C OLLOQ UIUM MATHEMATICUM

THE NATURAL LINEAR OPERATORS $T^{*} \rightsquigarrow T T^{(r)}$

BY
J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract

For natural numbers $n \geq 3$ and r a complete description of all natural bilinear operators $T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ is presented. Next for natural numbers r and $n \geq 3$ a full classification of all natural linear operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(r)}$ is obtained.

Introduction. Let n and r be natural numbers. Given an n-dimensional manifold M we have the r-tangent vector bundle $T^{(r)} M=\left(J^{r}(M, \mathbb{R})_{0}\right)^{*}$ over M. Every embedding $\varphi: M \rightarrow N$ of n-manifolds induces a vector bundle map $T^{(r)} \varphi: T^{(r)} M \rightarrow T^{(r)} N$ covering φ such that $\left\langle T^{(r)} \varphi(\omega), j_{\varphi(x)}^{r} \gamma\right\rangle$ $=\left\langle\omega, j_{x}^{r}(\gamma \circ \varphi)\right\rangle$ for $\omega \in T_{x}^{(r)} M, j_{\varphi(x)}^{r} \gamma \in J_{\varphi(x)}^{r}(N, \mathbb{R})_{0}, x \in M$. The correspondence $T^{(r)}: \mathcal{M} f_{n} \rightarrow \mathcal{F} \mathcal{M}$ is a bundle functor from the category $\mathcal{M} f_{n}$ of n-manifolds and embeddings into the category $\mathcal{F M}$ of fibered manifolds and fibered maps [3].

In [4], we studied the problem of how a 1 -form $\omega \in \Omega^{1}(M)$ on an n manifold M can induce a 1-form $A(\omega) \in \Omega^{1}\left(T^{(r)} M\right)$ on $T^{(r)} M$. This problem was reflected in the concept of natural linear operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} T^{(r)}$ in the sense of Kolář, Michor and Slovák [3]. We presented a complete description of such operators.

In the present note we start with the problem of how a 1-form $\omega \in$ $\Omega^{1}(M)$ and a map $f: M \rightarrow \mathbb{R}$ on an n-manifold M can induce a map $B(\omega, f): T^{(r)} M \rightarrow \mathbb{R}$. This problem concerns natural bilinear operators $B: T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$. We prove that the vector space of all such operators is 0-dimensional if $n \geq 3$ and $r \geq 3$, 3-dimensional if $n \geq 3$ and $r=2$, and 2-dimensional if $n \geq 3$ and $r=1$. We construct explicit bases of the vector spaces in question.

Next, using this classification we investigate how a 1-form ω on an n manifold M can induce a vector field $C(\omega)$ on $T^{(r)} M$. This problem relates to natural linear operators $C: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(r)}$. We deduce that the vector space of all such operators is 0-dimensional if $n \geq 3$ and $r \geq 3$, 2-dimensional

[^0]if $n \geq 3$ and $r=2$, and 1-dimensional if $n \geq 3$ and $r=1$, and we construct the corresponding bases.

Natural operators lifting functions, vector fields and 1-forms to some natural bundles were used practically in all papers in which problem of prolongations of geometric structures was studied (e.g. [6]). That is why such natural operators have been classified by many authors (see e.g. [1]-[5]).

The usual coordinates on \mathbb{R}^{n} are denoted by x^{1}, \ldots, x^{n}. On $T^{(r)} \mathbb{R}^{n}$ we have the induced coordinates $\left(x^{i}, X^{\alpha}\right)$,

$$
\begin{equation*}
x^{i}(\Theta)=x_{0}^{i}, \quad X^{\alpha}(\Theta)=\left\langle\Theta, j_{x_{0}}^{r}\left(\left(x-x_{0}\right)^{\alpha}\right)\right\rangle \tag{1}
\end{equation*}
$$

$i=1, \ldots, n, \alpha \in(\mathbb{N} \cup\{0\})^{n}, 1 \leq|\alpha| \leq r, \Theta \in T_{x_{0}}^{(r)} \mathbb{R}^{n}, x_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{n}\right) \in \mathbb{R}^{n}$.
All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞}. Maps between manifolds are assumed to be smooth.

1. The natural bilinear operators $T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$. For $r=1$ we have the following examples of natural bilinear operators $T^{*} \times \mathcal{M} f_{n}$ $T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$.

Example 1. For a 1-form $\omega \in \Omega^{1}(M)$ and a map $f: M \rightarrow \mathbb{R}$ on an n-manifold M we define $B^{(1)}(\omega, f): T^{(1)} M \rightarrow \mathbb{R}$ by

$$
B^{(1)}(\omega, f)_{\eta}=\left\langle\omega_{x_{0}}, \eta\right\rangle f\left(x_{0}\right), \quad \eta \in T_{x_{0}}^{(1)} M \cong T_{x_{0}} M, x_{0} \in M
$$

