VOL. 95

2003

NO. 1

THE NATURAL LINEAR OPERATORS $T^* \rightsquigarrow TT^{(r)}$

ВY

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. For natural numbers $n \geq 3$ and r a complete description of all natural bilinear operators $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ is presented. Next for natural numbers r and $n \geq 3$ a full classification of all natural linear operators $T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ is obtained.

Introduction. Let *n* and *r* be natural numbers. Given an *n*-dimensional manifold *M* we have the *r*-tangent vector bundle $T^{(r)}M = (J^r(M, \mathbb{R})_0)^*$ over *M*. Every embedding $\varphi : M \to N$ of *n*-manifolds induces a vector bundle map $T^{(r)}\varphi : T^{(r)}M \to T^{(r)}N$ covering φ such that $\langle T^{(r)}\varphi(\omega), j_{\varphi(x)}^r \gamma \rangle = \langle \omega, j_x^r(\gamma \circ \varphi) \rangle$ for $\omega \in T_x^{(r)}M, j_{\varphi(x)}^r \gamma \in J_{\varphi(x)}^r(N, \mathbb{R})_0, x \in M$. The correspondence $T^{(r)} : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ is a bundle functor from the category $\mathcal{M}f_n$ of *n*-manifolds and embeddings into the category $\mathcal{F}\mathcal{M}$ of fibered manifolds and fibered maps [3].

In [4], we studied the problem of how a 1-form $\omega \in \Omega^1(M)$ on an *n*manifold M can induce a 1-form $A(\omega) \in \Omega^1(T^{(r)}M)$ on $T^{(r)}M$. This problem was reflected in the concept of natural linear operators $T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{(r)}$ in the sense of Kolář, Michor and Slovák [3]. We presented a complete description of such operators.

In the present note we start with the problem of how a 1-form $\omega \in \Omega^1(M)$ and a map $f: M \to \mathbb{R}$ on an *n*-manifold M can induce a map $B(\omega, f): T^{(r)}M \to \mathbb{R}$. This problem concerns natural bilinear operators $B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$. We prove that the vector space of all such operators is 0-dimensional if $n \geq 3$ and $r \geq 3$, 3-dimensional if $n \geq 3$ and r = 2, and 2-dimensional if $n \geq 3$ and r = 1. We construct explicit bases of the vector spaces in question.

Next, using this classification we investigate how a 1-form ω on an *n*manifold M can induce a vector field $C(\omega)$ on $T^{(r)}M$. This problem relates to natural linear operators $C: T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$. We deduce that the vector space of all such operators is 0-dimensional if $n \geq 3$ and $r \geq 3$, 2-dimensional

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: bundle functor, natural operator.

if $n \ge 3$ and r = 2, and 1-dimensional if $n \ge 3$ and r = 1, and we construct the corresponding bases.

Natural operators lifting functions, vector fields and 1-forms to some natural bundles were used practically in all papers in which problem of prolongations of geometric structures was studied (e.g. [6]). That is why such natural operators have been classified by many authors (see e.g. [1]–[5]).

The usual coordinates on \mathbb{R}^n are denoted by x^1, \ldots, x^n . On $T^{(r)}\mathbb{R}^n$ we have the induced coordinates (x^i, X^α) ,

(1)
$$x^{i}(\Theta) = x_{0}^{i}, \quad X^{\alpha}(\Theta) = \langle \Theta, j_{x_{0}}^{r}((x - x_{0})^{\alpha}) \rangle,$$

 $i=1,\ldots,n, \alpha \in (\mathbb{N} \cup \{0\})^n, 1 \leq |\alpha| \leq r, \Theta \in T_{x_0}^{(r)} \mathbb{R}^n, x_0 = (x_0^1,\ldots,x_0^n) \in \mathbb{R}^n.$

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞} . Maps between manifolds are assumed to be smooth.

1. The natural bilinear operators $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$. For r = 1 we have the following examples of natural bilinear operators $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$.

EXAMPLE 1. For a 1-form $\omega \in \Omega^1(M)$ and a map $f : M \to \mathbb{R}$ on an *n*-manifold M we define $B^{(1)}(\omega, f) : T^{(1)}M \to \mathbb{R}$ by

 $B^{(1)}(\omega, f)_{\eta} = \langle \omega_{x_0}, \eta \rangle f(x_0), \quad \eta \in T^{(1)}_{x_0} M \cong T_{x_0} M, \ x_0 \in M.$

Then $B^{(1)}: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$ is a natural bilinear operator.

EXAMPLE 2. For $\omega \in \Omega^1(M)$ and $f: M \to \mathbb{R}$ we define $B^{(1)}(\omega, f): T^{(1)}M \to \mathbb{R}$ by

$$B^{[1]}(\omega, f)_{\eta} = \langle \omega_{x_0}, \eta \rangle \langle d_{x_0}f, \eta \rangle, \quad \eta \in T^{(1)}_{x_0}M, \ x_0 \in M.$$

Then $B^{[1]}: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$ is a natural bilinear operator.

