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EMBEDDING PROPER HOMOTOPY TYPES

BY

M. CÁRDENAS, T. FERNÁNDEZ, F. F. LASHERAS and A. QUINTERO (Sevilla)

Abstract. We show that the proper homotopy type of any properly c-connected
locally finite n-dimensional CW-complex is represented by a closed polyhedron in R2n−c

(Theorem I). The case n−c ≥ 3 is a special case of a general proper homotopy embedding
theorem (Theorem II). For n− c ≤ 2 we need some basic properties of “proper” algebraic
topology which are summarized in Appendices A and B. The results of this paper are the
proper analogues of classical results by Stallings [17] and Wall [20] for finite CW-complexes;
see also Dranǐsnikov and Repovš [7].

Introduction. The classical Kuratowski theorem characterizing pla-
nar finite graphs ([13]) turns out to be trivial when one considers ho-
motopy types since any finite connected graph is homotopically equiva-
lent to a finite pointed union of circles. Actually this observation is just
the 1-dimensional case of a theorem due to Stallings [17] (also proved by
Dranǐsnikov and Repovš [7]) stating that the homotopy type of any c-
connected n-dimensional finite CW-complex can be represented by a sub-
polyhedron in R2n−c.

When one directs interest to locally finite graphs one finds the analogue
of Kuratowski’s theorem; that is, the characterization due to Halin and
Thomassen ([19]) of those locally finite graphs which admit proper planar
embeddings. Recall that a continuous map f : X → Y is proper if f−1(K)
is compact for any compact subset K ⊂ Y . The Halin–Thomassen theorem
is trivial for proper homotopy types. This fact is an immediate consequence
of the classification of proper homotopy types of locally finite graphs by
circles attached to trees in [2]; see also Proposition 3.1. We will show below
that this remark extends to the following proper analogue of Stallings’s
theorem. Recall that a locally finite CW-complex X is said to be properly
c-connected (c ≥ 1) if the proper homotopy class of X can be represented
by a CW-complex Y whose c-skeleton Y c = T is reduced to an end-faithful
tree. See Appendix A for details.

2000 Mathematics Subject Classification: Primary 55P57, 57Q35; Secondary 57Q91.
Key words and phrases: proper map, end-faithful tree, Freudenthal end, proper in-

variants, open manifold, general position.

[1]
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Theorem I. The proper homotopy type of any n-dimensional locally fi-
nite CW-complex X can be represented by a closed polyhedron P ⊂ R2n.
Moreover if X is properly c-connected then P can be chosen in R2n−c.

The main goal of this paper is the following general proper homotopy
embedding theorem from which we easily derive Theorem I for n− c ≥ 3.

Theorem II. Let M be an m-dimensional open pl-manifold and let
P be a k-dimensional locally compact polyhedron with k ≤ m − 3. Let
f : P → M be a properly (2k − m + 1)-connected pl-map such that f
induces a homeomorphism between the spaces of Freudenthal ends of P and
f(P ). Then there exists a closed subpolyhedron P̃ ⊂ M and a proper ho-
motopy equivalence h : P → P̃ such that h is properly homotopic to f
inside M .

We refer to Appendix A for the definition of a properly c-connected map.
For n− c ≤ 2 Theorem I will follow from the explicit description of these

highly connected proper homotopy types by use of basic facts of “proper”
algebraic topology (Propositions 3.1 and 3.5) and a purely combinatorial
proof of the special case n = 2, c = 0.

The results of this paper are the proper analogues of classical results by
Stallings [17] and Wall [20] for finite CW-complexes; see also Dranǐsnikov
and Repovš [7]. In fact, the arguments in [17] are used here as guidelines
for the proofs. We can do that since the crucial points in [17] are general
position in pl-manifolds as well as some features of the ordinary homotopy
category which lie in the cofibration part of homotopy theory. In the proper
category we shall use the (proper) general position theorem of [12] as well
as the structure of cofibration category in the sense of Baues of the proper
category; see [3].

1. Preliminaries. Recall that a continuous map f : X → Y is said to
be proper if f−1(K) is compact for each compact subset K ⊂ Y . Proper
homotopies, proper homotopy equivalences, etc. are then defined in the ob-
vious way. Let “'p” denote the proper homotopy relation. We will work
within the category P of locally compact σ-compact Hausdorff spaces and
proper maps. In other words, any space X in P admits a countable basis of
neighbourhoods at infinity. Recall that A ⊂ X is said to be a neighbourhood
at infinity if the closure X −A is compact. In this paper we will deal spe-
cially with the class of finite-dimensional locally finite CW-complexes. For
these, it is always possible to choose a countable basis of neighbourhoods
at infinity consisting of subcomplexes; see [9]. Recall that the space of ends
of a space X in P is the inverse limit F(X) = lim←−π0(Uj) where {Uj}j≥1

is a countable basis of neighbourhoods at infinity. Here π0(−) denotes the
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discrete set of connected components. In case X is connected and locally
path connected the space F(X) if homeomorphic to a closed subset of the
Cantor set. We shall use later the following

Lemma 1.1. Let M be an n-dimensional open pl-manifold and let X ⊂
M be a closed non-compact subpolyhedron. Then there exists an increasing
sequence Mi ⊂ intMi+1 (i ≥ 1) of compact n-submanifolds with M =⋃∞
i=1Mi such that all connected components of X− intMi are non-compact.

Moreover , for each i ≥ 1 there is a bijection

(1) π0(X − intMi) ∼= π0(X ∩ (Mi+1 − intMi)).

Proof. Let Ki ⊂ intKi+1 be an increasing sequence of compact con-
nected subpolyhedra in M with M =

⋃∞
i=1Ki. Let {Wi} be the sequence

of submanifolds obtained by setting Wi = Ni ∪ N ′i where Ni is a regular
neighbourhood of Wi−1∪Ki (W0 = ∅) and N ′i is the union of regular neigh-
bourhoods in M − intNi of all compact components of X − intNi. For the
sequence {Wi} one readily shows that all components of X − intWi are
non-compact.

