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THE NATURAL LINEAR OPERATORS T ∗  TT (r)

BY

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. For natural numbers n ≥ 3 and r a complete description of all natural
bilinear operators T ∗×Mfn T

(0,0) T (0,0)T (r) is presented. Next for natural numbers r

and n ≥ 3 a full classification of all natural linear operators T ∗|Mfn
 TT (r) is obtained.

Introduction. Let n and r be natural numbers. Given an n-dimensional
manifold M we have the r-tangent vector bundle T (r)M = (Jr(M,R)0)∗

over M . Every embedding ϕ : M → N of n-manifolds induces a vector
bundle map T (r)ϕ : T (r)M → T (r)N covering ϕ such that 〈T (r)ϕ(ω), jrϕ(x)γ〉
= 〈ω, jrx(γ ◦ ϕ)〉 for ω ∈ T (r)

x M , jrϕ(x)γ ∈ Jrϕ(x)(N,R)0, x ∈ M . The corre-

spondence T (r) :Mfn → FM is a bundle functor from the category Mfn
of n-manifolds and embeddings into the category FM of fibered manifolds
and fibered maps [3].

In [4], we studied the problem of how a 1-form ω ∈ Ω1(M) on an n-
manifold M can induce a 1-form A(ω) ∈ Ω1(T (r)M) on T (r)M . This prob-
lem was reflected in the concept of natural linear operators T ∗|Mfn

 T ∗T (r)

in the sense of Kolář, Michor and Slovák [3]. We presented a complete de-
scription of such operators.

In the present note we start with the problem of how a 1-form ω ∈
Ω1(M) and a map f : M → R on an n-manifold M can induce a map
B(ω, f) : T (r)M → R. This problem concerns natural bilinear operators
B : T ∗×Mfn T

(0,0)  T (0,0)T (r). We prove that the vector space of all such
operators is 0-dimensional if n ≥ 3 and r ≥ 3, 3-dimensional if n ≥ 3 and
r = 2, and 2-dimensional if n ≥ 3 and r = 1. We construct explicit bases of
the vector spaces in question.

Next, using this classification we investigate how a 1-form ω on an n-
manifold M can induce a vector field C(ω) on T (r)M . This problem relates
to natural linear operators C : T ∗|Mfn

 TT (r). We deduce that the vector
space of all such operators is 0-dimensional if n ≥ 3 and r ≥ 3, 2-dimensional
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if n ≥ 3 and r = 2, and 1-dimensional if n ≥ 3 and r = 1, and we construct
the corresponding bases.

Natural operators lifting functions, vector fields and 1-forms to some
natural bundles were used practically in all papers in which problem of
prolongations of geometric structures was studied (e.g. [6]). That is why such
natural operators have been classified by many authors (see e.g. [1]–[5]).

The usual coordinates on Rn are denoted by x1, . . . , xn. On T (r)Rn we
have the induced coordinates (xi,Xα),

(1) xi(Θ) = xi0, Xα(Θ) = 〈Θ, jrx0
((x− x0)α)〉,

i=1, . . . , n, α∈(N ∪ {0})n, 1≤|α|≤r, Θ∈T (r)
x0 Rn, x0 = (x1

0, . . . , x
n
0 ) ∈ Rn.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of
class C∞. Maps between manifolds are assumed to be smooth.

1. The natural bilinear operators T ∗×Mfn T
(0,0)  T (0,0)T (r). For

r = 1 we have the following examples of natural bilinear operators T ∗×Mfn

T (0,0)  T (0,0)T (1).

Example 1. For a 1-form ω ∈ Ω1(M) and a map f : M → R on an
n-manifold M we define B(1)(ω, f) : T (1)M → R by

B(1)(ω, f)η = 〈ωx0 , η〉f(x0), η ∈ T (1)
x0
M ∼= Tx0M, x0 ∈M.

Then B(1) : T ∗ ×Mfn T
(0,0)  T (0,0)T (1) is a natural bilinear operator.