Then $B^{(1)}: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$ is a natural bilinear operator.
Example 2. For $\omega \in \Omega^{1}(M)$ and $f: M \rightarrow \mathbb{R}$ we define $B^{(1)}(\omega, f):$ $T^{(1)} M \rightarrow \mathbb{R}$ by

$$
B^{[1]}(\omega, f)_{\eta}=\left\langle\omega_{x_{0}}, \eta\right\rangle\left\langle d_{x_{0}} f, \eta\right\rangle, \quad \eta \in T_{x_{0}}^{(1)} M, x_{0} \in M
$$

Then $B^{[1]}: T^{*} \times \mathcal{M} f_{n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$ is a natural bilinear operator.
Now, let $r=2$. In [4], we proved that there exists a linear (first order) natural operator $D: T_{\mathcal{M} f_{n}}^{*} \rightsquigarrow T^{2 *}$ such that $D(f d g)=j_{x_{0}}^{2}\left(\left(f+f\left(x_{0}\right)\right)(g-\right.$ $\left.g\left(x_{0}\right)\right)$) for $f, g: M \rightarrow \mathbb{R}, x_{0} \in M, M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$. Using D we now present three examples of natural bilinear operators $T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$.

Example 3. For $\omega \in \Omega^{1}(M)$ and $f: M \rightarrow \mathbb{R}$ we define $B^{(2)}(\omega, f)$: $T^{(2)} M \rightarrow \mathbb{R}$ by

$$
B^{(2)}(\omega, f)_{\eta}=\left\langle D(\omega)_{x_{0}}, \eta\right\rangle f\left(x_{0}\right), \quad \eta \in T_{x_{0}}^{(2)} M=\left(T_{x_{0}}^{2 *} M\right)^{*}, x_{0} \in M
$$

Then $B^{(2)}: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ is a natural bilinear operator.
Example 4. For $\omega \in \Omega^{1}(M)$ and $f: M \rightarrow \mathbb{R}$ we define $B^{[2]}(\omega, f):$ $T^{(2)} M \rightarrow \mathbb{R}$ by

$$
B^{[2]}(\omega, f)_{\eta}=\left\langle D(\omega)_{x_{0}}, \eta\right\rangle\left\langle j_{x_{0}}^{2}\left(f-f\left(x_{0}\right)\right), \eta\right\rangle, \quad \eta \in T_{x_{0}}^{(2)} M, x_{0} \in M
$$

Then $B^{[2]}: T^{*} \times \mathcal{M} f_{n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ is a natural bilinear operator.

Example 5. For $\omega \in \Omega^{1}(M)$ and $f: M \rightarrow \mathbb{R}$ we define $B^{\langle 2\rangle}(\omega, f):$ $T^{(2)} M \rightarrow \mathbb{R}$ by

$$
B^{\langle 2\rangle}(\omega, f)_{\eta}=\left\langle D\left(\left(f-f\left(x_{0}\right)\right) \omega\right)_{x_{0}}, \eta\right\rangle, \quad \eta \in T_{x_{0}}^{(2)} M, x_{0} \in M
$$

Then $B^{\langle 2\rangle}: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ is a natural bilinear operator.
In the induced coordinates on $T^{(r)} \mathbb{R}^{n}$ we have

$$
\begin{aligned}
B^{(2)}\left(x^{2} d x^{1}, x^{3}\right) & =X^{(1,1,0, \ldots, 0)} x^{3}+2 x^{2} x^{3} X^{(1,0, \ldots, 0)} \\
B^{[2]}\left(x^{2} d x^{1}, x^{3}\right) & =X^{(1,1, \ldots, 0)} X^{(0,0,1,0, \ldots, 0)}+2 x^{2} X^{(1,0, \ldots, 0)} X^{(0,0,1,0, \ldots, 0)}, \\
B^{\langle 2\rangle}\left(x^{2} d x^{1}, x^{3}\right) & =x^{2} X^{(1,0,1,0, \ldots, 0)} \\
B^{(1)}\left(x^{2} d x^{1}, x^{3}\right) & =x^{2} x^{3} X^{(1,0, \ldots, 0)} \\
B^{[1]}\left(x^{2} d x^{1}, x^{3}\right) & =x^{2} X^{(1,0, \ldots, 0)} X^{(0,0,1,0, \ldots, 0)} .
\end{aligned}
$$

Hence, the operators $B^{(1)}$ and $B^{[1]}$ are linearly independent, and so are $B^{(2)}$, $B^{[2]}$ and $B^{\langle 2\rangle}$.

The first main result of this note is the following theorem.
Theorem 1. Let $n \geq 3$ be a natural number.
(i) Every natural bilinear operator $T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$ is a linear combination of $B^{(1)}$ and $B^{[1]}$ with real coefficients.
(ii) Every natural bilinear operator $T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ is a linear combination of $B^{(2)}, B^{[2]}$ and $B^{\langle 2\rangle}$ with real coefficients.
(iii) If $r \geq 3$ then every natural bilinear operator $T^{*} \times{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow$ $T^{(0,0)} T^{(r)}$ is zero.