Next we replace this sequence by a new sequence {Mi} such that in
addition we have a bijection (1) for all i ≥ 1. For this we start with
M1 = W1 and proceed inductively as follows. Assume that for a sequence
∅ = M0 ⊂ M1 ⊂ . . . ⊂ Mk all components in π0(X − intMi) are non-
compact and (1) holds for 0 ≤ i ≤ k. In order to obtain Mk+1 we con-
sider Wik with Mk ⊂ intWik . For the components C ∈ π0(X − intMK) for
which the intersection C ′ = C ∩ (Wik − intMk) is not connected we take
a compact connected polyhedron ZC ⊂ C containing C ′. Then we define
Mk+1 to be the union Mk+1 = Mk ∪ (

⋃{NC}) ∪M ′k where NC is a reg-
ular neighbourhood of ZC in M − intMk and M ′k is the union of regular
neighbourhoods in M − int(Mk ∪ (

⋃{NC})) of all connected components of
X − int(Mk ∪ (

⋃{NC})).

In order to set up the homotopy theory of P one observes that this
category is not closed under push-outs but it contains enough push-outs
to allow the basic homotopical constructions. In fact, the category P is a
cofibration category in the sense of Baues ([4] and [3]). Moreover in P the role
of the base point is played by the half-line R+ = [0,∞) since [X,R+]p = {∗}
is a one-point set [8]. Here [ , ]p denotes the set of homotopy classes in P.
However we will need trees in order to deal with spaces with many ends.
Indeed, for any connected finite-dimensional locally finite CW-complex X
there exists a (maximal) tree T ⊂ X such that F(T ) = F(X1) = F(X);
see [11]. The tree T is called an end-faithful tree. The following proposition
states a crucial property of end-faithful trees.
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Proposition 1.2. Let X be a finite-dimensional locally finite CW-com-
plex and let T ⊂ X be an end-faithful tree. Then the set [X,T ]Tp = {∗} of
proper homotopy classes under T is a one-point set.

Proof. We argue by induction on n = dim(X − T ). For n = 0, X = T
since T is a maximal tree and the result is obvious. Assume the result holds
for Xn−1. In order to extend any proper map r : Xn−1 → T to the n-skeleton
Xn we proceed as follows. Given an n-cell e ⊂ Xn − T let Te ⊂ T be the
smallest subtree containing rfe(Sn−1

e ) where fe is the attaching map of e.
As F(T ) = F(X), the family {Te} is readily checked to be locally finite.
Moreover, as each Te is contractible we can extend rfe : Sn−1

e → Te to a
map re : Bn

e → Te which induces a map r̃e : Xn−1 ∪ e→ T . Then the union
r̃ =

⋃
r̃e yields a proper extension of r. Similar arguments show that all

such extensions are properly homotopic.

Proposition 1.2 allows us to define the proper cone CTX and the proper
suspension ΣTX of a connected finite-dimensional CW-complex X as the
push-outs

T -Mr = CTX

p.o.

X × {0} - X × I

? ?
r and

T ∪ T - ΣTX

X × {0, 1}
p.o.

- X × I

? ?
r∪r

Here T ⊂ X is an end-faithful tree, the map r is given in Proposition 1.2,
and Mf denotes the cylinder of a map f . By the gluing lemma B.1, the
proper homotopy types of CTX and ΣTX do not depend on the map r;
in fact CTX 'p T . Moreover, since any two trees with the same space of
Freudenthal ends are properly homotopy equivalent ([2]) the proper homo-
topy types of CTX and ΣTX only depend on the proper homotopy type
of X. Moreover if r above is cellular then both CTX and ΣTX turn out to
be finite-dimensional locally finite CW-complexes.

The class of finite-dimensional locally finite CW-complexes (or more gen-
erally strongly locally finite CW-complexes) is a good class of complexes
associated to a theory of coactions as defined in [5] and hence the funda-
mental homotopical properties of ordinary CW-complexes (Blakers–Massey,
Hurewicz, or Whitehead theorems) also hold for suitable proper analogues
of homotopy and homology groups. See [5]. In particular, we define proper
c-connectedness in Appendix A in terms of the proper analogues ΠT

∗ of the
homotopy groups. Moreover in Appendix B we include explicit proofs since
these results are not easily found in the literature except for homology and
homotopy towers; see [8]. For this we have chosen the usual language for
“proper” algebra based on the category of trees of groups instead of the
new approach based on theories and models of theories as done in [5].
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2. A proper homotopy embedding theorem. In this section we
prove Theorem II from which we easily derive Theorem I for the stable case
n − c ≥ 3. Theorem II is the proper analogue of the embedding theorem
of [17]; see also [20]. For the proof we will need Addenda 2.2–2.4 below to
the following well known general position theorem:

Theorem 2.1 ([12, 4.8]). Let Q be a closed subpolyhedron of the p-di-
mensional polyhedron P . Assume dim(P − Q) = p0. Let f : P → M be
a pl-map into an m-dimensional pl-manifold M with boundary. Moreover
assume that f |Q is a pl-embedding and f(P − Q) ⊂ intM . Then, given
ε > 0 and any closed subpolyhedron R ⊂ M there exists a non-degenerate
pl-map g : P →M which is ε-homotopic to f relative to Q and satisfies the
following properties:

(i) dimSg|P−Q ≤ 2p0 −m.
(ii) dim(g(P −Q) ∩R) ≤ p+ dimR−m.

(iii) g(P −Q) ⊂ intM .

Here Sg = Cl{x; g−1(g(x)) 6= x} denotes the singular set of g.

Addendum 2.2. If we apply Theorem 2.1 to a proper map f we obtain
a proper map g; see p. 96 in [12]. Namely, let n be large enough to embed
M as a closed subpolyhedron in Rn. Then given a compact subset K ⊂ M
let r > 0 be such that K ⊂ Br is contained in the closed ball Br of radius r
centred at 0 ∈ Rn. As g is ε-homotopic to f we have g−1(K) ⊂ f−1(Br+2ε)
and the result follows.

Addendum 2.3 (cf. [15, 1.6.5(c)]). By taking R = f(Q) = g(Q) we de-
rive from (i) and (ii) that dimSg ≤ p + p0 −m. Here we use the equality
Sg = Sg|P−Q ∪ g−1(g(P −Q) ∩ g(Q)).

Addendum 2.4. If f is proper and the induced map f∗ : F(P ) →
F(f(P )) is a homeomorphism then the same holds for g∗ : F(P )→ F(g(P )).
For this we simply apply Addendum 2.2 to f : P → N where N is a regular
neighbourhood of f(P ) in M . Then we get a proper homotopy H : f 'p g :
P → N and hence the composite f∗ = g∗ : F(P ) → F(g(P )) → F(N) is a
homeomorphism. Therefore g∗ : F(P )→ F(g(P )) is a continuous bijection,
and hence a homeomorphism.