Example 2. For ω ∈ Ω1(M) and f : M → R we define B(1)(ω, f) :
T (1)M → R by

B[1](ω, f)η = 〈ωx0 , η〉〈dx0f, η〉, η ∈ T (1)
x0
M, x0 ∈M.

Then B[1] : T ∗ ×Mfn T
(0,0)  T (0,0)T (1) is a natural bilinear operator.

Now, let r = 2. In [4], we proved that there exists a linear (first order)
natural operator D : T ∗Mfn

 T 2∗ such that D(fdg) = j2
x0

((f + f(x0))(g −
g(x0))) for f, g : M → R, x0 ∈M , M ∈ obj(Mfn). Using D we now present
three examples of natural bilinear operators T ∗ ×Mfn T

(0,0)  T (0,0)T (2).

Example 3. For ω ∈ Ω1(M) and f : M → R we define B(2)(ω, f) :
T (2)M → R by

B(2)(ω, f)η = 〈D(ω)x0 , η〉f(x0), η ∈ T (2)
x0
M = (T 2∗

x0
M)∗, x0 ∈M.

Then B(2) : T ∗ ×Mfn T
(0,0)  T (0,0)T (2) is a natural bilinear operator.

Example 4. For ω ∈ Ω1(M) and f : M → R we define B[2](ω, f) :
T (2)M → R by

B[2](ω, f)η = 〈D(ω)x0 , η〉〈j2
x0

(f − f(x0)), η〉, η ∈ T (2)
x0
M, x0 ∈M.

Then B[2] : T ∗ ×Mfn T
(0,0)  T (0,0)T (2) is a natural bilinear operator.
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Example 5. For ω ∈ Ω1(M) and f : M → R we define B〈2〉(ω, f) :
T (2)M → R by

B〈2〉(ω, f)η = 〈D((f − f(x0))ω)x0 , η〉, η ∈ T (2)
x0
M, x0 ∈M.

Then B〈2〉 : T ∗ ×Mfn T
(0,0)  T (0,0)T (2) is a natural bilinear operator.

In the induced coordinates on T (r)Rn we have

B(2)(x2dx1, x3) = X(1,1,0,...,0)x3 + 2x2x3X(1,0,...,0),

B[2](x2dx1, x3) = X(1,1,...,0)X(0,0,1,0,...,0) + 2x2X(1,0,...,0)X(0,0,1,0,...,0),

B〈2〉(x2dx1, x3) = x2X(1,0,1,0,...,0),

B(1)(x2dx1, x3) = x2x3X(1,0,...,0),

B[1](x2dx1, x3) = x2X(1,0,...,0)X(0,0,1,0,...,0).

Hence, the operators B(1) and B[1] are linearly independent, and so are B(2),
B[2] and B〈2〉.

The first main result of this note is the following theorem.

Theorem 1. Let n ≥ 3 be a natural number.

(i) Every natural bilinear operator T ∗ ×Mfn T
(0,0)  T (0,0)T (1) is a

linear combination of B(1) and B[1] with real coefficients.
(ii) Every natural bilinear operator T ∗ ×Mfn T

(0,0)  T (0,0)T (2) is a
linear combination of B(2), B[2] and B〈2〉 with real coefficients.

(iii) If r ≥ 3 then every natural bilinear operator T ∗ ×Mfn T
(0,0)  

T (0,0)T (r) is zero.

The proof of Theorem 1 will occupy Sections 3–6.

2. The natural linear operators T ∗  TT (r). Every natural linear
operator C : T ∗|Mfn

 TT (r) of vertical type induces a natural bilinear

operator B(C) : T ∗ ×Mfn T
(0,0)  T (0,0)T (r) defined by

B(C)(ω, f)η = 〈jrx0
(f − f(x0)),pr2 ◦ C(ω)η〉

for ω ∈ Ω1(M), f : M → R, η ∈ T (r)
x0 M , x0 ∈ M , M ∈ obj(Mfn), where

pr2 : V T (r)M ∼= T (r)M×M T (r)M → T (r)M is the projection on the second
factor. Of course, B(C)(·, 1) = 0.

