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STRUCTURE OF GEODESICS IN THE CAYLEY GRAPH OF
INFINITE COXETER GROUPS

BY

RYSZARD SZWARC (Wrocław)

Abstract. Let (W,S) be a Coxeter system such that no two generators in S commute.
Assume that the Cayley graph of (W,S) does not contain adjacent hexagons. Then for
any two vertices x and y in the Cayley graph of W and any number k ≤ d = dist(x, y)
there are at most two vertices z such that dist(x, z) = k and dist(z, y) = d− k. Allowing
adjacent hexagons, but assuming that no three hexagons can be adjacent to each other,
we show that the number of such intermediate vertices at a given distance from x and y
is at most 3. This means that the group W is hyperbolic in a sense stronger than that of
Gromov.

1. Introduction. A Coxeter system is a pair (W,S), where W is a
group and S is a set of generators, and the only relations are of the form

s2 = 1, (ss′ )m(s,s′ ) = 1, s 6= s′.

If no relation occurs for s and s′ we set m(s, s′ ) =∞.
The system of generators determines the Cayley graph Γ of the group W .

If m(s, s′ ) =∞ for any s, s′ ∈ S the graph Γ is a homogeneous tree of degree
card(S). In this case any two vertices in Γ are connected by a unique geodesic
in the graph. In general, when we allow m(s, s′ ) < ∞, we often have many
geodesic lines connecting two vertices in the graph.

The aim of this work is to show that under the conditions:

(a) m(s, s′ ) ≥ 3 for any s, s′ ∈ S,
(b) there are no a, b, c ∈ S such that m(a, b) = m(a, c) = 3,

for any two vertices x and y at distance d from each other and for any
number 1 ≤ k ≤ d, there are at most two vertices z at distance k from x
and at distance d− k of y. Replacing (b) by

(b′) there are no a, b, c ∈ S such that m(a, b) = m(a, c) = m(b, c) = 3,

we show that there at most three such intermediate vertices z in Γ . We will
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also show that if, in fact, there are at least two such vertices, then their
distances are bounded by the maximum of those m(s, s′ ) which are finite.

Assumptions (a), (b) and (b′) have a natural geometric interpretation as
follows. The Cayley graph of (W,S) does not contain

(a) squares,
(b) adjacent hexagons,
(b′) three hexagons adjacent to each other.

The fact that geodesic lines connecting two vertices are not far apart
means that the group (W,S) is hyperbolic in the sense of Gromov. Roughly a
metric space is hyperbolic if geodesic triangles are “thin”. Papasoglu showed
[7, Theorem 1.4] that a graph is hyperbolic if geodesic biangles are “thin”.
In our case the biangles are not only “thin”, but there is a geodesic biangle
connecting two vertices, containing all other such biangles, under assump-
tions (a) and (b).

Not all hyperbolic Coxeter groups have this stronger property. Indeed,
according to Moussong [6], a Coxeter group is hyperbolic exactly when it
does not contain an abelian subgroup isomorphic to Z ⊕ Z. Basing on this
one can easily construct a hyperbolic Coxeter group which admits many
geodesic lines connecting two vertices (it suffices that this group contains
Z2 ⊕ . . .⊕ Z2 as a subgroup).

The absence of low values of m(s, s′ ) enables a good description of ele-
ments in the group. This is achieved in Propositions 1 and 2.

Acknowledgements. I am grateful to Andrzej Żuk for bringing the
paper [7] to my attention, for illuminating discussions and for reading the
early notes of this paper. I thank Professor Robert Howlett for comments
and for pointing out the references [2, 4].

2. Analysis of elements in Coxeter groups

Definition 1. For a, b ∈ S and a 6= b we define

N(a, b) =
{

(ab)k if m(a, b) = 2k + 1,

b(ab)k−1 if m(a, b) = 2k.

We have the following.

Lemma 1.

N(a, b)a = aN(a, b) if m(a, b) = 2k,(1)

N(a, b)a = bN(a, b) if m(a, b) = 2k + 1,(2)

N(a, b)a = N(b, a)b.(3)
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Obviously the elements N(a, b)a are reduced, while the elements N(a, b)
have unique reduced expansions. Let

c(a, b) = a, d(a, b) = b if m(a, b) = 2k,

c(a, b) = b, d(a, b) = a if m(a, b) = 2k + 1.