Besides the general position theorem, another ingredient in the proof of
Theorem II is the following

Theorem 2.5. Let M be an open pl-manifold and let f : P → M be
a properly (s + 1)-connected pl-map whose singular set Sf has dimension
≤ s. Assume in addition that f induces a homeomorphism f∗ : F(P ) →
F(f(P )). Then there exists a polyhedron Q with f(P ) ⊂ Q such that the
composite f : P → f(P ) ⊂ Q is a proper homotopy equivalence and has
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dim(Q− f(P )) ≤ s+ 2. Moreover there exists a proper pl-map g : Q → M
such that g|f(P ) is properly homotopic to the inclusion f(P ) ⊂M .

The main arguments in the proof of Theorem 2.5 are provided by the
cofibration category structure of the proper category. The proof will also
use the following

Lemma 2.6. Let f : X → Y be a proper cellular map between finite-
dimensional locally finite CW-complexes such that the induced map f∗ :
F(X) → F(Y ) is a homeomorphism. Then for each 0-cell v ∈ Y there
exists a finite tree Tv ⊂ X containing all the 0-cells in f−1(v) and such that
the family {Tv}v∈Y is locally finite in X.

Proof. The result will easily follow if we show that for any compact set
K ⊂ X there exists a compact set L ⊂ Y such that for any 0-cell v ∈ Y −L
the set f−1(v) is contained in a unique connected component of X − K.
Otherwise, there is a compact set K0 ⊂ X and an increasing sequence
L1 ⊂ L2 ⊂ . . . of compact sets of Y such that there are 0-cells vn ∈ Y − Ln
and 0-cells xn, x′n ∈ f−1(vn) which lie in different components of X − K0.
Moreover, we can assume without loss of generality that the sequence {vn}
converges to an end ε ∈ F(Y ) in the Freudenthal compactification Ŷ of Y .
Let η, η′ ∈ F(X) be two ends obtained as cluster points in X̂ of the sequences
{xn} and {x′n} respectively. Then one reaches the contradiction η 6= η′ and
f∗(η) = f∗(η′).

For the proof of Theorem 2.5 we follow the same arguments as in the
proof of the compact case in [17]. We start by choosing triangulations K
and J of P and M respectively for which f is a simplicial map and Sf is
triangulated by a subcomplex of K; see 3.6 in [12]. Then we observe that the
natural CW-complex structure of the mapping cylinder Mf of f contains
f(K) as a subcomplex. Let f ′ : Sf → f(Sf ) be the restriction of f , and Mf ′

the corresponding mapping cylinder.

Lemma 2.7. The obvious map obtained by the union of the inclusion
j : (Mf ′ , Sf ) ⊂ (Mf , P ) and the projection I × Sf → Sf ⊂ P extends to a
proper homotopy h : I ×Mf ′ → Mf relative to Sf ⊂ Mf ′ with h0 = j and
h1(Mf ′) ⊂ P .

Proof. We proceed inductively as follows. For each 0-cell v ∈ Mf ′ − Sf
×{0} we have v ∈ f(Sf ). Then we pick any 0-cell wv ∈ Sf with wv ∈ f−1(v)
and we set h0

1(v) = wv. Moreover we define h0 : I × M0
f ′ → Mf on the

0-skeleton of M0
f ′ by sending the segment I × {v} onto the 1-cell in Mf

running between v and wv. For the extension of h0 to h1 : I ×M1
f ′ → Mf

we use Lemma 2.6. Namely, given any 1-cell e = e(v, w) with vertices v
and w ∈ f−1(v) we define h1

1|e(v, w) to be a path in the tree Tv ⊂ P
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given by Lemma 2.6 between w and wv = h0
1(v). Moreover, given any 1-cell

e′ = f(σ) ⊂ f(P ) with vertices v = f(w) and v′ = f(w′) we define h1
1|e′

to be the path in P defined by the juxtaposition of h1
1|e(v, wv), the 1-cell σ

and h1
1|e(v′, wv′).

The extension of φ1 = h1
1 ∪ h0 ∪ h0 : {0, 1} × M1

f ′ ∪ I × M0
f ′ → Mf

to h1 : I × M1
f ′ → Mf can now be carried out since the map f , and

hence the pair (Mf , P ), is properly (s + 1)-connected. Indeed, given an
end-faithful tree T ⊂ P we form a 1-spherical object S1

α under T with a
circle S1

e for each 1-cell e ⊂Mf ′−Sf . This circle is attached at a 0-cell wv(e)
where v(e) is a vertex of e in f(Sf ). This way the map φ1 above defines
a proper map g : S1

α → Mf . Since (Mf , P ) is properly (s + 1)-connected
there exists a proper homotopy H : g 'p g′ with g′(S1

α) ⊂ P . Then we
replace the map φ1 by a new proper map φ̃1 = h̃1

1 ∪ h0 ∪ h0 where h̃1
1 is ob-

tained by the juxtaposition of the path h1
1|e with the restriction g′|S1

e for all
1-cells e ⊂ Mf ′ − Sf . Moreover, by use of the homotopy H it is readily
checked that φ̃1 now extends to a proper map h1 : I × M1

f ′ → Mf with
h1

1(Mf ′) ⊂ P .
Once we have gone through the critical case in dimension 1, the result

will follow inductively as usual. Assume we have already constructed an
extension hk : I×Mk

f ′ →Mf with hk1(Mk
f ) ⊂ P . Then hk∪h0 : I×Mk

f ′∪{0}×
Mk+1
f ′ → Mf can be regarded as a proper map φk : (Bk+1

α , Skα) → (Mf , P )
for a suitably chosen spherical object Skα. Therefore Proposition A.2 yields
an extension hk+1 : I×Mk+1

f ′ →Mf of hk ∪h0 with the required properties.

We are now ready for the proof of Theorem 2.5.

Proof of Theorem 2.5. Let C1 be the mapping cylinder of the map h1 :
Mf ′ → P ⊆ Mf given by Lemma 2.7. Moreover, let ψ : C1 → Mf denote
the proper map induced by the homotopy h : I ×Mf ′ → Mf in Lemma
2.7 and the inclusion P ⊂ Mf . In addition, let C2 be the mapping cylinder
relative to Sf ; that is, C2 is obtained by the left push-out diagram below.