Conversely, any natural bilinear operator B : T ∗×MfnT
(0,0) T (0,0)T (r)

such that B(·, 1) = 0 induces a natural linear operator C(B) : T ∗|Mfn
 

TT (r) of vertical type such that 〈pr2 ◦ C(B)
η , jrx0

(f − f(x0))〉 = B(ω, f)η for

ω ∈ Ω1(M), f : M → R, η ∈ T (r)
x0 M, x0 ∈M, M ∈ obj(Mfn).

Lemma 1. The above correspondences are mutually inverse.

Proof. Clear.
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So we have the following examples of natural linear operators T ∗|Mfn
 

TT (r) of vertical type.

Example 6. C(1) = C(B[1]) : T ∗|Mfn
 TT (1) is a natural linear operator

of vertical type. Here B[1] is defined in Example 2.

Example 7. C [2] = C(B[2]) : T ∗|Mfn
 TT (2) is a natural linear operator

of vertical type. Here B[2] is defined in Example 4.

Example 8. C〈2〉 = C(B〈2〉) : T ∗|Mfn
 TT (2) is a natural linear opera-

tor of vertical type. Here B〈2〉 is defined in Example 5.

The second main result is

Theorem 2. Let n ≥ 3 and r be natural numbers. Then every natural
linear operator T ∗|Mfn

 TT (r) is of vertical type. Namely :

(i) Every natural linear operator T ∗|Mfn
 TT (1) is proportional to C(1).

(ii) Every natural linear operator T ∗|Mfn
 TT (2) is a linear combination

of C [2] and C〈2〉 with real coefficients.
(iii) If r ≥ 3 then every natural linear operator T ∗|Mfn

 TT (r) is zero.

The proof of Theorem 2 will occupy Section 7.

3. A reducibility lemma. We begin the proof of Theorem 1 with the
following lemma.

Lemma 2 (Reducibility Lemma). Let n ≥ 3. Let B : T ∗ ×Mfn T
(0,0)  

T (0,0)T (r) be a natural bilinear operator such that B(x2dx1, x3) = 0. Then
B = 0.

Proof. Let f, g : Rn → R and y ∈ Rn. There is a dense subset of (τ1, τ2)
in R2 such that ϕτ1,τ2 = (x1, f + τ1x

2, g + τ2x
3, x4, . . . , xn) : Rn → Rn is a

local diffeomorphism near y. Using the naturality of B with respect to ϕτ1,τ2
and the assumption we get

(2) B((f + τ1x
2)dx1, g + τ2x

3)η = 0

for every η ∈ T (r)
y Rn. The left hand side of (2) is a polynomial in τ1, τ2 for

fixed η. Considering the constant term we derive that B(fdx1, g)η = 0.
So, B(fdx1, g) = 0 for every f, g : Rn → R. Now, by the invariance of B

under coordinate permutations we get B(fdxi, g) = 0. Then the bilinearity
and naturality of B imply that B = 0.

4. A form of B(x2dx1, x3). By the reducibility lemma every natural
bilinear operator B : T ∗ ×Mfn T

(0,0)  T (0,0)T (r) is uniquely determined
by B(x2dx1, x3).
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Lemma 3. Let B : T ∗ ×Mfn T
(0,0)  T (0,0)T (r) be a natural bilinear

operator with n ≥ 3.

(i) If r = 1 then

B(x2dx1, x3) = µ1X
e1x2x3 + µ2X

e1Xe2x3(3)

+ µ3X
e1Xe3x2 + µ4X

e1Xe2Xe3

for some µ1, . . . , µ4 ∈ R, where ei is the ith standard unit vector in Rn.
(ii) If r = 2 then

B(x2dx1, x3) = µ1X
e1x2x3 + µ2X

e1Xe2x3 + µ3X
e1Xe3x2(4)

+ µ4X
e1Xe2Xe3 + µ5X

(1,0,1,0,...,0)x2

+ µ6X
(1,1,0,...,0)x3 + µ7X

(1,0,1,0,...,0)Xe2

+ µ8X
(1,1,0,...,0)Xe3 + µ9X

(0,1,1,0,...,0)Xe1

for some µ1, . . . , µ9 ∈ R.
(iii) If r ≥ 3 then

B(x2dx1, x3) = µ1X
e1x2x3 + µ2X

e1Xe2x3(5)

