] gave a first negative solution to this problem (see also [1]–[6]
and [15]. More recently [16] a C(K) space was introduced which is also a
solution to this problem.

In the present paper we turn our attention to Banach spaces X and Y
satisfying (1.2) and the following condition weaker than (1.1):

(1.3) X2 c
↪→ X.
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The motivation of this work is the fact that if (1.2) and (1.3) hold, then X
is isomorphic to Y if and only if there exists p ∈ N such that

(1.4) Xp ∼ Xp−1 ⊕ Y.

Indeed, let us show the non-trivial implication. Since (1.3) holds, it follows

that Xp c
↪→ X. Let A, B and C be Banach spaces satisfying

(1.5) X ∼ Y ⊕A, Y ∼ X ⊕B and X ∼ Xp ⊕ C.

Adding A to both sides of the third condition of (1.5) we deduce

X ⊕A ∼ Xp ⊕A⊕ C ∼ Xp−1 ⊕ Y ⊕A⊕ C ∼ Xp−1 ⊕X ⊕ C(1.6)

∼ Xp ⊕ C ∼ X.

Now adding B to both sides of (1.6) we conclude

X ∼ Y ⊕A ∼ X ⊕A⊕B ∼ X ⊕B ∼ Y,

and we are done.
This remark leads us to strengthening the classical concept of comple-

mented subspaces in Banach spaces X which contain a complemented copy
of X2.

Definition 1.1. Let X be a Banach space containing a complemented
copy of its square X2. A Banach space Y is widely complemented in X if
there exist p, q and r ∈ N such that

(1.7) Xp ∼ Xq ⊕ Y r.

In this case, we say that Y is (p, q, r) widely complemented in X.
It is also useful to denote

(1.8) Y
(p,q,r)
↪−−→ X whenever X2 c

↪→ X and Xp ∼ Xq ⊕ Y r,

that is, whenever Y is (p, q, r) widely complemented in X.

Remark 1.2. By (1.2)–(1.4) we see that X is isomorphic to Y whenever
there exists p ∈ N such that

Y
(p,p−1,1)
↪−−−−−→ X and X

c
↪→ Y.

Nevertheless, thanks to some Banach spaces constructed by W. T. Gow-
ers and B. Maurey in 1997 (see the third section below and the proof of [8,
Proposition 7.2]), for every p, q, r ∈ N with q 6= p − 1 or r 6= 1, there are
non-isomorphic Banach spaces X and Y such that

Y
(p,q,r)
↪−−−→ X and X

c
↪→ Y.

On the other hand, we can easily check that X is isomorphic to Y whenever

Y
(3,1,2)
↪−−→ X and X

(4,1,3)
↪−−−−→ Y,
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or still

Y
(2,3,1)
↪−−−−→ X and X

(2,4,1)
↪−−−−→ Y.

It is then natural, in the spirit of [10]–[12] to consider the Schroeder–Bern-
stein type problem for widely complemented subspaces in Banach spaces;
that is, we are led to the following problem.

Problem 1.3. Determine the set of pairs of triples {(p, q, r), (s, t, u)}
such that X is isomorphic to Y whenever these Banach spaces satisfy

Y
(p,q,r)
↪−−−→ X and X

(s,t,u)
↪−−−→ Y.

The main aim of this paper is to solve this problem. In order to do this
it is convenient to do define:

Definition 1.4. We say that {(p, q, r), (s, t, u)} is a Schroeder–Bernstein
pair of triples for Banach spaces (for short, SBpt) when X is isomorphic to
Y whenever these Banach spaces satisfy

Y
(p,q,r)
↪−−−→ X and X

(s,t,u)
↪−−−→ Y.

Equivalently, {(p, q, r), (s, t, u)} is a SBpt when X is isomorphic to Y
whenever X and Y satisfy (1.1), X contains a complemented copy of X2

and the following Decomposition Scheme holds:

(1.9)

{
Xp ∼ Xq ⊕ Y r

Y s ∼ Y t ⊕Xu.

We also say that N = (p − q)(s − t) − ru is the w-number of the pair of
triples {(p, q, r), (s, t, u)}.

From now on our purpose is to prove the following characterization of
the pairs of triples which are SBpt. This is an immediate consequence of
Propositions 2.1, 2.2, 3.1, 3.3, 3.4 and 3.5.

Theorem 1.5. A pair of triples {(p, q, r), (s, t, u)} with w-number N is
a SBpt if and only if one of the following conditions holds:

(a) N 6= 0 and N divides q − p + r and t− s + u;
(b) N = 0, p = q + r and gcd(r, u) = 1.