Sf - C2

p.o.

I × Sf - C1

? ?
π 'p 'pα

f(Sf ) - C3

Mf ′ - C2

p.o.

? ?
r′ 'p β 'p

By the push-out property, the map ψ and the inclusion Sf ⊂ Mf induce a
proper map h̃ : C2 → Mf . Note that C2 is endowed with a natural CW-
complex structure for which h̃ is a cellular map. Finally we obtain a new CW-
complex via the right push-out diagram above in which r′ : Mf ′ → f(Sf )
is the restriction of the canonical retraction r : Mf → M . Moreover the



8 M. CÁRDENAS ET AL.

map Ψ : C3 → M obtained from the previous diagram for the composite
rh̃ and the inclusion f(Sf ) ⊂ M is a proper map for which one readily
checks Ψβαj = f where j denotes the inclusion P ⊂ C1 and α and β
are defined in the diagrams above. Moreover Ψ induces a cellular home-
omorphism Ψ : βαj(P ) ∼= f(P ) with respect to the triangulation K. Fi-
nally

dim(C3−f(P )) = dim(C2−αj(P )) = dim(C1−j(P )) ≤ dimMf ′+1 = s+2.

We finish by using Proposition B.2 to replace C3 by a polyhedron Q of
the same dimension and by choosing g : Q → M as the composite g :
Q 'p C3

Ψ→M .

Proof of Theorem II. By Addendum 2.4 we can assume that f is a
non-degenerate pl-map with dimSf ≤ s for s = 2k − m. Next we apply
Theorem 2.5 to f getting a diagram

f(P ) -M

P - Q1

? ?
f g

�
�
�
��3

i

'p

h1

j

which is commutative up to proper homotopy and where i and j are the
obvious inclusions and h1 is a proper homotopy equivalence. Moreover, we
have dim(Q1−f(P )) ≤ s+2 ≤ k−1 since k ≤ m−3. Note that dim f(P ) =
dimP since f is a non-degenerate map. Hence dimQ1 = max{s+ 2, k} = k.
By applying Addendum 2.3 we can replace g by a non-degenerate proper
pl-map g1 with dimSg1 ≤ k+ s+ 2−m ≤ s− 1. Here we use k ≤ m− 3. At
this point we face two possible cases.

1. Sg1 = ∅ and hence g1 is a closed pl-embedding. Then we choose P̃ =
g1(P1) and h : P → P̃ to be the composite h = g1h1.

2. Sg1 6= ∅. Then we proceed as follows. Since f is properly (s + 1)-
connected and h1 is a proper homotopy equivalence we derive from g1h1 'p f
that g1 is also a properly (s+ 1)-connected map. As dimSg1 ≤ s− 1 we can
argue as above with g1 in place of f to obtain a new diagram

g1(Q1) -M

P 'p Q1 - Q2

? ?
g1 g2

�
�
�
��3

i

'p

h2

j

which is commutative up to proper homotopy where dim(Q2 − g1(Q1)) ≤
s + 1, and dimSg2 ≤ s − 2. By iterating this procedure we reach Case 1 at
least for gs+1 and the proof is complete.
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3. Embedding proper homotopy types into Euclidean spaces. In
this section we give a proof of Theorem I. For n−c ≥ 3 this is an immediate
consequence of Theorem II:

Proof of Theorem I for n−c ≥ 3. Let T ⊂ P be any end-faithful tree. Let
i : T ⊂ R2n−c be any proper embedding and let r : P → T be any retraction
as in Proposition 1.2. Then r induces a homeomorphism r∗ : F(X) ∼= F(T )
and the result follows immediately by applying Theorem II to the composite
ir since R2n−c is properly (2n− c− 2)-connected and n− c ≥ 3.

The case n−c ≤ 2 is proved below by use of arguments from the folklore
of “proper” algebraic topology together with an elementary proof of the
embeddability up to proper homotopy of any 2-dimensional locally finite
CW-complex in R4. Actually for n− c ≤ 1 Theorem I is an immediate con-
sequence of the following classification of highly connected proper homotopy
types for which we use the existence of kernels in the category of “free” trees
of abelian groups.

Proposition 3.1. Let X be a properly (n − 1)-connected locally finite
CW-complex of dimension n ≥ 1. Then X has the proper homotopy type of
a spherical object.

We refer to Appendix A for the definition of a spherical object. In the
proof of Proposition 3.1 we use the category TreeT (Ab) of trees of abelian
groups and the notion of homology tree of X. Also some results from Ap-
pendix B are used.

Proof of Proposition 3.1. Let T ⊂ X be an end-faithful tree. If n = 1
the gluing lemma B.1 applied to the attaching maps of the 1-cells of X − T
yields the result; compare the proof of Proposition 1.2. For n ≥ 2 we apply
Proposition B.3 to find a proper homotopy equivalence f : X → Y with
dimY = n+ 1 and Y n−1 = T . Moreover by Proposition 1.2 we can assume
that Y n = Snα is a spherical object. The proper cellular approximation the-
orem [9] shows that i∗ in the following diagram in the category TreeT (Ab)
is an epimorphism:

ZTn (X) = HT
n (X) -HT

n (Y )

HT
n (Snα)

?
i∗

�
�
�
��3

f∗

∼=

ϕ

In this diagram the tree ZTn (X) of n-cycles is a free and hence projective
tree by Proposition A.1. Hence there exists a lifting ϕ as in the diagram.
Moreover we can easily identify, via the homology tree, the free tree ZTn (X)
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with a certain spherical object Snβ in such a way that we get a bijection

[Snβ , S
n
α] ∼= TreeT (Ab)(ZTn (X),HT

n (Snα))

and so the lifting ϕ is realizable by a proper map g : Snβ → Snα. Therefore,
the composite g̃ = ig induces an isomorphism

g̃∗ : HT
n (Snβ )→ HT

n (Y )

and hence g̃ is a proper homotopy equivalence by Proposition B.8.

For n − c = 2 we first give a purely combinatorial proof for the case
n = 2, c = 0 in the following

Proposition 3.2. The proper homotopy type of any 2-dimensional lo-
cally finite CW-complex X can be represented by a closed polyhedron in R4.