Now, let r = 2. In [4], we proved that there exists a linear (first order) natural operator $D: T^*_{\mathcal{M}f_n} \rightsquigarrow T^{2*}$ such that $D(fdg) = j^2_{x_0}((f + f(x_0))(g - g(x_0)))$ for $f, g: M \to \mathbb{R}, x_0 \in M, M \in \operatorname{obj}(\mathcal{M}f_n)$. Using D we now present three examples of natural bilinear operators $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(2)}$.

EXAMPLE 3. For $\omega \in \Omega^1(M)$ and $f: M \to \mathbb{R}$ we define $B^{(2)}(\omega, f): T^{(2)}M \to \mathbb{R}$ by

 $B^{(2)}(\omega, f)_{\eta} = \langle D(\omega)_{x_0}, \eta \rangle f(x_0), \quad \eta \in T^{(2)}_{x_0} M = (T^{2*}_{x_0} M)^*, \ x_0 \in M.$ Then $B^{(2)}: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ is a natural bilinear operator.

EXAMPLE 4. For $\omega \in \Omega^1(M)$ and $f : M \to \mathbb{R}$ we define $B^{[2]}(\omega, f) : T^{(2)}M \to \mathbb{R}$ by

 $B^{[2]}(\omega, f)_{\eta} = \langle D(\omega)_{x_0}, \eta \rangle \langle j_{x_0}^2(f - f(x_0)), \eta \rangle, \quad \eta \in T_{x_0}^{(2)}M, \ x_0 \in M.$

Then $B^{[2]}: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(2)}$ is a natural bilinear operator.

EXAMPLE 5. For $\omega \in \Omega^1(M)$ and $f: M \to \mathbb{R}$ we define $B^{\langle 2 \rangle}(\omega, f): T^{(2)}M \to \mathbb{R}$ by

$$B^{\langle 2 \rangle}(\omega, f)_{\eta} = \langle D((f - f(x_0))\omega)_{x_0}, \eta \rangle, \quad \eta \in T^{(2)}_{x_0}M, \ x_0 \in M.$$

Then $B^{\langle 2 \rangle}: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(2)}$ is a natural bilinear operator.

In the induced coordinates on
$$T^{(r)}\mathbb{R}^n$$
 we have
 $B^{(2)}(x^2dx^1, x^3) = X^{(1,1,0,\dots,0)}x^3 + 2x^2x^3X^{(1,0,\dots,0)},$
 $B^{[2]}(x^2dx^1, x^3) = X^{(1,1,\dots,0)}X^{(0,0,1,0,\dots,0)} + 2x^2X^{(1,0,\dots,0)}X^{(0,0,1,0,\dots,0)},$
 $B^{(2)}(x^2dx^1, x^3) = x^2X^{(1,0,1,0,\dots,0)},$
 $B^{(1)}(x^2dx^1, x^3) = x^2x^3X^{(1,0,\dots,0)},$
 $B^{[1]}(x^2dx^1, x^3) = x^2X^{(1,0,\dots,0)}X^{(0,0,1,0,\dots,0)}.$

Hence, the operators $B^{(1)}$ and $B^{[1]}$ are linearly independent, and so are $B^{(2)}$, $B^{[2]}$ and $B^{\langle 2 \rangle}$.

The first main result of this note is the following theorem.

THEOREM 1. Let $n \geq 3$ be a natural number.

(i) Every natural bilinear operator $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$ is a linear combination of $B^{(1)}$ and $B^{[1]}$ with real coefficients.

(ii) Every natural bilinear operator $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(2)}$ is a linear combination of $B^{(2)}$, $B^{[2]}$ and $B^{\langle 2 \rangle}$ with real coefficients.

(iii) If $r \geq 3$ then every natural bilinear operator $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$ is zero.

The proof of Theorem 1 will occupy Sections 3–6.

2. The natural linear operators $T^* \rightsquigarrow TT^{(r)}$. Every natural linear operator $C: T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ of vertical type induces a natural bilinear operator $B^{(C)}: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$ defined by

$$B^{(C)}(\omega, f)_{\eta} = \langle j_{x_0}^r(f - f(x_0)), \operatorname{pr}_2 \circ C(\omega)_{\eta} \rangle$$

for $\omega \in \Omega^1(M)$, $f: M \to \mathbb{R}$, $\eta \in T_{x_0}^{(r)}M$, $x_0 \in M$, $M \in \operatorname{obj}(\mathcal{M}f_n)$, where $\operatorname{pr}_2: VT^{(r)}M \cong T^{(r)}M \times_M T^{(r)}M \to T^{(r)}M$ is the projection on the second factor. Of course, $B^{(C)}(\cdot, 1) = 0$.