Remark 1.6. Observe that in virtue of (1.8), the hypothesis “X contains
a complemented copy of X2” is implicit in Definition 1.4. Moreover, this
hypothesis is essential to obtain Theorem 1.5. Indeed, it is an open problem
to characterize the sextuples (p, q, r, s, t, u) such that X is isomorphic to Y
whenever these Banach spaces satisfy (1.1) and the Decomposition Scheme
(1.9) holds (see [7, Conjecture 4.3]).

Remark 1.7. The hypothesis “X contains a complemented copy of X2”
in Definition 1.1 does not imply that (1.7) is true for some p, q and r∈N, even
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in the case where (1.1) holds. Indeed, we recall that two Banach spaces X
and Y are said to be totally incomparable if no infinite-dimensional subspace
of X is isomorphic to a subspace of Y . Fix two totally incomparable Banach
spaces X and Y from the class of spaces constructed in [13]. Then by [5]
there exists a Banach spaces Z satisfying

(a) Z ∼ Z2 [5, p. 31];
(b) Z ∼ Z ⊕Xm ⊕ Y m for all m ∈ N [5, p. 31];
(c) Z 6∼ Z ⊕Xm for all m ∈ N [5, Theorem 3.4].

Define E = Z ⊕X. Then by (b), Z
c
↪→ E and E

c
↪→ Z. Suppose that there

exist p, q, r ∈ N such that Zp ∼ Zq ⊕ Er. According to (a) we see that
Z ∼ Z ⊕Xr, which is absurd by (c).

However, we do not know whether the hypothesis “X contains a com-
plemented copy of X2” in Definition 1.1 is a consequence of (1.7) when
1 < p 6= q + r and (1.1) holds, that is:

Problem 1.8 (The p-q-r Problem for Banach spaces). Let p, q, r ∈ N
with 1 < p 6= q + r, and X and let Y Banach spaces satisfying (1.1). Is it
true that

Xp ∼ Xq ⊕ Y r ⇒ X2 c
↪→ X?

Remark 1.9. Observe that the p-q-r Problem in the case where p = 3,
q = r = 1 and X = Y is the Square-Cube Problem for Banach spaces (see
[18, p. 367]).

2. Sufficient conditions to a pair of triples to be a SBpt. We start
this section by recalling that in [7] a quintuple (p, q, r, s, t) in N ∪ {0} with
p+ q ≥ 2, r + s+ t ≥ 3, (r, s) 6= (0, 0) and t ≥ 1 was said to be a Schroeder–
Bernstein quintuple (for short, SBq) if X is isomorphic to Y whenever these
Banach spaces satisfy (1.1) and the following Decomposition Scheme holds:{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr ⊕ Y s.

The number ∇ = (p − 1)(s − t) − rq is the discriminant of the quintuple
(p, q, r, s, t). We recall the following characterization of SBq (see [7, Theorem
1.2]). A quintuple (p, q, r, s, t) in N ∪ {0} with p + q ≥ 2, r + s + t ≥ 3,
(r, s) 6= (0, 0) and t ≥ 1 is a SBq if and only if its discriminant ∇ is different
from zero and ∇ divides p + q − 1 and r + s− t.

Notice that the “if” part of Theorem 1.5 is Propositions 2.1 and 2.2
below.

Proposition 2.1. Every pair of triples {(p, q, r), (s, t, u)} with w-number
N different from zero such that N divides q− p+ r and t− s+ u is a SBpt.
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Proof. Let X and Y be Banach spaces satisfying (1.1) and (1.3). Sup-
pose that the Decomposition Scheme (1.9) holds for some pair of triples
{(p, q, r), (s, t, u)} with w-number N different from zero such that N di-
vides q − p + r and t− s + u. We will show that X is isomorphic to Y . By
the symmetry of Definition 1.3, we only consider two cases: p ≤ q; p > q
and s > t.

Case 1: p ≤ q. Let C be a Banach space satisfying X ∼ Xp⊕C. Adding
C to both sides of the first condition of the Decomposition Scheme (1.9) we
have

X ∼ Xp ⊕ C ∼ Xq ⊕ Y r ⊕ C ∼ Xq−p ⊕Xp ⊕ C ⊕ Y r ∼ Xq−p ⊕X ⊕ Y r

∼ Xq−p+1 ⊕ Y r.

Therefore by the second condition of (1.9) we see that

(3.1)

{
X ∼ Xq−p+1 ⊕ Y r,

Y s ∼ Xu ⊕ Y t.