Proof. By Proposition B.2 we can assume that X is a polyhedron. Let
K be a triangulation of X, and let T ⊆ K be an end-faithful tree in K.
By Proposition 3.1, K1 is properly homotopy equivalent to a 1-dimensional
spherical object S1

α under T . More explicitly, S1
α is obtained from K1 as

follows. We order the vertices of T . Then for each ordered edge e = (ve, we)
of K1 we get one 1-sphere S1

e ⊂ S1
α by sliding the vertex we to ve along the

reduced edge path from we to ve in T . By using Lemma B.1 we replace K by
a 2-dimensional CW-complexW 2 with W 1 = S1

α and for which the attaching
maps of the 2-cells have degree 0, ±1 on each (oriented) 1-sphere S1

e .
Any proper embedding S1

α ⊂ R2×{(0, 0)} ⊂ R4 induces a cyclic ordering
of the 1-spheres on the boundary of each 2-cell d ⊂W 2 as one goes around
the base vertex vd ∈ d following the clockwise orientation of R2. Then we
choose the proper embedding above in such a way that the cyclic ordering
induced by R2 coincides with the cyclic ordering defined by the ordering
of the vertices in K1. For this we use the fact that no pair of 1-spheres is
shared by the 2-cells of W 2.

This way the attaching map fd : ∂B2 → S1
α of each 2-cell d can be

described as a sequence aε(1)
i1

. . . a
ε(r)
ir

with r ≤ 3 and ε(j) = ±1 and where
each aij represents a 1-sphere in ∂d ⊂ R2. The next lemma is immediate:

Lemma 3.3. Assume that for the 2-cell d ⊂ W 2 all ε(j) are the same
for j = 1, 2, 3 and that the ordering ai1ai2ai3 represents the cyclic ordering
around the base vertex vd. Then for a given 3-dimensional vector space H
containing R2 × {(0, 0)} there exists a pl-map Fd : B2 → H with Fd|∂B2 =
fd such that Fd|intB2 is an embedding into the upper half-space H+ in case
ε(j) = 1. Moreover , if ε(j) = −1 for all j then the embedding is chosen to
map into the lower half-space H−.

Assume now that the attaching map fd of the 2-cell d does not satisfy
the condition of Lemma 3.3. We describe below a process after which the
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original CW-complex W 2 is replaced by a new one W̃ 2 of the same proper
homotopy type as W 2 and such that the attaching maps of W̃ 2 satisfy
the conditions of Lemma 3.3. It is then left to choose a countable family
{He} of 3-dimensional vector spaces in R4, one for each 2-cell e ⊂ W̃ 2,
so that He ∩ He′ = R2 × {(0, 0)} for e 6= e′ and apply Lemma 3.3. Then
Proposition 3.2 will follow since the union of all embeddings obtained from
Lemma 3.3 defines a proper embedding of W̃ as a closed subpolyhedron
of R4. In order to replace W 2 by W̃ 2 we proceed as follows. The process is
sketched in the picture below.

(1) Assume ε(2) = −1. Then we enlarge the spherical object S1
α via

an embedded 1-sphere Σ2 wedged at T at the same vertex as S1
ei2

, and we

replace the original cell d by two new 2-cells with attaching maps aε(1)
i1

Σ2a
ε(3)
i3

and Σ−1
2 a−1

i2
respectively.

(2) After (1) we can now assume that the attaching map fd is described
by a sequence ai1ai2ai3 with ε(j) = 1 for j = 1, 2, 3. If i3 precedes i2 in the
cyclic ordering on ∂d, then we enlarge the spherical object S1

α by adding
two new 1-spheres Γ3 and Γ̃3 wedged at the same vertex as S1

ei3
and S1

ei2
respectively, and we replace the original 2-cell d by three new 2-cells with
attaching maps ai1ai2 Γ̃3, Γ̃−1

3 Γ−1
3 and Γ3ai3 respectively.

We now exhibit a contractible 2-dimensional CW-complex X whose
proper homotopy type cannot be represented in R3.

Example 3.4. Let {Sk}k≥1 be a countable family of circles. We con-
sider the space X =

⋃∞
n=1Zn where Z1 ⊂ Z2 ⊂ . . . are defined induc-

tively as follows. Let Z1 = D be a disk with boundary ∂D = S1. Assume
Zn is constructed; then Zn+1 is defined as the obvious adjunction space
Zn+1 = Zn ∪Mfn where fn : Sn+1 → Sn is a map of degree 2. Clearly, X
is a contractible 2-dimensional CW-complex whose proper homotopy type
cannot be represented by a closed polyhedron in R3. Indeed, if Y ⊂ R3 is
a polyhedron proper homotopy equivalent to X, then a regular neighbour-
hood M of Y in R3 would be an orientable 3-manifold proper homotopy
equivalent to Y and hence H2

c (Y ) ∼= H2
c (M) ∼= H1(M,∂M) by Lefschetz

duality ([14, 11.3]), which is a contradiction, since H2
c (Y ) ∼= H2

c (X) is the
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group of dyadic numbers (i.e., the rational numbers in reduced form p/q

with q a power of 2) and H1(M,∂M) ∼= H̃0(∂M) is free abelian.

Once we have Proposition 3.2 at hand, Theorem I for coconnected-
ness n − c = 2 is an immediate consequence of the following two propo-
sitions:

Proposition 3.5. Let X be a properly (n−2)-connected n-dimensional
locally finite CW-complex. Then X has the proper homotopy type of the
(n−2)th suspension Σn−2

T Y of a 2-dimensional locally finite CW-complex Y .

Proof. By Proposition B.3 the proper homotopy type of X can be repre-
sented by an n-dimensional locally finite CW-complex Y such that Y n−2 =
T is a tree. In particular the (n − 1)-skeleton Y n−1 has the proper homo-
topy type of a spherical object Sn−1

α 'p Y
n−1. Here we use Proposition 3.1.

Moreover, by using based attaching maps for the n-cells of Y if necessary
(see Lemma B.1) the CW-complex Y can be described as the mapping cone
Y = Cf of a proper map f : Sn−1

β → Sn−1
α between (n − 1)-dimensional

spherical objects. By Corollary B.5 the map f is properly homotopic to the
iterated suspension of a proper map f̃ : S1

β → S1
α. Hence Y 'p Σn−2

T Z

where Z = C
f̃

is the 2-dimensional CW-complex defined by the cone of f̃ .