The proof of Theorem 1 will occupy Sections 3-6.
2. The natural linear operators $T^{*} \rightsquigarrow T T^{(r)}$. Every natural linear operator $C: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(r)}$ of vertical type induces a natural bilinear operator $B^{(C)}: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ defined by

$$
B^{(C)}(\omega, f)_{\eta}=\left\langle j_{x_{0}}^{r}\left(f-f\left(x_{0}\right)\right), \operatorname{pr}_{2} \circ C(\omega)_{\eta}\right\rangle
$$

for $\omega \in \Omega^{1}(M), f: M \rightarrow \mathbb{R}, \eta \in T_{x_{0}}^{(r)} M, x_{0} \in M, M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$, where $\operatorname{pr}_{2}: V T^{(r)} M \cong T^{(r)} M \times_{M} T^{(r)} M \rightarrow T^{(r)} M$ is the projection on the second factor. Of course, $B^{(C)}(\cdot, 1)=0$.

Conversely, any natural bilinear operator $B: T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ such that $B(\cdot, 1)=0$ induces a natural linear operator $C^{(B)}: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T T^{(r)}$ of vertical type such that $\left\langle\mathrm{pr}_{2} \circ C_{\eta}^{(B)}, j_{x_{0}}^{r}\left(f-f\left(x_{0}\right)\right)\right\rangle=B(\omega, f)_{\eta}$ for $\omega \in \Omega^{1}(M), f: M \rightarrow \mathbb{R}, \eta \in T_{x_{0}}^{(r)} M, x_{0} \in M, M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$.

Lemma 1. The above correspondences are mutually inverse.
Proof. Clear.

So we have the following examples of natural linear operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T T^{(r)}$ of vertical type.

ExAmple 6. $C^{(1)}=C^{\left(B^{[1]}\right)}: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(1)}$ is a natural linear operator of vertical type. Here $B^{[1]}$ is defined in Example 2.

Example 7. $C^{[2]}=C^{\left(B^{[2]}\right)}: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(2)}$ is a natural linear operator of vertical type. Here $B^{[2]}$ is defined in Example 4.

ExAmple 8. $C^{\langle 2\rangle}=C^{\left(B^{\langle 2\rangle}\right)}: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(2)}$ is a natural linear operator of vertical type. Here $B^{\langle 2\rangle}$ is defined in Example 5.

The second main result is
ThEOREM 2. Let $n \geq 3$ and r be natural numbers. Then every natural linear operator $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(r)}$ is of vertical type. Namely:
(i) Every natural linear operator $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(1)}$ is proportional to $C^{(1)}$.
(ii) Every natural linear operator $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(2)}$ is a linear combination of $C^{[2]}$ and $C^{\langle 2\rangle}$ with real coefficients.
(iii) If $r \geq 3$ then every natural linear operator $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(r)}$ is zero.

The proof of Theorem 2 will occupy Section 7.
3. A reducibility lemma. We begin the proof of Theorem 1 with the following lemma.

Lemma 2 (Reducibility Lemma). Let $n \geq 3$. Let $B: T^{*} \times{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow$ $T^{(0,0)} T^{(r)}$ be a natural bilinear operator such that $B\left(x^{2} d x^{1}, x^{3}\right)=0$. Then $B=0$.

Proof. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $y \in \mathbb{R}^{n}$. There is a dense subset of $\left(\tau_{1}, \tau_{2}\right)$ in \mathbb{R}^{2} such that $\varphi_{\tau_{1}, \tau_{2}}=\left(x^{1}, f+\tau_{1} x^{2}, g+\tau_{2} x^{3}, x^{4}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a local diffeomorphism near y. Using the naturality of B with respect to $\varphi_{\tau_{1}, \tau_{2}}$ and the assumption we get

$$
\begin{equation*}
B\left(\left(f+\tau_{1} x^{2}\right) d x^{1}, g+\tau_{2} x^{3}\right)_{\eta}=0 \tag{2}
\end{equation*}
$$

for every $\eta \in T_{y}^{(r)} \mathbb{R}^{n}$. The left hand side of (2) is a polynomial in τ_{1}, τ_{2} for fixed η. Considering the constant term we derive that $B\left(f d x^{1}, g\right)_{\eta}=0$.

So, $B\left(f d x^{1}, g\right)=0$ for every $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Now, by the invariance of B under coordinate permutations we get $B\left(f d x^{i}, g\right)=0$. Then the bilinearity and naturality of B imply that $B=0$.
4. A form of $B\left(x^{2} d x^{1}, x^{3}\right)$. By the reducibility lemma every natural bilinear operator $B: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ is uniquely determined by $B\left(x^{2} d x^{1}, x^{3}\right)$.