Conversely, any natural bilinear operator $B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ such that $B(\cdot, 1) = 0$ induces a natural linear operator $C^{(B)}: T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ of vertical type such that $\langle \operatorname{pr}_2 \circ C^{(B)}_{\eta}, j^r_{x_0}(f - f(x_0)) \rangle = B(\omega, f)_{\eta}$ for $\omega \in \Omega^1(M), f: M \to \mathbb{R}, \ \eta \in T^{(r)}_{x_0}M, \ x_0 \in M, \ M \in \operatorname{obj}(\mathcal{M}f_n).$

LEMMA 1. The above correspondences are mutually inverse.

Proof. Clear.

So we have the following examples of natural linear operators $T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ of vertical type.

EXAMPLE 6. $C^{(1)} = C^{(B^{[1]})} : T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(1)}$ is a natural linear operator of vertical type. Here $B^{[1]}$ is defined in Example 2.

EXAMPLE 7. $C^{[2]} = C^{(B^{[2]})} : T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(2)}$ is a natural linear operator of vertical type. Here $B^{[2]}$ is defined in Example 4.

EXAMPLE 8. $C^{\langle 2 \rangle} = C^{(B^{\langle 2 \rangle})} : T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(2)}$ is a natural linear operator of vertical type. Here $B^{\langle 2 \rangle}$ is defined in Example 5.

The second main result is

THEOREM 2. Let $n \geq 3$ and r be natural numbers. Then every natural linear operator $T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ is of vertical type. Namely:

(i) Every natural linear operator $T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(1)}$ is proportional to $C^{(1)}$.

(ii) Every natural linear operator $T^*_{|\mathcal{M}f_n} \to TT^{(2)}$ is a linear combination of $C^{[2]}$ and $C^{(2)}$ with real coefficients.

(iii) If $r \geq 3$ then every natural linear operator $T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ is zero. The proof of Theorem 2 will occupy Section 7.

3. A reducibility lemma. We begin the proof of Theorem 1 with the following lemma.

LEMMA 2 (Reducibility Lemma). Let $n \geq 3$. Let $B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$ be a natural bilinear operator such that $B(x^2dx^1, x^3) = 0$. Then B = 0.

Proof. Let $f, g: \mathbb{R}^n \to \mathbb{R}$ and $y \in \mathbb{R}^n$. There is a dense subset of (τ_1, τ_2) in \mathbb{R}^2 such that $\varphi_{\tau_1,\tau_2} = (x^1, f + \tau_1 x^2, g + \tau_2 x^3, x^4, \ldots, x^n) : \mathbb{R}^n \to \mathbb{R}^n$ is a local diffeomorphism near y. Using the naturality of B with respect to φ_{τ_1,τ_2} and the assumption we get

(2)
$$B((f + \tau_1 x^2) dx^1, g + \tau_2 x^3)_{\eta} = 0$$

for every $\eta \in T_y^{(r)} \mathbb{R}^n$. The left hand side of (2) is a polynomial in τ_1, τ_2 for fixed η . Considering the constant term we derive that $B(fdx^1, g)_{\eta} = 0$.

So, $B(fdx^1, g) = 0$ for every $f, g : \mathbb{R}^n \to \mathbb{R}$. Now, by the invariance of B under coordinate permutations we get $B(fdx^i, g) = 0$. Then the bilinearity and naturality of B imply that B = 0.

4. A form of $B(x^2dx^1, x^3)$. By the reducibility lemma every natural bilinear operator $B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$ is uniquely determined by $B(x^2dx^1, x^3)$.

LEMMA 3. Let $B : T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(r)}$ be a natural bilinear operator with $n \geq 3$.

(i) If
$$r = 1$$
 then
(3) $B(x^2 dx^1, x^3) = \mu_1 X^{e_1} x^2 x^3 + \mu_2 X^{e_1} X^{e_2} x^3 + \mu_3 X^{e_1} X^{e_3} x^2 + \mu_4 X^{e_1} X^{e_2} X^{e_3}$

for some $\mu_1, \ldots, \mu_4 \in \mathbb{R}$, where e_i is the *i*th standard unit vector in \mathbb{R}^n . (ii) If r = 2 then