+ µ3X
e1Xe3x2 + µ4X

e1Xe2Xe3

+ µ5X
(1,0,1,0,...,0)x2 + µ6X

(1,1,0,...,0)x3

+ µ7X
(1,0,1,0,...,0)Xe2 + µ8X

(1,1,0,...,0)Xe3

+ µ9X
(0,1,1,0,...,0)Xe1 + µ10X

(1,1,1,0,...,0)

for some µ1, . . . , µ10 ∈ R.

Proof. We can write B(x2dx1, x3) = f(xi,Xα), where f is of class C∞.
By the invariance of B with respect to translations of the first coordinate
we deduce that f is independent of x1. By the invariance of B with respect
to the homotheties (tixi) : Rn → Rn for (ti) ∈ Rn+ we get the homogeneity
condition

t1t2t3f(xi,Xα) = f(tixi, tαXα).

This type of homogeneity implies that f is a linear combination of monomials
in xi and Xα having the homogeneity type t1t2t3. These facts yield the
result.

5. Transformation rules. We have a local diffeomorphism

(6) G =
(
x1 − 1

2
(x1)2,

x2

1− x1 , x
3, . . . , xn

)

defined in some neighbourhood U of 0 ∈ Rn. This diffeomorphism pre-
serves the germ of (x2dx1, x3) at 0. Therefore we will study the invariance
of B(x2dx1, x3) with respect to G. We need some transformation rules.
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Lemma 3. Let n ≥ 3 and G and U be as above.

(i) If r = 1 then

Xe1 ◦ T (1)G = (1− x1)Xe1 ,(7)

Xe2 ◦ T (1)G =
x2

(1− x1)2 X
e1 +

1
1− x1 X

e2 ,(8)

Xe3 ◦ T (1)G = Xe3(9)

over U .
(ii) If r = 2 then

Xe1 ◦ T (2)G = (1− x1)Xe1 − 1
2
X(2,0,...,0),(10)

Xe2 ◦ T (2)G =
x2

(1− x1)2 X
e1 +

1
1− x1 X

e2(11)

+
x2

(1− x1)3 X
(2,0,...,0) +

1
(1− x1)2 X

(1,1,0,...,0),

Xe3 ◦ T (2)G = Xe3 ,(12)

X(1,1,0,...,0) ◦ T (2)G =
x2

1− x1X
(2,0,...,0) +X(1,1,0,...,0),(13)

X(1,0,1,0,...,0) ◦ T (2)G = (1− x1)X(1,0,1,0,...,0),(14)

X(0,1,1,0,...,0) ◦ T (2)G =
x2

1− x1 X
(1,0,1,0,...,0) +

1
1− x1 X

(0,1,1,0,...,0)(15)

over U .
(iii) If r = 3 then

Xe1 ◦ T (3)G = (1− x1)Xe1 − 1
2
X(2,0,...,0),(16)

Xe3 ◦ T (3)G = Xe3 ,(17)

X(1,1,0,...,0) ◦ T (3)G =
x2

1− x1 X
(2,0,...,0) +X(1,1,0,...,0)(18)

+
1
2

x2

(1− x2)2 X
(3,0,...,0) +

1
2

1
1− x1 X

(2,1,0,...,0),

X(1,0,1,0,...,0) ◦ T (3)G = (1− x1)X(1,0,1,0,...,0) − 1
2
X(2,0,1,0,...,0),(19)

X(1,1,1,0,...,0) ◦ T (3)G = X(1,1,1,0,...,0) +
x2

1− x1 X
(2,1,0,...,0)(20)

over U .