Lemma 3. Let $B: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ be a natural bilinear operator with $n \geq 3$.
(i) If $r=1$ then

$$
\begin{align*}
B\left(x^{2} d x^{1}, x^{3}\right)= & \mu_{1} X^{e_{1}} x^{2} x^{3}+\mu_{2} X^{e_{1}} X^{e_{2}} x^{3} \tag{3}\\
& +\mu_{3} X^{e_{1}} X^{e_{3}} x^{2}+\mu_{4} X^{e_{1}} X^{e_{2}} X^{e_{3}}
\end{align*}
$$

for some $\mu_{1}, \ldots, \mu_{4} \in \mathbb{R}$, where e_{i} is the ith standard unit vector in \mathbb{R}^{n}.
(ii) If $r=2$ then

$$
\begin{align*}
B\left(x^{2} d x^{1}, x^{3}\right)= & \mu_{1} X^{e_{1}} x^{2} x^{3}+\mu_{2} X^{e_{1}} X^{e_{2}} x^{3}+\mu_{3} X^{e_{1}} X^{e_{3}} x^{2} \tag{4}\\
& +\mu_{4} X^{e_{1}} X^{e_{2}} X^{e_{3}}+\mu_{5} X^{(1,0,1,0, \ldots, 0)} x^{2} \\
& +\mu_{6} X^{(1,1,0, \ldots, 0)} x^{3}+\mu_{7} X^{(1,0,1,0, \ldots, 0)} X^{e_{2}} \\
& +\mu_{8} X^{(1,1,0, \ldots, 0)} X^{e_{3}}+\mu_{9} X^{(0,1,1,0, \ldots, 0)} X^{e_{1}}
\end{align*}
$$

for some $\mu_{1}, \ldots, \mu_{9} \in \mathbb{R}$.
(iii) If $r \geq 3$ then

$$
\begin{align*}
B\left(x^{2} d x^{1}, x^{3}\right)= & \mu_{1} X^{e_{1}} x^{2} x^{3}+\mu_{2} X^{e_{1}} X^{e_{2}} x^{3} \tag{5}\\
& +\mu_{3} X^{e_{1}} X^{e_{3}} x^{2}+\mu_{4} X^{e_{1}} X^{e_{2}} X^{e_{3}} \\
& +\mu_{5} X^{(1,0,1,0, \ldots, 0)} x^{2}+\mu_{6} X^{(1,1,0, \ldots, 0)} x^{3} \\
& +\mu_{7} X^{(1,0,1,0, \ldots, 0)} X^{e_{2}}+\mu_{8} X^{(1,1,0, \ldots, 0)} X^{e_{3}} \\
& +\mu_{9} X^{(0,1,1,0, \ldots, 0)} X^{e_{1}}+\mu_{10} X^{(1,1,1,0, \ldots, 0)}
\end{align*}
$$

for some $\mu_{1}, \ldots, \mu_{10} \in \mathbb{R}$.
Proof. We can write $B\left(x^{2} d x^{1}, x^{3}\right)=f\left(x^{i}, X^{\alpha}\right)$, where f is of class \mathcal{C}^{∞}. By the invariance of B with respect to translations of the first coordinate we deduce that f is independent of x^{1}. By the invariance of B with respect to the homotheties $\left(t^{i} x^{i}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\left(t^{i}\right) \in \mathbb{R}_{+}^{n}$ we get the homogeneity condition

$$
t^{1} t^{2} t^{3} f\left(x^{i}, X^{\alpha}\right)=f\left(t^{i} x^{i}, t^{\alpha} X^{\alpha}\right)
$$

This type of homogeneity implies that f is a linear combination of monomials in x^{i} and X^{α} having the homogeneity type $t^{1} t^{2} t^{3}$. These facts yield the result.
5. Transformation rules. We have a local diffeomorphism

$$
\begin{equation*}
G=\left(x^{1}-\frac{1}{2}\left(x^{1}\right)^{2}, \frac{x^{2}}{1-x^{1}}, x^{3}, \ldots, x^{n}\right) \tag{6}
\end{equation*}
$$

defined in some neighbourhood U of $0 \in \mathbb{R}^{n}$. This diffeomorphism preserves the germ of $\left(x^{2} d x^{1}, x^{3}\right)$ at 0 . Therefore we will study the invariance of $B\left(x^{2} d x^{1}, x^{3}\right)$ with respect to G. We need some transformation rules.

Lemma 3. Let $n \geq 3$ and G and U be as above.
(i) If $r=1$ then

$$
\begin{equation*}
X^{e_{1}} \circ T^{(1)} G=\left(1-x^{1}\right) X^{e_{1}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
X^{e_{2}} \circ T^{(1)} G=\frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{e_{1}}+\frac{1}{1-x^{1}} X^{e_{2}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
X^{e_{3}} \circ T^{(1)} G=X^{e_{3}} \tag{9}
\end{equation*}
$$

over U.
(ii) If $r=2$ then

$$
\begin{align*}
X^{e_{1}} \circ T^{(2)} G= & \left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)} \tag{10}\\
X^{e_{2}} \circ T^{(2)} G= & \frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{e_{1}}+\frac{1}{1-x^{1}} X^{e_{2}} \tag{11}\\
& +\frac{x^{2}}{\left(1-x^{1}\right)^{3}} X^{(2,0, \ldots, 0)}+\frac{1}{\left(1-x^{1}\right)^{2}} X^{(1,1,0, \ldots, 0)}
\end{align*}
$$