Since the discriminant ∇ of the quintuple (q − p + 1, r, u, t, s) is equal to
(q − p)(t − s) − ru = N , it follows that ∇ is different from zero and ∇
divides (q− p+ 1) + r− 1 = q− p+ r and t− s+ u. By the characterization
of the Schroeder–Bernstein quintuples mentioned above we conclude that
X ∼ Y .

Case 2: p > q and s > t. Let C be a Banach space satisfying

(3.2) X ∼ Xq ⊕ C.

Adding C to both sides of the first condition of Decomposition Scheme (1.9)
we infer

Xp−q ⊕Xq ⊕ C ∼ Xq ⊕ C ⊕ Y r.

Hence by (3.2),

(3.3) Xp−q+1 ∼ X ⊕ Y r.

Now adding Y r to both sides of (3.3) we have

(3.4) Xp−q ⊕X ⊕ Y r ∼ X ⊕ Y 2r.

Next by using (3.3) in (3.4) we deduce

X2(p−q)+1 ∼ Xp−q ⊕Xp−q+1 ∼ X ⊕ Y 2r.

So by induction we conclude

(3.5) Xm(p−q)+1 ∼ X ⊕ Y mr, ∀m ∈ N.
Analogously,

(3.6) Y n(s−t)+1 ∼ Y ⊕Xnu, ∀n ∈ N.
Now there are two subcases:
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Subcase 2.1: N > 0. So (p−q)(s−t) > ur and we cannot have p−q ≤ r
and s− t ≤ u. Moreover, since

(3.7) N = (p− q − r)(s− t) + r(s− t− u),

we also cannot have p− q > r and s− t > u, otherwise N > p− q − r and
N would not divide p− q− r, which is absurd. So by symmetry, we suppose
that p− q ≤ r and s− t > u. Let m,n ∈ N be such that q− p+ r = nN and
t− s + u = −mN . By (3.7) we obtain

(3.8) mr = n(s− t) + 1.

Furthermore, we also have

(3.9) N = (q − p)(t− s + u)− u(q − p + r).

Consequently,

(3.10) m(p− q) = nu + 1.

Finally by using (3.5), (3.6), (3.8) and (3.10) we conclude

Xm(p−q)+1 ∼ X ⊕ Y n(s−t)+1 ∼ X ⊕ Y ⊕Xnu ∼ Xnu+1 ⊕ Y = Xm(p−q) ⊕ Y.

Thus by Remark 1.1, X ∼ Y .

Subcase 2.2: N < 0. Hence (p − q)(s − t) < ur and we cannot have
p − q ≥ r and s − t ≥ u. Moreover, we also cannot have p − q < r and
s− t < u, otherwise by using (3.7), N < p− q − r and N would not divide
p−q−r, which is absurd. Again by symmetry, we assume that p−q ≤ r and
s− t > u. Let m,n ∈ N be such that q− p+ r = −nN and t− s+ u = mN .
By (3.7) and (3.9) we deduce

(3.11) n(s− t) = mr + 1 and nu = m(p− q) + 1.

Next by using (3.5), (3.6) and (3.11) we have

Y n(s−t)+1 ∼ Y ⊕Xnu = Y ⊕Xm(p−q)+1 ∼ Y ⊕X ⊕ Y mr ∼ Y mr+1 ⊕X

= Y m(s−t) ⊕X.

Therefore according to Remark 1.1, X ∼ Y .

Proposition 2.2. Every pair of triples {(p, q, r), (s, t, u)} with p = q+r,
N = 0 and gcd(r, u) = 1 is a SBpt.

Proof. Let X and Y be Banach spaces satisfying (1.1) and (1.3). As-
sume that the Decomposition Scheme (1.9) holds for some pair of triples
{(p, q, r), (s, t, u)} with p = q + r, N = 0 and gcd(r, u) = 1. We will show
that X is isomorphic to Y .

According to the well-known Bézout theorem there exist m and n in N
such that mr = nu + 1 or nu = mr + 1. Without loss of generality, we may
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suppose that mr = nu + 1. Since N = 0, it follows that s = t + r. So, by
using (3.5) and (3.6) we conclude

Xmr+1 ∼ X⊕Y mr = X⊕Y nu+1 ∼ X⊕Y ⊕Xnu ∼ Xnu+1⊕Y = Xmr⊕Y.

Once again by Remark 1.1, X ∼ Y .