Proof. This is an extension of Lemma 4.1 in [4].
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For example, we prove (7). Let x0 = (x1
0, . . . , x

n
0 ) ∈ U and Θ ∈ T (1)

x0 Rn.
Comparing the respective jet coordinates (by computing derivatives) we
obtain j1

x0
(G1 −G1(x0)) = (1− x1

0)j1
x0

(x1 − x1
0). Therefore

Xe1 ◦ T (1)G(Θ) = 〈T (1)G(Θ), j1
G(x0)(x

1 −G1(x0))〉
= 〈Θ, j1

x0
(G1 −G1(x0))〉

=(1− x1
0)〈Θ, j1

x0
(x1 − x1

0)〉
= (1− x1

0)Xe1(Θ) = ((1− x1)Xe1)(Θ).

The proofs of the other formulas are similar.

6. Proof of Theorem 1. Consider a natural bilinear operator B :
T ∗ ×Mfn T

(0,0)  T (0,0)T (r), n ≥ 3. We know that it is sufficient to study
B(x2dx1, x3). The form of B(x2dx1, x3) is given in Lemma 3.

(i) The local diffeomorphism G preserves (x2dx1, x3) on U . Thus it pre-
serves B(x2dx1, x3) over U . Hence it preserves the right hand side of (3).
The transformation rules (7)–(9) yield

µ1X
e1x2x3 + µ2X

e1Xe2x3 + µ3X
e1Xe3x2 + µ4X

e1Xe2Xe3

= µ1X
e1x2x3 + µ2(1− x1)Xe1

(
x2

(1− x1)2 X
e1 +

1
1− x1 X

e2

)
x3

+ µ3(1− x1)Xe1 Xe3
x2

1− x1

+ µ4(1− x1)Xe1

(
x2

(1− x1)2 X
e1 +

1
1− x1 X

e2

)
Xe3

over U . Thus

µ2(Xe1)2 x2

1− x1 x
3 + µ4(Xe1)2 x2

1− x1 X
e3 = 0.

So, µ2 = µ4 = 0 in (3). Consequently, the vector space of all bilinear nat-
ural operators T ∗ ×Mfn T

(0,0)  T (0,0)T (1) is at most 2-dimensional. On
the other hand, the operators B(1) and B[1] are linearly independent. This
proves (i).

(ii) We have the natural inclusion i : T (1) → T (2) which is dual to the
jet projection J2(·,R)0 → J1(·,R)0. So, by pull-back we have the bilinear
natural operator i∗B : T ∗ ×Mfn T

(0,0)  T (0,0)T (1). Hence µ2 = µ4 = 0 in
(4) by (i).

In this case the local diffeomorphism G preserves the right hand side of
(4) with µ2 = µ4 = 0, and the transformation rules (10)–(15) yield
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µ1X
e1x2x3 + µ3X

e1Xe3x2 + µ5X
(1,0,1,0,...,0)x2 + µ6X

(1,1,0,...,0)x3

+ µ7X
(1,0,1,0,...,0)Xe2 + µ8X

(1,1,0,...,0)Xe3 + µ9X
(0,1,1,0,...,0)Xe1

= µ1

(
(1− x1)Xe1 − 1

2
X(2,0,...,0)

)
x2

1− x1 x
3

+ µ3

(
(1− x1)Xe1 − 1

2
X(2,0,...,0)

)
Xe3

x2

1− x1

+ µ5(1− x1)X(1,0,1,0,...,0) x2

1− x1

+ µ6

(
x2

1− x1 X
(2,0,...,0) +X(1,1,0,...,0)

)
x3

+ µ7(1− x1)X(1,0,1,0,...,0)
(

x2

(1− x1)2 X
e1 +

1
1− x1 X

e2

+
x2

(1− x1)3 X
(2,0,...,0) +

1
(1− x1)2 X

(1,1,0,...,0)
)

+ µ8

(
x2

1− x1 X
(2,0,...,0) +X(1,1,0,...,0)

)
Xe3

+ µ9

(
x2

1− x1 X
(1,0,1,0,...,0) +

1
1− x1 X

(0,1,1,0,...,0)
)

×
(

(1− x1)Xe1 − 1
2
X(2,0,...,0)

)
.