$$
\begin{equation*}
X^{e_{3}} \circ T^{(2)} G=X^{e_{3}} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
X^{(1,1,0, \ldots, 0)} \circ T^{(2)} G & =\frac{x^{2}}{1-x^{1}} X^{(2,0, \ldots, 0)}+X^{(1,1,0, \ldots, 0)} \tag{13}\\
X^{(1,0,1,0, \ldots, 0)} \circ T^{(2)} G & =\left(1-x^{1}\right) X^{(1,0,1,0, \ldots, 0)} \tag{14}\\
X^{(0,1,1,0, \ldots, 0)} \circ T^{(2)} G & =\frac{x^{2}}{1-x^{1}} X^{(1,0,1,0, \ldots, 0)}+\frac{1}{1-x^{1}} X^{(0,1,1,0, \ldots, 0)} \tag{15}
\end{align*}
$$

over U.
(iii) If $r=3$ then

$$
\begin{align*}
X^{e_{1}} \circ T^{(3)} G= & \left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)} \tag{16}\\
X^{e_{3}} \circ T^{(3)} G= & X^{e_{3}} \tag{17}\\
X^{(1,1,0, \ldots, 0)} \circ T^{(3)} G= & \frac{x^{2}}{1-x^{1}} X^{(2,0, \ldots, 0)}+X^{(1,1,0, \ldots, 0)} \tag{18}\\
& +\frac{1}{2} \frac{x^{2}}{\left(1-x^{2}\right)^{2}} X^{(3,0, \ldots, 0)}+\frac{1}{2} \frac{1}{1-x^{1}} X^{(2,1,0, \ldots, 0)},
\end{align*}
$$

(19) $\quad X^{(1,0,1,0, \ldots, 0)} \circ T^{(3)} G=\left(1-x^{1}\right) X^{(1,0,1,0, \ldots, 0)}-\frac{1}{2} X^{(2,0,1,0, \ldots, 0)}$,
(20) $\quad X^{(1,1,1,0, \ldots, 0)} \circ T^{(3)} G=X^{(1,1,1,0, \ldots, 0)}+\frac{x^{2}}{1-x^{1}} X^{(2,1,0, \ldots, 0)}$ over U.

Proof. This is an extension of Lemma 4.1 in [4].

For example, we prove (7). Let $x_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{n}\right) \in U$ and $\Theta \in T_{x_{0}}^{(1)} \mathbb{R}^{n}$. Comparing the respective jet coordinates (by computing derivatives) we obtain $j_{x_{0}}^{1}\left(G^{1}-G^{1}\left(x_{0}\right)\right)=\left(1-x_{0}^{1}\right) j_{x_{0}}^{1}\left(x^{1}-x_{0}^{1}\right)$. Therefore

$$
\begin{aligned}
X^{e_{1}} \circ T^{(1)} G(\Theta) & =\left\langle T^{(1)} G(\Theta), j_{G\left(x_{0}\right)}^{1}\left(x^{1}-G^{1}\left(x_{0}\right)\right)\right\rangle \\
& =\left\langle\Theta, j_{x_{0}}^{1}\left(G^{1}-G^{1}\left(x_{0}\right)\right)\right\rangle \\
& =\left(1-x_{0}^{1}\right)\left\langle\Theta, j_{x_{0}}^{1}\left(x^{1}-x_{0}^{1}\right)\right\rangle \\
& =\left(1-x_{0}^{1}\right) X^{e_{1}}(\Theta)=\left(\left(1-x^{1}\right) X^{e_{1}}\right)(\Theta) .
\end{aligned}
$$

The proofs of the other formulas are similar.
6. Proof of Theorem 1. Consider a natural bilinear operator B : $T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}, n \geq 3$. We know that it is sufficient to study $B\left(x^{2} d x^{1}, x^{3}\right)$. The form of $B\left(x^{2} d x^{1}, x^{3}\right)$ is given in Lemma 3 .
(i) The local diffeomorphism G preserves $\left(x^{2} d x^{1}, x^{3}\right)$ on U. Thus it preserves $B\left(x^{2} d x^{1}, x^{3}\right)$ over U. Hence it preserves the right hand side of (3). The transformation rules (7)-(9) yield

$$
\begin{aligned}
& \mu_{1} X^{e_{1}} x^{2} x^{3}+\mu_{2} X^{e_{1}} X^{e_{2}} x^{3}+\mu_{3} X^{e_{1}} X^{e_{3}} x^{2}+\mu_{4} X^{e_{1}} X^{e_{2}} X^{e_{3}} \\
& =\mu_{1} X^{e_{1}} x^{2} x^{3}+\mu_{2}\left(1-x^{1}\right) X^{e_{1}}\left(\frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{e_{1}}+\frac{1}{1-x^{1}} X^{e_{2}}\right) x^{3} \\
& \quad+\mu_{3}\left(1-x^{1}\right) X^{e_{1}} X^{e_{3}} \frac{x^{2}}{1-x^{1}} \\
& \quad+\mu_{4}\left(1-x^{1}\right) X^{e_{1}}\left(\frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{e_{1}}+\frac{1}{1-x^{1}} X^{e_{2}}\right) X^{e_{3}}
\end{aligned}
$$

over U. Thus

$$
\mu_{2}\left(X^{e_{1}}\right)^{2} \frac{x^{2}}{1-x^{1}} x^{3}+\mu_{4}\left(X^{e_{1}}\right)^{2} \frac{x^{2}}{1-x^{1}} X^{e_{3}}=0
$$