(4)
$$B(x^{2}dx^{1}, x^{3}) = \mu_{1}X^{e_{1}}x^{2}x^{3} + \mu_{2}X^{e_{1}}X^{e_{2}}x^{3} + \mu_{3}X^{e_{1}}X^{e_{3}}x^{2} + \mu_{4}X^{e_{1}}X^{e_{2}}X^{e_{3}} + \mu_{5}X^{(1,0,1,0,\dots,0)}x^{2} + \mu_{6}X^{(1,1,0,\dots,0)}x^{3} + \mu_{7}X^{(1,0,1,0,\dots,0)}X^{e_{2}} + \mu_{8}X^{(1,1,0,\dots,0)}X^{e_{3}} + \mu_{9}X^{(0,1,1,0,\dots,0)}X^{e_{1}}$$

for some $\mu_1, \ldots, \mu_9 \in \mathbb{R}$. (iii) If $r \ge 3$ then

(5)
$$B(x^{2}dx^{1}, x^{3}) = \mu_{1}X^{e_{1}}x^{2}x^{3} + \mu_{2}X^{e_{1}}X^{e_{2}}x^{3} + \mu_{3}X^{e_{1}}X^{e_{3}}x^{2} + \mu_{4}X^{e_{1}}X^{e_{2}}X^{e_{3}} + \mu_{5}X^{(1,0,1,0,\dots,0)}x^{2} + \mu_{6}X^{(1,1,0,\dots,0)}x^{3} + \mu_{7}X^{(1,0,1,0,\dots,0)}X^{e_{2}} + \mu_{8}X^{(1,1,0,\dots,0)}X^{e_{3}} + \mu_{9}X^{(0,1,1,0,\dots,0)}X^{e_{1}} + \mu_{10}X^{(1,1,1,0,\dots,0)}$$

for some $\mu_1, \ldots, \mu_{10} \in \mathbb{R}$.

Proof. We can write $B(x^2dx^1, x^3) = f(x^i, X^{\alpha})$, where f is of class \mathcal{C}^{∞} . By the invariance of B with respect to translations of the first coordinate we deduce that f is independent of x^1 . By the invariance of B with respect to the homotheties $(t^ix^i) : \mathbb{R}^n \to \mathbb{R}^n$ for $(t^i) \in \mathbb{R}^n_+$ we get the homogeneity condition

$$t^1 t^2 t^3 f(x^i, X^\alpha) = f(t^i x^i, t^\alpha X^\alpha).$$

This type of homogeneity implies that f is a linear combination of monomials in x^i and X^{α} having the homogeneity type $t^1t^2t^3$. These facts yield the result.

5. Transformation rules. We have a local diffeomorphism

(6)
$$G = \left(x^1 - \frac{1}{2} (x^1)^2, \frac{x^2}{1 - x^1}, x^3, \dots, x^n\right)$$

defined in some neighbourhood U of $0 \in \mathbb{R}^n$. This diffeomorphism preserves the germ of $(x^2 dx^1, x^3)$ at 0. Therefore we will study the invariance of $B(x^2 dx^1, x^3)$ with respect to G. We need some transformation rules. LEMMA 3. Let $n \geq 3$ and G and U be as above.

(i) If
$$r = 1$$
 then
(7) $X^{e_1} \circ T^{(1)}G = (1 - x^1)X^{e_1},$

(8)
$$X^{e_2} \circ T^{(1)}G = \frac{x^2}{(1-x^1)^2} X^{e_1} + \frac{1}{1-x^1} X^{e_2},$$

(9)
$$X^{e_3} \circ T^{(1)}G = X^{e_3}$$

over U.

(ii) If r = 2 then

(10)
$$X^{e_1} \circ T^{(2)}G = (1 - x^1)X^{e_1} - \frac{1}{2}X^{(2,0,\dots,0)},$$

(11)
$$X^{e_2} \circ T^{(2)}G = \frac{x^2}{(1-x^1)^2} X^{e_1} + \frac{1}{1-x^1} X^{e_2}$$

$$+ \frac{x^2}{(1-x^1)^3} X^{(2,0,\dots,0)} + \frac{1}{(1-x^1)^2} X^{(1,1,0,\dots,0)},$$

(12)
$$X^{e_3} \circ T^{(2)}G = X^{e_3},$$

(13)
$$X^{(1,1,0,\dots,0)} \circ T^{(2)}G = \frac{x^2}{1-x^1}X^{(2,0,\dots,0)} + X^{(1,1,0,\dots,0)}$$

(14)
$$X^{(1,0,1,0,\dots,0)} \circ T^{(2)}G = (1-x^1)X^{(1,0,1,0,\dots,0)},$$

(15)
$$X^{(0,1,1,0,\dots,0)} \circ T^{(2)}G = \frac{x^2}{1-x^1}X^{(1,0,1,0,\dots,0)} + \frac{1}{1-x^1}X^{(0,1,1,0,\dots,0)}$$

 $over \ U.$

(iii) If r = 3 then

(16)
$$X^{e_1} \circ T^{(3)}G = (1 - x^1)X^{e_1} - \frac{1}{2}X^{(2,0,\dots,0)},$$