Proposition 3.6. Let X ⊂ Rn be a closed subpolyhedron. Then the
proper homotopy type of the proper suspension ΣTX is represented by a
closed subpolyhedron in Rn+1.

Proof. Let {Mi}i≥1 be an increasing sequence of compact n-submani-
folds as in Lemma 1.1. By using collars of the boundaries ∂Mi we can write
Rn = M1 ∪ ∂M1 × [0, 1] ∪ (M2 − intM1) ∪ ∂M2 × [0, 1] ∪ . . . and hence we
obtain a new polyhedron X ′ ⊂ Rn of the form

X ′ = X1 ∪X ′1 × [0, 1] ∪X2 ∪X ′2 × [0, 1] ∪ . . .
where Xi = X ∩ (Mi − intMi−1) and X ′i = Xi ∩ ∂Mi for i ≥ 1 with
M0 = ∅. Moreover, X ′ has the same proper homotopy type as X since
both X and X ′ are proper deformation retracts of the cylinder X × [0, 1].
Finally we form the tree T with vertices of level i ≥ 0 the elements of
the set π0(X − intMi) ∼= π0(X ∩ (Mi+1 − intMi)) where two vertices
C ∈ π0(X − intMi), D ∈ π0(X − intMi+1) are joined by an edge if
D ⊂ C. There is an obvious proper map r : X ′ → T which carries each
of the points in C ∈ π0(X ∩ (Mi+1 − intMi)) to the vertex in T associated
to C. One readily checks that the induced map r∗ : F(X ′) → F(T ) is a
homeomorphism. Therefore for an end-faithful tree T ′ ⊂ X ′ the restriction
r : T ′ → T is a proper homotopy equivalence; see [2]. Hence the gluing
lemma B.1 shows that the proper suspension ΣT ′X

′ has the same proper
homotopy type as the polyhedron S(X ′) obtained by the push-out diagram
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T - S(X ′)

p.o.

X ′ × {0, 1} -X ′ × I

? ?
r∪r

The proof is now complete since the embedding X ′ ⊂ Rn can be readily
extended to an embedding S(X ′) ⊂ Rn+1.

Appendix A: The category of trees of groups. Here we collect
from [10] the basic facts concerning the category of trees of groups, and we
use them to state the proper analogues of homology and homotopy groups.
Let T be any locally finite tree. By choosing a base vertex v0 ∈ T the set of
vertices of T is stratified as follows. If v is a vertex of T , let |v| denote the
number of edges in the unique arc γv ⊂ T connecting v to v0. The number
|v| is called the height of v. The set of vertices of T can be partially ordered
by setting v ≤ w if v lies in the arc γw. Any tree T can be considered as a
category whose objects are the vertices of T and the morphism set T (x, y)
consists of a single morphism whenever x ≥ y. Given a category C, a T -tree
in C is just a functor F : T → C where the induced morphisms F (x ≥ y) are
called the bonding morphisms of F . For the special case T = R+ the T -trees
are termed towers in C. In order to define the category with objects T -trees
in a category C with coproducts we define morphisms f = [({fn}n≥0, α)] :
F → G by equivalence classes of pairs ({fn}n≥0, α) defined as follows. The
map (called a shift map) α : N ∪ {0} → N ∪ {0} is an increasing map with
α(0) = 0 and n ≤ α(n) for all n ≥ 0. In addition, for each n ≥ 0, fn is a
morphism in C

fn :
∨

|x|=α(n)

F (x)→
∨

|y|=n
G(y)

which is decomposed into morphisms

fn :
∨
{F (x); x ≥ y, |x| = α(n)} → G(y).

Moreover two pairs ({fn}n>0, α) and ({gn}n>0, β) are said to be equivalent
if there exists a shift map γ : N ∪ {0} → N ∪ {0} with α, β ≤ γ and for
all n ≥ 0 and x ∈ T with |x| = n we have fnhzy = gnhzw for x ≤ y ≤ z,
x ≤ w ≤ z, |y| = α(n), |w| = β(n), and |z| = γ(n). Here hzy and hzw denote
the corresponding bonding morphisms. Let TreeT (C) denote the category
of T -trees in the category C.

By using the notion of a tree in the category Ab of abelian groups one
defines the homology tree of a strongly locally finite CW-pair (X,A) with an
end-faithful tree T ⊂ X as follows. Recall that a CW-complex X is said to
be strongly locally finite if it can be decomposed as a locally finite union of
finite subcomplexes. Therefore it is easy to find a countable basis {Uj}j≥0 of
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neighbourhoods at infinity consisting of subcomplexes with U0 = X. Then
the nth homology tree of (X,A) is the T -tree HT

n (X,A) ∈ TreeT (Ab) given
by

HT
n (X,A)(v) = Hn(Cv, Cv ∩A)

where Cv ⊂ Uj(v) is the component of v with j(v) = max{j; w ∈ Uj for all
w ≥ v}. The bonding homomorphisms are induced by the corresponding
inclusions.

The category TreeT (Ab) is an abelian category and it is readily checked
that HT

n (X,A) can also be obtained as the homology of the chain complex
in TreeT (Ab)

. . .→ CTn (X,A)
∂→ CTn−1(X,A)→ . . .

where CTn (X,A) is the tree of free abelian groups obtained from the cellular
n-chains of the components Cv, and ∂ is defined by the cellular boundary
operator.

A crucial feature of the T -tree CT
n (X,A) is the following “freeness prop-

erty”. A T -tree B ∈ TreeT (Set) of sets is said to be a T -basis if the following
conditions hold:

(a) the bonding maps are inclusions;
(b) if |v| = |w| and v 6= w then B(v) ∩B(w) = ∅;
(c) for all n ≥ 0, B(v0)−⋃{B(v); |v| = n} is a finite set;
(d)

⋂∞
i=0{

⋃
B(v); |v| = i} = ∅.

A T -tree in Ab, F : T → Ab, is said to be a free tree with T -basis B if
F (v) is the free abelian group generated by B(v) for all v ∈ T and the bond-
ing homomorphisms of F are the obvious basis inclusion homomorphisms.
The tree CTn (X) of cellular chains is readily checked to be a free tree. More-
over, it is a simple exercise to show that any free tree is a projective object
in TreeT (Ab).