Analysing the coefficients of X(0,1,1,0,...,0)X(2,0,...,0) in the above equality
we get 0 = µ9(− 1

2 ) 1
1−x1 . So, µ9 = 0. Then considering the coefficients of

X(1,0,1,0,...,0)X(2,0,...,0) we obtain 0 = µ7
x2

(1−x1)2 . So, µ7 = 0. Comparing

the coefficients of X(2,0,...,0)Xe3 we deduce 0 = µ8
x2

1−x1 + µ3
(
− 1

2

)
x2

1−x1 .

Consequently, µ3 = 2µ8. Finally looking at X(2,0,...,0) we have 0 = µ6
x2x3

1−x1 +

µ1
(
− 1

2

)
x2x3

1−x1 , i.e. µ1 = 2µ6.
Therefore the vector space of all natural bilinear operators T ∗ ×Mfn

T (0,0)  T (0,0)T (2) is at most 3-dimensional. On the other hand, the oper-
ators B(2), B[2] and B〈2〉 are linearly independent, which proves (ii).

(iii) First, let r = 3. We have the natural inclusion i : T (2) → T (3) which
is dual to the jet projection J3(·,R)0 → J2(·,R)0. So, by pull-back we have
the natural bilinear operator i∗B : T ∗ ×Mfn T

(0,0)  T (0,0)T (2). Hence in
(5) we have µ2 = µ4 = µ9 = µ7 = 0, µ3 = 2µ8 and µ1 = 2µ6 by (ii).
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Now the local diffeomorphism G preserves the right hand side of (5) with
the above conditions, and the transformation rules (16)–(20) yield

µ1X
e1x2x3 + µ3X

e1Xe3x2 + +µ5X
(1,0,1,0,...,0)x2

+ µ6X
(1,1,0,...,0)x3 + µ8X

(1,1,0,...,0)Xe3 + µ10X
(1,1,1,0,...,0)

= µ1

(
(1− x1)Xe1 − 1

2
X(2,0,...,0)

)
x2

1− x1 x
3

+ µ3

(
(1− x1)Xe1 − 1

2
X(2,0,...,0)

)
Xe3

x2

1− x1

+ µ5

(
(1− x1)X(1,0,1,0,...,0) − 1

2
X(2,0,1,0,...,0)

)
x2

1− x1

+ µ6

(
x2

1− x1 X
(2,0,...,0) +X(1,1,0,...,0)

+
1
2

x2

(1− x1)2 X
(3,0,...,0) +

1
2

1
1− x1 X

(2,1,0,...,0)
)
x3

+ µ8

(
x2

1− x1 X
(2,0,...,0) +X(1,1,0,...,0)

+
1
2

x2

(1− x1)2 X
(3,0,...,0) +

1
2

1
1− x1 X

(2,1,0,...,0)
)
Xe3

+ µ10

(
X(1,1,1,0,...,0) +

x2

1− x1 X
(2,1,0,...,0)

)
.

Analysing the coefficients of X(3,0,...,0) in the above equality we get 0 =
µ6

1
2

x2

(1−x1)2x
3. So, µ6 =0. Then considering the coefficients of X(3,0,...,0)Xe3

we obtain 0 = µ8
1
2

x2

(1−x1)2 . So, µ8 = 0. Comparing the coefficients of

X(2,1,0,...,0) we deduce 0 = µ10
x2

1−x1 . Consequently, µ10 = 0. Finally, looking

at X(2,0,1,0...,0) we have 0 = µ5(− 1
2 ) x2

1−x1 , i.e. µ5 = 0.
Therefore µ1 = . . . = µ10 = 0, i.e. B = 0.
Let now r ≥ 4. We have the natural inclusion i : T (3) → T (r) which is

dual to the jet projection Jr(·,R)0 → J3(·,R)0. So, by pull-back we have
the bilinear natural operator i∗B : T ∗ ×Mfn T

(0,0)  T (0,0)T (3). Hence in
(6) we have µ1 = . . . = µ10 = 0 by the case r = 3. Thus B = 0.