(17)
$$X^{e_3} \circ T^{(3)}G = X^{e_3},$$

(18)
$$X^{(1,1,0,\dots,0)} \circ T^{(3)}G = \frac{x^2}{1-x^1} X^{(2,0,\dots,0)} + X^{(1,1,0,\dots,0)} + \frac{1}{2} \frac{1}{1-x^1} X^{(2,1,0,\dots,0)},$$

 $+ \frac{1}{2} \frac{x^2}{(1-x^2)^2} X^{(3,0,\dots,0)} + \frac{1}{2} \frac{1}{1-x^1} X^{(2,1,0,\dots,0)},$

(19)
$$X^{(1,0,1,0,\dots,0)} \circ T^{(3)}G = (1-x^1)X^{(1,0,1,0,\dots,0)} - \frac{1}{2}X^{(2,0,1,0,\dots,0)},$$

(20)
$$X^{(1,1,1,0,\dots,0)} \circ T^{(3)}G = X^{(1,1,1,0,\dots,0)} + \frac{x^2}{1-x^1} X^{(2,1,0,\dots,0)}$$

 $over \ U.$

Proof. This is an extension of Lemma 4.1 in [4].

For example, we prove (7). Let $x_0 = (x_0^1, \ldots, x_0^n) \in U$ and $\Theta \in T_{x_0}^{(1)} \mathbb{R}^n$. Comparing the respective jet coordinates (by computing derivatives) we obtain $j_{x_0}^1(G^1 - G^1(x_0)) = (1 - x_0^1)j_{x_0}^1(x^1 - x_0^1)$. Therefore

$$\begin{aligned} X^{e_1} \circ T^{(1)} G(\Theta) &= \langle T^{(1)} G(\Theta), j^1_{G(x_0)} (x^1 - G^1(x_0)) \rangle \\ &= \langle \Theta, j^1_{x_0} (G^1 - G^1(x_0)) \rangle \\ &= (1 - x^1_0) \langle \Theta, j^1_{x_0} (x^1 - x^1_0) \rangle \\ &= (1 - x^1_0) X^{e_1}(\Theta) = ((1 - x^1) X^{e_1})(\Theta) \end{aligned}$$

The proofs of the other formulas are similar. \blacksquare

6. Proof of Theorem 1. Consider a natural bilinear operator B: $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}, n \geq 3$. We know that it is sufficient to study $B(x^2 dx^1, x^3)$. The form of $B(x^2 dx^1, x^3)$ is given in Lemma 3.

(i) The local diffeomorphism G preserves $(x^2 dx^1, x^3)$ on U. Thus it preserves $B(x^2 dx^1, x^3)$ over U. Hence it preserves the right hand side of (3). The transformation rules (7)–(9) yield

$$\begin{split} \mu_1 X^{e_1} x^2 x^3 &+ \mu_2 X^{e_1} X^{e_2} x^3 + \mu_3 X^{e_1} X^{e_3} x^2 + \mu_4 X^{e_1} X^{e_2} X^{e_3} \\ &= \mu_1 X^{e_1} x^2 x^3 + \mu_2 (1 - x^1) X^{e_1} \left(\frac{x^2}{(1 - x^1)^2} X^{e_1} + \frac{1}{1 - x^1} X^{e_2} \right) x^3 \\ &+ \mu_3 (1 - x^1) X^{e_1} X^{e_3} \frac{x^2}{1 - x^1} \\ &+ \mu_4 (1 - x^1) X^{e_1} \left(\frac{x^2}{(1 - x^1)^2} X^{e_1} + \frac{1}{1 - x^1} X^{e_2} \right) X^{e_3} \end{split}$$

over U. Thus

$$\mu_2(X^{e_1})^2 \frac{x^2}{1-x^1} x^3 + \mu_4(X^{e_1})^2 \frac{x^2}{1-x^1} X^{e_3} = 0.$$

So, $\mu_2 = \mu_4 = 0$ in (3). Consequently, the vector space of all bilinear natural operators $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$ is at most 2-dimensional. On the other hand, the operators $B^{(1)}$ and $B^{[1]}$ are linearly independent. This proves (i).

(ii) We have the natural inclusion $i: T^{(1)} \to T^{(2)}$ which is dual to the jet projection $J^2(\cdot, \mathbb{R})_0 \to J^1(\cdot, \mathbb{R})_0$. So, by pull-back we have the bilinear natural operator $i^*B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$. Hence $\mu_2 = \mu_4 = 0$ in (4) by (i).