So, $\mu_{2}=\mu_{4}=0$ in (3). Consequently, the vector space of all bilinear natural operators $T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$ is at most 2-dimensional. On the other hand, the operators $B^{(1)}$ and $B^{[1]}$ are linearly independent. This proves (i).
(ii) We have the natural inclusion $i: T^{(1)} \rightarrow T^{(2)}$ which is dual to the jet projection $J^{2}(\cdot, \mathbb{R})_{0} \rightarrow J^{1}(\cdot, \mathbb{R})_{0}$. So, by pull-back we have the bilinear natural operator $i^{*} B: T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$. Hence $\mu_{2}=\mu_{4}=0$ in (4) by (i).

In this case the local diffeomorphism G preserves the right hand side of (4) with $\mu_{2}=\mu_{4}=0$, and the transformation rules (10)-(15) yield

$$
\begin{aligned}
\mu_{1} X^{e_{1}} & x^{2} x^{3}+\mu_{3} X^{e_{1}} X^{e_{3}} x^{2}+\mu_{5} X^{(1,0,1,0, \ldots, 0)} x^{2}+\mu_{6} X^{(1,1,0, \ldots, 0)} x^{3} \\
& +\mu_{7} X^{(1,0,1,0, \ldots, 0)} X^{e_{2}}+\mu_{8} X^{(1,1,0, \ldots, 0)} X^{e_{3}}+\mu_{9} X^{(0,1,1,0, \ldots, 0)} X^{e_{1}} \\
= & \mu_{1}\left(\left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)}\right) \frac{x^{2}}{1-x^{1}} x^{3} \\
& +\mu_{3}\left(\left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)}\right) X^{e_{3}} \frac{x^{2}}{1-x^{1}} \\
& +\mu_{5}\left(1-x^{1}\right) X^{(1,0,1,0, \ldots, 0)} \frac{x^{2}}{1-x^{1}} \\
& +\mu_{6}\left(\frac{x^{2}}{1-x^{1}} X^{(2,0, \ldots, 0)}+X^{(1,1,0, \ldots, 0)}\right) x^{3} \\
& +\mu_{7}\left(1-x^{1}\right) X^{(1,0,1,0, \ldots, 0)}\left(\frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{e_{1}}+\frac{1}{1-x^{1}} X^{e_{2}}\right. \\
& \left.+\frac{x^{2}}{\left(1-x^{1}\right)^{3}} X^{(2,0, \ldots, 0)}+\frac{1}{\left(1-x^{1}\right)^{2}} X^{(1,1,0, \ldots, 0)}\right) \\
& +\mu_{8}\left(\frac{x^{2}}{1-x^{1}} X^{(2,0, \ldots, 0)}+X^{(1,1,0, \ldots, 0)}\right) X^{e_{3}} \\
& +\mu_{9}\left(\frac{x^{2}}{1-x^{1}} X^{(1,0,1,0, \ldots, 0)}+\frac{1}{1-x^{1}} X^{(0,1,1,0, \ldots, 0)}\right) \\
& \times\left(\left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)}\right) .
\end{aligned}
$$

Analysing the coefficients of $X^{(0,1,1,0, \ldots, 0)} X^{(2,0, \ldots, 0)}$ in the above equality we get $0=\mu_{9}\left(-\frac{1}{2}\right) \frac{1}{1-x^{1}}$. So, $\mu_{9}=0$. Then considering the coefficients of $X^{(1,0,1,0, \ldots, 0)} X^{(2,0, \ldots, 0)}$ we obtain $0=\mu_{7} \frac{x^{2}}{\left(1-x^{1}\right)^{2}}$. So, $\mu_{7}=0$. Comparing the coefficients of $X^{(2,0, \ldots, 0)} X^{e_{3}}$ we deduce $0=\mu_{8} \frac{x^{2}}{1-x^{1}}+\mu_{3}\left(-\frac{1}{2}\right) \frac{x^{2}}{1-x^{1}}$. Consequently, $\mu_{3}=2 \mu_{8}$. Finally looking at $X^{(2,0, \ldots, 0)}$ we have $0=\mu_{6} \frac{x^{2} x^{3}}{1-x^{1}}+$ $\mu_{1}\left(-\frac{1}{2}\right) \frac{x^{2} x^{3}}{1-x^{1}}$, i.e. $\mu_{1}=2 \mu_{6}$.

Therefore the vector space of all natural bilinear operators $T^{*} \times{ }_{\mathcal{M} f_{n}}$ $T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ is at most 3-dimensional. On the other hand, the operators $B^{(2)}, B^{[2]}$ and $B^{\langle 2\rangle}$ are linearly independent, which proves (ii).
(iii) First, let $r=3$. We have the natural inclusion $i: T^{(2)} \rightarrow T^{(3)}$ which is dual to the jet projection $J^{3}(\cdot, \mathbb{R})_{0} \rightarrow J^{2}(\cdot, \mathbb{R})_{0}$. So, by pull-back we have the natural bilinear operator $i^{*} B: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$. Hence in (5) we have $\mu_{2}=\mu_{4}=\mu_{9}=\mu_{7}=0, \mu_{3}=2 \mu_{8}$ and $\mu_{1}=2 \mu_{6}$ by (ii).