7. Proof of Theorem 2. Let C : T ∗|Mfn
 TT (r) be a natural linear

operator, n ≥ 3. It induces a natural bilinear operator B [C] : T ∗ ×Mfn
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T (0,0)  T (0,0)T (r) by

(21) B[C](ω, f)η = 〈Tπ(C(ω)η), dxf〉,
ω ∈ Ω(M), f : M → R, η ∈ T

(r)
x M , x ∈ M , M ∈ obj(Mfn). Here

π : T (r)M →M is the bundle projection.
We first prove (iii). By Theorem 1, B[C] = 0. Thus C is of vertical type.

Then by Section 2, C induces the bilinear operator B(C) which is 0 in view
of Theorem 1. Hence C = 0.

We now show (ii). Since B[C] is of order 1 with respect to f and B[C](·, 1)
= 0, it follows that B[C] = aB〈2〉 for some a ∈ R by Theorem 1. Then
B[C](dx1, x1)(j20((x1)2))∗ = a, where (j2

0x
α)∗ ∈ T

(2)
0 Rn is the basis dual to

j2
0x

α. Therefore

C(dx1, x1)(j20((x1)2))∗ = a

(
∂

∂x1

)C

(j20 ((x1)2))∗
+ V(22)

+
n∑

i=2

ai

(
∂

∂x1

)C

(j20((x1)2))∗

for some vertical vector V ∈ V(j20((x1)2))∗T
(2)Rn and ai ∈ R, where ( )C is

the complete lifting of a vector field to T (2).
Consider the diffeomorphism ϕ = (x1, x2 +(x1)3, x3, . . . , xn) : Rn → Rn.

It preserves x1, dx1 and (j2
0((x1)2))∗ because j2

0ϕ = id. Thus it preserves
the left hand side of (22). On the other hand it preserves ∂/∂xi for i =
2, . . . , n, (j2

0((x1)2))∗ and V because j2
0ϕ = id, and sends ∂/∂x1 to ∂/∂x1 +

3(x1)2∂/∂x2. Therefore

a

(
∂

∂x1

)C

(j20((x1)2))∗
= a

(
∂

∂x1

)C

(j20 ((x1)2))∗
+ 3a

((
(x1)2 ∂

∂x2

)C)

(j20 ((x1)2))∗
.

So, a = 0 because (((x1)2∂/∂x2)C)(j20((x1)2))∗ 6= 0. Hence C is of vertical
type.

Now, by Lemma 1, C = C(B) for some bilinear natural operator B :
T ∗×Mfn T

(0,0)  T (0,0)T (2) with B(·, 1) = 0. Applying Theorem 1 ends the
proof of (ii).

Finally, we prove (i). Since B[C](·, 1) = 0, we have B[C] = aB[1] for some
a ∈ R by Theorem 1. Thus B[C](dx1, x1)(j20((x1)2))∗ = a. Hence

(23) C(dx1, x1)(j10(x1))∗ = a

(
∂

∂x1

)C

(j10(x1))∗
+ V +

n∑

i=2

ai

(
∂

∂x1

)C

(j10(x1))∗

for some vertical vector V ∈ V(j10 (x1))∗T
(1)Rn and ai ∈ R.

Consider the diffeomorphism ϕ = (x1, x2 +(x1)2, x3, . . . , xn) : Rn → Rn.
It preserves x1, dx1 and (j1

0(x1))∗ because j1
0ϕ = id. Thus it preserves the
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left hand side of (23). On the other hand it preserves ∂/∂xi for i = 2, . . . , n,
(j1

0(x1))∗ and V because j1
0ϕ = id and sends ∂/∂x1 into ∂/∂x1 + 2x1∂/∂x2.

Therefore

a

(
∂

∂x1

)C

(j10(x1))∗
= a

(
∂

∂x1

)C

(j20(x1))∗
+ 2a

((
x1 ∂

∂x2

)C)

(j10(x1))∗
.

So, a = 0 because ((x1∂/∂x2)C)(j10(x1))∗ 6= 0. Hence C is of vertical type.
Now, by Lemma 1, C = C(B) for some bilinear natural operator B :

T ∗ ×Mfn T
(0,0)  T (0,0)T (1) with B(·, 1) = 0, and it remains to apply

Theorem 1.
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