In this case the local diffeomorphism G preserves the right hand side of (4) with $\mu_2 = \mu_4 = 0$, and the transformation rules (10)–(15) yield

$$\begin{split} & \mu_1 X^{e_1} x^2 x^3 + \mu_3 X^{e_1} X^{e_3} x^2 + \mu_5 X^{(1,0,1,0,\dots,0)} x^2 + \mu_6 X^{(1,1,0,\dots,0)} x^3 \\ & + \mu_7 X^{(1,0,1,0,\dots,0)} X^{e_2} + \mu_8 X^{(1,1,0,\dots,0)} X^{e_3} + \mu_9 X^{(0,1,1,0,\dots,0)} X^e \\ & = \mu_1 \bigg((1-x^1) X^{e_1} - \frac{1}{2} X^{(2,0,\dots,0)} \bigg) \frac{x^2}{1-x^1} x^3 \\ & + \mu_3 \bigg((1-x^1) X^{e_1} - \frac{1}{2} X^{(2,0,\dots,0)} \bigg) X^{e_3} \frac{x^2}{1-x^1} \\ & + \mu_5 (1-x^1) X^{(1,0,1,0,\dots,0)} \frac{x^2}{1-x^1} \\ & + \mu_6 \bigg(\frac{x^2}{1-x^1} X^{(2,0,\dots,0)} + X^{(1,1,0,\dots,0)} \bigg) x^3 \\ & + \mu_7 (1-x^1) X^{(1,0,1,0,\dots,0)} \bigg(\frac{x^2}{(1-x^1)^2} X^{e_1} + \frac{1}{1-x^1} X^{e_2} \\ & + \frac{x^2}{(1-x^1)^3} X^{(2,0,\dots,0)} + \frac{1}{(1-x^1)^2} X^{(1,1,0,\dots,0)} \bigg) \\ & + \mu_8 \bigg(\frac{x^2}{1-x^1} X^{(2,0,\dots,0)} + X^{(1,1,0,\dots,0)} \bigg) X^{e_3} \\ & + \mu_9 \bigg(\frac{x^2}{1-x^1} X^{(1,0,1,0,\dots,0)} + \frac{1}{1-x^1} X^{(0,1,1,0,\dots,0)} \bigg) \\ & \times \bigg((1-x^1) X^{e_1} - \frac{1}{2} X^{(2,0,\dots,0)} \bigg). \end{split}$$

Analysing the coefficients of $X^{(0,1,1,0,...,0)}X^{(2,0,...,0)}$ in the above equality we get $0 = \mu_9(-\frac{1}{2})\frac{1}{1-x^1}$. So, $\mu_9 = 0$. Then considering the coefficients of $X^{(1,0,1,0,...,0)}X^{(2,0,...,0)}$ we obtain $0 = \mu_7 \frac{x^2}{(1-x^1)^2}$. So, $\mu_7 = 0$. Comparing the coefficients of $X^{(2,0,...,0)}X^{e_3}$ we deduce $0 = \mu_8 \frac{x^2}{1-x^1} + \mu_3(-\frac{1}{2})\frac{x^2}{1-x^1}$. Consequently, $\mu_3 = 2\mu_8$. Finally looking at $X^{(2,0,...,0)}$ we have $0 = \mu_6 \frac{x^2 x^3}{1-x^1} + \mu_1(-\frac{1}{2})\frac{x^2 x^3}{1-x^1}$, i.e. $\mu_1 = 2\mu_6$.

Therefore the vector space of all natural bilinear operators $T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(2)}$ is at most 3-dimensional. On the other hand, the operators $B^{(2)}$, $B^{[2]}$ and $B^{\langle 2 \rangle}$ are linearly independent, which proves (ii).

(iii) First, let r = 3. We have the natural inclusion $i: T^{(2)} \to T^{(3)}$ which is dual to the jet projection $J^3(\cdot, \mathbb{R})_0 \to J^2(\cdot, \mathbb{R})_0$. So, by pull-back we have the natural bilinear operator $i^*B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(2)}$. Hence in (5) we have $\mu_2 = \mu_4 = \mu_9 = \mu_7 = 0$, $\mu_3 = 2\mu_8$ and $\mu_1 = 2\mu_6$ by (ii). Now the local diffeomorphism G preserves the right hand side of (5) with the above conditions, and the transformation rules (16)-(20) yield