Observe that a T -basis B : T → Set is completely determined by a
proper map α : B(v0) → T 0 from the discrete set B(v0) to the 0-skeleton
T 0 of T . Namely α(b) = v if b ∈ B(v) and hence B(v) = {α−1(w); w ≥ v}.
A free tree of basis B will also be denoted by Lα. Moreover by use of the
nth homology tree (n ≥ 2) we can identify the free tree Lα with the space
Snα obtained by attaching #α−1(v) n-spheres at each vertex v ∈ T . The
space Snα is termed an n-spherical object under T . The n-ball Bn yields the
corresponding object Bn

α.
We make use of the following result; see [1] for a proof.

Proposition A.1. The full subcategory of TreeT (Ab) consisting of the
free T -trees admits kernels. In particular , for a finite-dimensional locally
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finite CW-complex X = (X,T ) the T -tree ZTn (X) of cellular cycles is a free
T -tree.

Next we define the proper analogue of the homotopy groups as follows.
Given an ordered tree T , a T -based pair is a pair (X,A) in P together
with a proper map t : T → A. Given a T -based pair (X,A, t) we define
the T -tree of homotopy groups of (X,A, t) as the object ΠT

n (X,A, t) ∈
TreeT (Gr) defined as follows. Let {Uj}j≥0 with U0 = X be a countable
basis of neighbourhoods at infinity in X. Then for each vertex v ∈ T we set

ΠT
n (X,A, t)(v) = πn(Cv, Cv ∩ A, t(v))

where Cv ⊂ Uj(v) is the component of t(v) and j(v) = max{j; t(w) ∈ Uj
for all w ≥ v}. The bonding homomorphisms are composites of inclusion
induced homomorphisms and base point change isomorphisms along the
tree T . If T ⊆ A is the inclusion of an end-faithful tree for the CW-complex
X we write ΠT

n (X,A) and moreover if A = T is the identity we write
ΠT
n (X). It can be checked that the isomorphism type of ΠT

n (X,A, t) does
not depend on the basis {Uj} but it does depend on the base map t; see
p. 13 in [16]. Moreover the classical exact homotopy sequence yields the
corresponding exact sequence of homotopy trees in TreeT (Gr). By using
the identification of the spherical object Snα under T with the free T -tree Lα
via the isomorphism

ΠT
n (Bn

α, S
n−1
α ) ∼= ΠT

n−1(Sn−1
α ) ∼= Lα

we obtain

Proposition A.2. Let T ⊂ A ⊂ X be as above. Then there exists a
one-one correspondence

[(Bn
α, S

n−1
α ), (X,A)]T ∼= TreeT (Gr)(Lα,ΠT

n (X,A, t)).

The correspondence carries the proper homotopy class [f ] to the induced
morphism f∗ : ΠT

n (Bn
α, S

n−1
α )→ ΠT

n (X,A, t).
For any integer c ≥ 1 a proper map f : X → Y is said to be prop-

erly c-connected if for any base tree t : T → X the induced morphism
f∗ : ΠT

k (X, t) → ΠT
k (Y, ft) is an isomorphism for 1 ≤ k ≤ c − 1 and an

epimorphism for k = c.
A pair (X,A) is said to be properly c-connected if the inclusion A ⊂ X

is a properly c-connected map. In particular if A = T is an end-faithful tree
of X we simply say that X is properly c-connected. It is readily checked
that a proper map f : X → Y is properly c-connected if and only if the pair
(Mf ,X) is properly c-connected. Here Mf is the mapping cylinder of f .

Note that we set c ≥ 1 in order to require no relation between the number
of Freudenthal ends of X and Y . Otherwise, for c = 0 it is a well known fact
that a proper map f for which f∗ : ΠT

0 (X, t) → ΠT
0 (Y, ft) is onto for any



16 M. CÁRDENAS ET AL.

base tree t : T → X induces an onto map between the corresponding spaces
of Freudenthal ends. Therefore in this paper the case c = 0 simply refers
to the general case of arbitrary (proper maps between) finite-dimensional
locally finite connected CW-complexes.

Appendix B: Some basic results of proper homotopy theory.
This appendix contains the proper analogues of classical results in homotopy
theory (Hurewicz and Whitehead theorems among them) which are needed
in §3. These results are essentially consequences of the fact that the proper
homotopy category is a cofibration category in the sense of Baues ([3]) and so
the theoretical machinery in [4] or [5] can be applied. With this Appendix we
intend to help the reader by providing explicit proofs. We include the proofs
since these results are not easily found in the literature except for homology
and homotopy towers; see [8]. For this we have chosen the usual language for
“proper” algebra based on the category of trees of groups instead of the new
approach based on theories and models of theories as done in [5]. We start
with the following gluing lemma available in any cofibration category [4].

Lemma B.1. Consider the commutative diagram in P

X0 � X

Y0 � Y Y1

X1

-

-
? ? ?

α γ β

where the rows are push-out diagrams. Assume in addition that α, β, γ are
proper homotopy equivalences. Then the natural map α ∪ β : Y0 ∪Y Y1 →
X0∪XX1 between the corresponding push-outs is a proper homotopy equiva-
lence. As a consequence, the proper homotopy type of X0∪XX1 only depends
on the proper homotopy classes of the maps involved in its definition.

As in classical homotopy theory the gluing lemma is used in the proof
of the following

Proposition B.2. Any n-dimensional locally finite CW-complex has
the same proper homotopy type as a locally compact polyhedron of the same
dimension.

Proof. For n = 0 the result is immediate. Assume now that Xn−1 is a
polyhedron. Then by gathering together all attaching maps of the n-cells
of X one gets a proper map f =

⊔
k≥1 fk :

⊔
k≥1 S

n−1
k → Xn−1. Recall

that the number of cells of X is countable. Then one uses the (proper)
simplicial approximation theorem to obtain a simplicial global attaching
map g =

⊔
gk and a proper homotopy equivalence Xn =

⋃∞
k=1Cfk 'p
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⋃∞
k=1Cgk . Here we use the gluing lemma. Finally, we apply ([21, VII.47]) to

triangulate each mapping cone Cgk by a simplicial complex Y n
k containing

Xn−1 as a subcomplex. Then the polyhedron Y n =
⋃
Y n
k has the same

proper homotopy type as Xn.