Now the local diffeomorphism G preserves the right hand side of (5) with the above conditions, and the transformation rules (16)-(20) yield

$$
\begin{aligned}
\mu_{1} X^{e_{1}} x^{2} x^{3} & +\mu_{3} X^{e_{1}} X^{e_{3}} x^{2}++\mu_{5} X^{(1,0,1,0, \ldots, 0)} x^{2} \\
& +\mu_{6} X^{(1,1,0, \ldots, 0)} x^{3}+\mu_{8} X^{(1,1,0, \ldots, 0)} X^{e_{3}}+\mu_{10} X^{(1,1,1,0, \ldots, 0)} \\
= & \mu_{1}\left(\left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)}\right) \frac{x^{2}}{1-x^{1}} x^{3} \\
& +\mu_{3}\left(\left(1-x^{1}\right) X^{e_{1}}-\frac{1}{2} X^{(2,0, \ldots, 0)}\right) X^{e_{3}} \frac{x^{2}}{1-x^{1}} \\
& +\mu_{5}\left(\left(1-x^{1}\right) X^{(1,0,1,0, \ldots, 0)}-\frac{1}{2} X^{(2,0,1,0, \ldots, 0)}\right) \frac{x^{2}}{1-x^{1}} \\
& +\mu_{6}\left(\frac{x^{2}}{1-x^{1}} X^{(2,0, \ldots, 0)}+X^{(1,1,0, \ldots, 0)}\right. \\
& \left.+\frac{1}{2} \frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{(3,0, \ldots, 0)}+\frac{1}{2} \frac{1}{1-x^{1}} X^{(2,1,0, \ldots, 0)}\right) x^{3} \\
& +\mu_{8}\left(\frac{x^{2}}{1-x^{1}} X^{(2,0, \ldots, 0)}+X^{(1,1,0, \ldots, 0)}\right. \\
& \left.+\frac{1}{2} \frac{x^{2}}{\left(1-x^{1}\right)^{2}} X^{(3,0, \ldots, 0)}+\frac{1}{2} \frac{1}{1-x^{1}} X^{(2,1,0, \ldots, 0)}\right) X^{e_{3}} \\
& +\mu_{10}\left(X^{(1,1,1,0, \ldots, 0)}+\frac{x^{2}}{1-x^{1}} X^{(2,1,0, \ldots, 0)}\right) .
\end{aligned}
$$

Analysing the coefficients of $X^{(3,0, \ldots, 0)}$ in the above equality we get $0=$ $\mu_{6} \frac{1}{2} \frac{x^{2}}{\left(1-x^{1}\right)^{2}} x^{3}$. So, $\mu_{6}=0$. Then considering the coefficients of $X^{(3,0, \ldots, 0)} X^{e_{3}}$ we obtain $0=\mu_{8} \frac{1}{2} \frac{x^{2}}{\left(1-x^{1}\right)^{2}}$. So, $\mu_{8}=0$. Comparing the coefficients of $X^{(2,1,0, \ldots, 0)}$ we deduce $0=\mu_{10} \frac{x^{2}}{1-x^{1}}$. Consequently, $\mu_{10}=0$. Finally, looking at $X^{(2,0,1,0 \ldots, 0)}$ we have $0=\mu_{5}\left(-\frac{1}{2}\right) \frac{x^{2}}{1-x^{1}}$, i.e. $\mu_{5}=0$.

Therefore $\mu_{1}=\ldots=\mu_{10}=0$, i.e. $B=0$.
Let now $r \geq 4$. We have the natural inclusion $i: T^{(3)} \rightarrow T^{(r)}$ which is dual to the jet projection $J^{r}(\cdot, \mathbb{R})_{0} \rightarrow J^{3}(\cdot, \mathbb{R})_{0}$. So, by pull-back we have the bilinear natural operator $i^{*} B: T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(3)}$. Hence in (6) we have $\mu_{1}=\ldots=\mu_{10}=0$ by the case $r=3$. Thus $B=0$.
7. Proof of Theorem 2. Let $C: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T T^{(r)}$ be a natural linear operator, $n \geq 3$. It induces a natural bilinear operator $B^{[C]}: T^{*} \times \mathcal{M} f_{n}$
$T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ by

$$
\begin{equation*}
B^{[C]}(\omega, f)_{\eta}=\left\langle T \pi\left(C(\omega)_{\eta}\right), d_{x} f\right\rangle \tag{21}
\end{equation*}
$$

$\omega \in \Omega(M), f: M \rightarrow \mathbb{R}, \eta \in T_{x}^{(r)} M, x \in M, M \in \operatorname{obj}\left(\mathcal{M} f_{n}\right)$. Here $\pi: T^{(r)} M \rightarrow M$ is the bundle projection.

We first prove (iii). By Theorem $1, B^{[C]}=0$. Thus C is of vertical type. Then by Section 2, C induces the bilinear operator $B^{(C)}$ which is 0 in view of Theorem 1. Hence $C=0$.