$$\begin{split} \mu_1 X^{e_1} x^2 x^3 + \mu_3 X^{e_1} X^{e_3} x^2 + \mu_5 X^{(1,0,1,0,\dots,0)} x^2 \\ &+ \mu_6 X^{(1,1,0,\dots,0)} x^3 + \mu_8 X^{(1,1,0,\dots,0)} X^{e_3} + \mu_{10} X^{(1,1,1,0,\dots,0)} \\ &= \mu_1 \bigg((1-x^1) X^{e_1} - \frac{1}{2} X^{(2,0,\dots,0)} \bigg) \frac{x^2}{1-x^1} x^3 \\ &+ \mu_3 \bigg((1-x^1) X^{(1,0,1,0,\dots,0)} - \frac{1}{2} X^{(2,0,1,0,\dots,0)} \bigg) \frac{x^2}{1-x^1} \\ &+ \mu_5 \bigg((1-x^1) X^{(1,0,1,0,\dots,0)} - \frac{1}{2} X^{(2,0,1,0,\dots,0)} \bigg) \frac{x^2}{1-x^1} \\ &+ \mu_6 \bigg(\frac{x^2}{1-x^1} X^{(2,0,\dots,0)} + X^{(1,1,0,\dots,0)} \\ &+ \frac{1}{2} \frac{x^2}{(1-x^1)^2} X^{(3,0,\dots,0)} + \frac{1}{2} \frac{1}{1-x^1} X^{(2,1,0,\dots,0)} \bigg) x^3 \\ &+ \mu_8 \bigg(\frac{x^2}{(1-x^1)^2} X^{(3,0,\dots,0)} + \frac{1}{2} \frac{1}{1-x^1} X^{(2,1,0,\dots,0)} \bigg) X^{e_3} \\ &+ \mu_{10} \bigg(X^{(1,1,1,0,\dots,0)} + \frac{x^2}{1-x^1} X^{(2,1,0,\dots,0)} \bigg). \end{split}$$

Analysing the coefficients of $X^{(3,0,\ldots,0)}$ in the above equality we get $0 = \mu_6 \frac{1}{2} \frac{x^2}{(1-x^1)^2} x^3$. So, $\mu_6 = 0$. Then considering the coefficients of $X^{(3,0,\ldots,0)} X^{e_3}$ we obtain $0 = \mu_8 \frac{1}{2} \frac{x^2}{(1-x^1)^2}$. So, $\mu_8 = 0$. Comparing the coefficients of $X^{(2,1,0,\ldots,0)}$ we deduce $0 = \mu_{10} \frac{x^2}{1-x^1}$. Consequently, $\mu_{10} = 0$. Finally, looking at $X^{(2,0,1,0,\ldots,0)}$ we have $0 = \mu_5(-\frac{1}{2}) \frac{x^2}{1-x^1}$, i.e. $\mu_5 = 0$.

Therefore $\mu_1 = \ldots = \mu_{10} = 0$, i.e. $\bar{B} = 0$.

Let now $r \geq 4$. We have the natural inclusion $i: T^{(3)} \to T^{(r)}$ which is dual to the jet projection $J^r(\cdot, \mathbb{R})_0 \to J^3(\cdot, \mathbb{R})_0$. So, by pull-back we have the bilinear natural operator $i^*B: T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(3)}$. Hence in (6) we have $\mu_1 = \ldots = \mu_{10} = 0$ by the case r = 3. Thus B = 0.

7. Proof of Theorem 2. Let $C: T^*_{|\mathcal{M}f_n} \rightsquigarrow TT^{(r)}$ be a natural linear operator, $n \geq 3$. It induces a natural bilinear operator $B^{[C]}: T^* \times_{\mathcal{M}f_n}$

 $T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(r)}$ by

(21)
$$B^{[C]}(\omega, f)_{\eta} = \langle T\pi(C(\omega)_{\eta}), d_x f \rangle$$

 $\omega \in \Omega(M), f : M \to \mathbb{R}, \eta \in T_x^{(r)}M, x \in M, M \in \operatorname{obj}(\mathcal{M}f_n).$ Here $\pi: T^{(r)}M \to M$ is the bundle projection.

We first prove (iii). By Theorem 1, $B^{[C]} = 0$. Thus C is of vertical type. Then by Section 2, C induces the bilinear operator $B^{(C)}$ which is 0 in view of Theorem 1. Hence C = 0.

We now show (ii). Since $B^{[C]}$ is of order 1 with respect to f and $B^{[C]}(\cdot, 1) = 0$, it follows that $B^{[C]} = aB^{\langle 2 \rangle}$ for some $a \in \mathbb{R}$ by Theorem 1. Then $B^{[C]}(dx^1, x^1)_{(j_0^2((x^1)^2))^*} = a$, where $(j_0^2 x^\alpha)^* \in T_0^{(2)} \mathbb{R}^n$ is the basis dual to $j_0^2 x^\alpha$. Therefore

(22)
$$C(dx^{1}, x^{1})_{(j_{0}^{2}((x^{1})^{2}))^{*}} = a \left(\frac{\partial}{\partial x^{1}}\right)_{(j_{0}^{2}((x^{1})^{2}))^{*}}^{C} + \mathcal{V} + \sum_{i=2}^{n} a_{i} \left(\frac{\partial}{\partial x^{1}}\right)_{(j_{0}^{2}((x^{1})^{2}))^{*}}^{C}$$

for some vertical vector $\mathcal{V} \in V_{(j_0^2((x^1)^2))^*} T^{(2)} \mathbb{R}^n$ and $a_i \in \mathbb{R}$, where $()^C$ is the complete lifting of a vector field to $T^{(2)}$.