3. Necessary conditions for a pair of triples to be a SBpt. The
goal of this section is to complete the proof of Theorem 1.5. Notice that this
is a direct consequence of Propositions 3.1, 3.3, 3.4 and 3.5 below. In order
to prove these propositions we recall that in [15, p. 563], for every v ∈ N,
v ≥ 2 Banach spaces Xv were constructed having the following property:

(3.12) Xm
v ∼ Xn

v ,

with m,n ∈ N, if and only if m is equal to n modulo v. In particular observe
that for all m ∈ N we have

(3.13) X2m
v

c
↪→ Xm

v .

Proposition 3.1. If a pair of triples {(p, q, r), (s, t, u)} with p ≤ q or
s ≤ t and w-number N is a SBpt, then N 6= 0 and N divides q − p + r and
t− s + u.

Proof. Without loss of generality we may suppose that p ≤ q. Assume
that a pair of triples {(p, q, r), (s, t, u)} with p ≤ q and with w-number N
does not satisfy: N is different from zero and N divides q − p + r and
t − s + u. Since the discriminant ∇ of the quintuple (q − p + 1, r, u, t, s)
is equal to N , it does not satisfy: ∇ is different from zero and ∇ divides
(q − p + 1) + r − 1 = q − p + r and t − s + u. So by the proof of [7,
Theorem 2.1] there are non-isomorphic Banach spaces X and Y such that

the Decomposition Scheme (3.1) holds. Moreover, X2 c
↪→ X because X is

taken from the Banach spaces Xm
v , v ∈ N, v ≥ 2 and m ∈ N, and (3.13)

holds.

Now adding Xp−1 to both sides of the first condition of (3.1) we infer
that the Decomposition Scheme (1.9) holds and hence {(p, q, r), (s, t, u)} is
not a SBpt.

We will need the following lemma.

Lemma 3.2. Let p, q, r, s, t, u ∈ N. Suppose that there exist i, j, v ∈ N
with v ≥ 2 satisfying

(a) v divides i(q − p) + jr;
(b) v divides iu + j(t− s);
(c) v does not divide j − i.

Then {(p, q, r), (s, t, u)} is not a SBpt.
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Proof. Let n ∈ N be such that nv − j + i > 0 and nv − i + j > 0. Since
j + (nv − j + i) − i = nv and i + (nv − i + j) − j = nv, by the property
of Banach spaces Xv mentioned above in (3.12) and by the conditions (a)
and (b) we have {

Xi
v ∼ Xj

v ⊕Xnv−j+i
v ,

Xj
v ∼ Xi

v ⊕Xnv−i+j
v ,

and {
Xip

v ∼ Xiq
v ⊕Xjr

v ,

Xjs
v ∼ Xjt

v ⊕Xiu
v .

Further according to condition (c) we conclude that Xi
v is not isomorphic

to Xj
v . Consequently, {(p, q, r), (s, t, u)} is not a SBpt.

Proposition 3.3. If a pair of triples {(p, q, r), (s, t, u)} with p > q, s > t
and with w-number N different from zero is a SBpt, then N divides q−p+r
and t− s + u.

Proof. By the symmetry of the definition of SBpt, it suffices to prove
that N divides q− p+ r. Thus assume that N does not divide q− p+ r. We
now distinguish two cases.

Case 1:N ≥ 2. Take i = N+r, j = p−q and v = N . Then i(q−p)+jr =
N (q − p), iu + j(t − s) = N (u − 1) and j − 1 = −N − (q − p + r). Thus
Lemma 3.2 implies that {(p, q, r), (s, t, u)} is not a SBpt.

Case 2: N ≤ −2. Take i = −N + r, j = p − q and v = −N . Then
i(q−p)+jr = N (p−q), iu+j(t−s) = −N (u+1) and j−i = −N+q−p+r.
So by Lemma 3.2 we see that {(p, q, r), (s, t, u)} is not a SBpt.

Proposition 3.4. If a pair of triples {(p, q, r), (s, t, u)} with p > q, s > t
and N = 0 is a SBpt, then p = q + r.

Proof. Suppose that p 6= q+r. Take i = r, j = p−q and v ∈ N such that
v does not divide p− q− r. So i(q− p) + jr = 0 and since N = 0, it follows
that iu + j(t− s) = 0. Hence according to Lemma 3.2, {(p, q, r), (s, t, u)} is
not a SBpt.

Proposition 3.5. If a pair of triples {(p, q, r), (s, t, u)} with p > q, s > t
and N = 0 is a SBpt, then gcd(r, u) = 1.

Proof. By Proposition 3.4, p = q + r and therefore s = t + u. Assume
that gcd(r, u) 6= 1. Take i = 1, j = 2 and v ∈ N, v ≥ 2 such that v divides r
and u. By Lemma 3.2 we conclude that {(p, q, r), (s, t, u)} is not a SBpt.
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