We now show (ii). Since $B^{[C]}$ is of order 1 with respect to f and $B^{[C]}(\cdot, 1)$ $=0$, it follows that $B^{[C]}=a B^{\langle 2\rangle}$ for some $a \in \mathbb{R}$ by Theorem 1. Then $B^{[C]}\left(d x^{1}, x^{1}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}=a$, where $\left(j_{0}^{2} x^{\alpha}\right)^{*} \in T_{0}^{(2)} \mathbb{R}^{n}$ is the basis dual to $j_{0}^{2} x^{\alpha}$. Therefore

$$
\begin{align*}
C\left(d x^{1}, x^{1}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}= & a\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}^{C}+\mathcal{V} \tag{22}\\
& +\sum_{i=2}^{n} a_{i}\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}^{C}
\end{align*}
$$

for some vertical vector $\mathcal{V} \in V_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}} T^{(2)} \mathbb{R}^{n}$ and $a_{i} \in \mathbb{R}$, where ()C is the complete lifting of a vector field to $T^{(2)}$.

Consider the diffeomorphism $\varphi=\left(x^{1}, x^{2}+\left(x^{1}\right)^{3}, x^{3}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It preserves $x^{1}, d x^{1}$ and $\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}$ because $j_{0}^{2} \varphi=$ id. Thus it preserves the left hand side of (22). On the other hand it preserves $\partial / \partial x^{i}$ for $i=$ $2, \ldots, n,\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}$ and \mathcal{V} because $j_{0}^{2} \varphi=\mathrm{id}$, and sends $\partial / \partial x^{1}$ to $\partial / \partial x^{1}+$ $3\left(x^{1}\right)^{2} \partial / \partial x^{2}$. Therefore

$$
a\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}^{C}=a\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}^{C}+3 a\left(\left(\left(x^{1}\right)^{2} \frac{\partial}{\partial x^{2}}\right)^{C}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}
$$

So, $a=0$ because $\left(\left(\left(x^{1}\right)^{2} \partial / \partial x^{2}\right)^{C}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}} \neq 0$. Hence C is of vertical type.

Now, by Lemma $1, C=C^{(B)}$ for some bilinear natural operator B : $T^{*} \times{ }_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ with $B(\cdot, 1)=0$. Applying Theorem 1 ends the proof of (ii).

Finally, we prove (i). Since $B^{[C]}(\cdot, 1)=0$, we have $B^{[C]}=a B^{[1]}$ for some $a \in \mathbb{R}$ by Theorem 1 . Thus $B^{[C]}\left(d x^{1}, x^{1}\right)_{\left(j_{0}^{2}\left(\left(x^{1}\right)^{2}\right)\right)^{*}}=a$. Hence

$$
\begin{equation*}
C\left(d x^{1}, x^{1}\right)_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}}=a\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}}^{C}+\mathcal{V}+\sum_{i=2}^{n} a_{i}\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}}^{C} \tag{23}
\end{equation*}
$$

for some vertical vector $\mathcal{V} \in V_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}} T^{(1)} \mathbb{R}^{n}$ and $a_{i} \in \mathbb{R}$.
Consider the diffeomorphism $\varphi=\left(x^{1}, x^{2}+\left(x^{1}\right)^{2}, x^{3}, \ldots, x^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It preserves $x^{1}, d x^{1}$ and $\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}$ because $j_{0}^{1} \varphi=\mathrm{id}$. Thus it preserves the
left hand side of (23). On the other hand it preserves $\partial / \partial x^{i}$ for $i=2, \ldots, n$, $\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}$ and \mathcal{V} because $j_{0}^{1} \varphi=$ id and sends $\partial / \partial x^{1}$ into $\partial / \partial x^{1}+2 x^{1} \partial / \partial x^{2}$. Therefore

$$
a\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}}^{C}=a\left(\frac{\partial}{\partial x^{1}}\right)_{\left(j_{0}^{2}\left(x^{1}\right)\right)^{*}}^{C}+2 a\left(\left(x^{1} \frac{\partial}{\partial x^{2}}\right)^{C}\right)_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}}
$$

So, $a=0$ because $\left(\left(x^{1} \partial / \partial x^{2}\right)^{C}\right)_{\left(j_{0}^{1}\left(x^{1}\right)\right)^{*}} \neq 0$. Hence C is of vertical type.
Now, by Lemma $1, C=C^{(B)}$ for some bilinear natural operator B : $T^{*} \times_{\mathcal{M} f_{n}} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(1)}$ with $B(\cdot, 1)=0$, and it remains to apply Theorem 1.

REFERENCES

[1] M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk Univ., Brno, 1996, 141-150.
[2] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983).
[3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
[4] W. M. Mikulski, Liftings of 1 -forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (1995), 97-111.
[5] J. Tomáš, Natural operators on vector fields on the cotangent bundles of (k, r)velocities, Rend. Circ. Mat. Palermo 54 (1988), 113-124.
[6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.

Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: kurek@golem.umcs.lublin.pl

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: bundle functor, natural operator.