Consider the diffeomorphism $\varphi = (x^1, x^2 + (x^1)^3, x^3, \dots, x^n) : \mathbb{R}^n \to \mathbb{R}^n$. It preserves x^1 , dx^1 and $(j_0^2((x^1)^2))^*$ because $j_0^2\varphi = \mathrm{id}$. Thus it preserves the left hand side of (22). On the other hand it preserves $\partial/\partial x^i$ for $i = 2, \dots, n, (j_0^2((x^1)^2))^*$ and \mathcal{V} because $j_0^2\varphi = \mathrm{id}$, and sends $\partial/\partial x^1$ to $\partial/\partial x^1 + 3(x^1)^2\partial/\partial x^2$. Therefore

$$a\left(\frac{\partial}{\partial x^{1}}\right)_{(j_{0}^{2}((x^{1})^{2}))^{*}}^{C} = a\left(\frac{\partial}{\partial x^{1}}\right)_{(j_{0}^{2}((x^{1})^{2}))^{*}}^{C} + 3a\left(\left((x^{1})^{2}\frac{\partial}{\partial x^{2}}\right)^{C}\right)_{(j_{0}^{2}((x^{1})^{2}))^{*}}.$$

So, a = 0 because $(((x^1)^2 \partial / \partial x^2)^C)_{(j_0^2((x^1)^2))^*} \neq 0$. Hence C is of vertical type.

Now, by Lemma 1, $C = C^{(B)}$ for some bilinear natural operator $B : T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)} T^{(2)}$ with $B(\cdot, 1) = 0$. Applying Theorem 1 ends the proof of (ii).

Finally, we prove (i). Since $B^{[C]}(\cdot, 1) = 0$, we have $B^{[C]} = aB^{[1]}$ for some $a \in \mathbb{R}$ by Theorem 1. Thus $B^{[C]}(dx^1, x^1)_{(j_0^2((x^1)^2))^*} = a$. Hence

(23)
$$C(dx^1, x^1)_{(j_0^1(x^1))^*} = a\left(\frac{\partial}{\partial x^1}\right)_{(j_0^1(x^1))^*}^C + \mathcal{V} + \sum_{i=2}^n a_i \left(\frac{\partial}{\partial x^1}\right)_{(j_0^1(x^1))^*}^C$$

for some vertical vector $\mathcal{V} \in V_{(j_0^1(x^1))^*} T^{(1)} \mathbb{R}^n$ and $a_i \in \mathbb{R}$.

Consider the diffeomorphism $\varphi = (x^1, x^2 + (x^1)^2, x^3, \dots, x^n) : \mathbb{R}^n \to \mathbb{R}^n$. It preserves x^1, dx^1 and $(j_0^1(x^1))^*$ because $j_0^1 \varphi = \text{id}$. Thus it preserves the left hand side of (23). On the other hand it preserves $\partial/\partial x^i$ for i = 2, ..., n, $(j_0^1(x^1))^*$ and \mathcal{V} because $j_0^1\varphi = \text{id}$ and sends $\partial/\partial x^1$ into $\partial/\partial x^1 + 2x^1\partial/\partial x^2$. Therefore

$$a\left(\frac{\partial}{\partial x^1}\right)_{(j_0^1(x^1))^*}^C = a\left(\frac{\partial}{\partial x^1}\right)_{(j_0^2(x^1))^*}^C + 2a\left(\left(x^1\frac{\partial}{\partial x^2}\right)^C\right)_{(j_0^1(x^1))^*}$$

So, a = 0 because $((x^1 \partial / \partial x^2)^C)_{(j_0^1(x^1))^*} \neq 0$. Hence C is of vertical type.

Now, by Lemma 1, $C = C^{(B)}$ for some bilinear natural operator $B : T^* \times_{\mathcal{M}f_n} T^{(0,0)} \rightsquigarrow T^{(0,0)}T^{(1)}$ with $B(\cdot, 1) = 0$, and it remains to apply Theorem 1.

REFERENCES

- M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk Univ., Brno, 1996, 141–150.
- J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983).
- [3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- W. M. Mikulski, Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (1995), 97–111.
- J. Tomáš, Natural operators on vector fields on the cotangent bundles of (k, r)velocities, Rend. Circ. Mat. Palermo 54 (1988), 113–124.
- [6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.

Institute of Mathematics	Institute of Mathematics
Maria Curie-Skłodowska University	Jagiellonian University
Pl. Marii Curie-Skłodowskiej 1	Reymonta 4
20-031 Lublin, Poland	30-059 Kraków, Poland
E-mail: kurek@golem.umcs.lublin.pl	E-mail: mikulski@im.uj.edu.pl

Received 25 September 2001 (4111)

47