Next we deal with proper Hurewicz and Whitehead theorems involving
the homology and homotopy trees defined in Appendix A. By using a well
known argument due to J. H. C. Whitehead ([18, 6.13]) we prove

Proposition B.3. Let (X,A) be a pair of finite-dimensional locally fi-
nite CW-complexes with F(X) = F(A). Assume that (X,A) is properly
n-connected. Then (X,A) can be embedded in a CW-pair (Y,B) with the
same properties as (X,A) and moreover X and A are proper deformation
retracts of Y and B respectively and Y n ⊂ B. Moreover dim(Y−X) ≤ n+2.

Proof. Let T ⊆ X be an end-faithful tree and suppose the proposition
holds for n − 1. Then we assume without loss of generality Xn−1 ⊂ A.
There is a canonical element ξ ∈ ΠT

n (X,A) represented by a proper map
f : (Bn

α, S
n−1
α ) → (X,A) consisting of the union of all the characteristic

maps of the locally finite family of n-cells e ⊂ X − A (we base all cells e at
T by using a locally finite family of paths γe if necessary). The vanishing
of ξ yields a proper map f̃ : Bn+1

α → X extending f onto the northern
hemispheres of the (n + 1)-balls in Bn+1

α . Moreover the map f̃ carries the
southern hemispheres into A. Now the Whitehead trick comes into play.
Namely, we attach to X new (n + 1)-cells %e by the restriction of f̃ to
the n-spheres in Snα. Moreover we attach new (n + 2)-cells βe along the
union f̃(Bn+1

α ) ∪ {%e; e ⊂ X − A}. This way we obtain the CW-complexes
B = A∪{%e; e ⊂ X−A} and Y = B∪{βe; e ⊂ X−A}. Finally we see that
B and Y have the same proper homotopy type as A and X respectively by
pushing the cells %e and βe through their faces e and %e respectively.

Proposition B.3 and the classical result in ordinary homotopy theory
yield the proper analogue of the Blakers–Massey theorem:

Proposition B.4. Let X be a finite-dimensional locally finite CW-com-
plex and let A,B ⊂ X be subcomplexes with T ⊂ A ∩ B a common end-
faithful tree. Assume the pairs (A,A ∩ B) and (B,A ∩ B) are properly n-
connected and m-connected respectively. Then

i∗ : ΠT
k (A,A ∩B)→ ΠT

k (X,B)

is an isomorphism for 1 ≤ k ≤ m+n−1 and an epimorphism for k = m+n.

Proof. By using Proposition B.3 several times together with the gluing
lemma we can embed the triple (X;A,B) in a new triple (X0;A0, B0) such
that An0 ∪Bm

0 ⊂ A0 ∩B0 and moreover the inclusions X ⊂ X0, A ⊂ A0 and
B ⊂ B0 are proper deformation retracts. Then we can apply the classical
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Blakers–Massey theorem to each of the neighbourhoods at infinity in the
definition of ΠT

k (−) and the result follows.

In order to state a proper suspension theorem we need the reduced proper
cone C̃TX and the reduced proper suspension Σ̃TX which are defined by the
push-out diagrams

T - C̃TX

p.o.

T × I - CTX

? ?
π 'p π̃ 'p

k1

and

T - Σ̃TX

T × I -ΣTX

p.o.

? ?
π 'p 'pπ̃

k2

Here k1 and k2 denote the corresponding canonical embeddings and π is the
natural projection. Moreover for any spherical object Snα under T one gets
Σ̃TS

n
α = Sn+1

α and the suspension operator

Σ̃T : ΠT
m(X)→ ΠT

m+1(Σ̃TX)

is a well defined morphism in TreeT (Gr) for any finite-dimensional locally
finite CW-complex X with end-faithful tree T ⊂ X. The standard argu-
ments based on the exact homotopy sequence of the pair (C̃TX,X) and
Proposition B.3 yield

Corollary B.5. Let T ⊂ X be an end-faithful tree and let X be a
properly c-connected finite-dimensional locally finite CW-complex. Then the
natural suspension operator Σ̃T is an isomorphism for 1 ≤ m ≤ 2c and an
epimorphism for m = 2c+ 1.

Proposition B.3 can also be used to obtain the following proper analogue
of the classical Hurewicz theorem:

Proposition B.6. Let (X,A) be a pair with T ⊂ A an end-faithful tree.
Assume in addition that (X,A) is properly c-connected. Then the natural
morphism

h : ΠT
m(X,A)→ HT

m(X,A)

induced by the Hurewicz homomorphism is an isomorphism for m ≤ c + 1
and an epimorphism for m = c+ 2.

Proof. According to Proposition B.3, (X,A) can be embedded in a CW-
pair (Y,B) with Y c ⊂ Y and such that A and X are proper deformation
retracts of B and Y respectively. Then we can apply the Hurewicz theorem
in ordinary homotopy theory to each of the neighbourhoods at infinity in
the definition of ΠT

k (−) and HT
k (−) and the result follows.

We finish this overview of the proper homotopy theory by restating the
proper Whitehead theorem of [6].
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Proposition B.7. Let X and Y be two finite-dimensional locally finite
CW-complexes with the same end-faithful tree T . Assume that f : X → Y is
a proper map under T , and hence f∗ : F(X)→ F(Y ) is a homeomorphism,
such that f∗ : ΠT

n (X) → ΠT
n (Y ) is an isomorphism for all n ≥ 1. Then f

is a proper homotopy equivalence.

Proof. Let ε ∈ F(T ) be any Freudenthal end. By using the natural
bijection in Proposition A.2 one finds that f induces a group isomorphism
f∗ : [Snαε ,X]rε

∼=−→ [Snαε , Y ]rε where Snαε is the spherical object with one
n-sphere attached at each vertex in the canonical ray rε : R → T from v0
to ε in T . The group [Snαε ,X]rε coincides with the Brown groups as defined
in [6] and the result follows from [6].

As usual, from Propositions B.7 and B.6 one derives the following ho-
mological version of the proper Whitehead theorem.

Proposition B.8. Let X and Y be properly 1-connected finite-dimen-
sional locally finite CW-complexes with the same end-faithful tree T and let
f : X → Y be a proper map under T such that f∗ : HT

n (X)→ HT
n (Y ) is an

isomorphism for all n ≥ 1. Then f is a proper homotopy equivalence.
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