We have

N(a, b)a = c(a, b)N(a, b),(4)

N(a, b)b = d(a, b)N(b, a).(5)

The choice of the set S of generators determines the length function `(w)
defined for w ∈W as the minimum of the numbers n such that

w = w1 . . . wn, wi ∈ S.
A product v1 . . . vn, where vi ∈W , will be called reduced if

`(v1 . . . vn) = `(v1) + . . .+ `(vn).

An expression w1 . . . wn will be called a reduced expansion if wi ∈ S and
`(w1 . . . wn) = n.

By a subexpression of the product w1 . . . wn, where wi ∈ S, we mean any
product of the form wkwk+1 . . . wl, where 1 ≤ k ≤ l ≤ n.

The next proposition is well known. More general results, with proofs
restricted to finite Coxeter groups, can be found in [2, 4]. They have been
extended to the infinite case by V. Deodhar. We provide a new combinatorial
proof.

Proposition 1 (V. Deodhar). Let

w1 . . . wns = s′w1 . . . wn(6)

be reduced expansions. Then w1 . . . wn has a reduced expansion of the form

w1 . . . wn = N(am, bm) . . .N(a1, b1),(7)

where c(ai, bi) = ai+1, d(ai, bi) 6= bi+1 and a1 = s, b1 = wn, c(am, bm) = s′.
In particular , if the reduced expansion for w1 . . . wn is unique and

m(a1, b1) > 2, then wn−1 = a1 = s.

Proof. We proceed by induction on n. The statement is obviously true
for n = 1. By assumption w1 . . . wns has a reduced expansion which ends
in wn. Hence by the Exchange Condition (see [5, Ch. 5.8]) there is k such
that

w1 . . . ŵk . . . wnswn = w1 . . . wns,

where the hat denotes omission. This implies

(wk+1 . . . wns)wn = wk(wk+1 . . . wns).(8)

It suffices to show that wk+1 . . . wns is of the form

wk+1 . . . wns = vN(wn, s),(9)
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where the product vN(wn, s) is reduced. Indeed, by (3) and (8) we then get

wkwk+1 . . . wn = wk(wk+1 . . . wns)s = vN(wn, s)wns = vN(s, wn).

Therefore

w1 . . . wk . . . wn = w′N(s, wn)(10)

and the product w′N(s, wn) is reduced. Combining (2), (6) and Lemma 1
implies

(w1 . . . wn)s = w′N(s, wn)s = w′c(s, wn)N(s, wn) = s′w′N(s, wn).

Thus
w′c(s, wn) = s′w′, `(w′) < `(w).

By the induction hypothesis, w′ has a reduced expansion of the form

w′ = N(aN , bN ) . . .N(a2, b2),

where a2 = c(s, wn). Setting a1 = s, b1 = wn and using (10) gives the
conclusion.

Thus we have to show that wk+1 . . . wns is of the form (9). This follows
from (8) by the induction hypothesis if k > 1 because `(wk+1 . . . wns) =
n− k + 1 < n. Therefore it remains to consider the case k = 1, i.e.

(w2 . . . wns)wn = w1(w2 . . . wns),(11)

and show that w2 . . . wns is of the form (7), which obviously implies (9) for
k = 1. Observe that (11) has the same form as (6). Therefore we can apply
the first part of the proof to (11) and conclude, by arriving at (11) again,
that it remains to consider the case

(w3 . . . wnswn)s = w2(w3 . . . wnswn).(12)

and show that w3 . . . wnswn is of the form (7). Repetition of this argument
again and again reduces our considerations to the case

(wns . . . wns)wn = s(wns . . . wns)

or
(wns . . . wnswn)s = s(wns . . . wnswn),

according as m(wn, s) is odd or even, and it suffices to show that wns . . . wns
or wns . . . wnswn is of the form (7). The latter is obviously true.

Proposition 2. Let m(a, b) > 2 for any a, b ∈ S, a 6= b. Any product
of the form

N(am, bm) . . .N(a1, b1),(13)

where c(ai, bi) = ai+1 and d(ai, bi) 6= bi+1, is reduced and has a unique
reduced expansion.
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Proof. Obviously a single factor N(ai, bi) has a unique reduced expan-
sion. Observe also that the assumption m(a, b) > 2 implies that no two
different generators in S commute.

Let w1 . . . wn be a subexpression of (13), where wi ∈ S. It is clear that
wi 6= wi+1 for 1 ≤ i ≤ n. We will show, by induction on n, that this
subexpression is reduced and has a unique expansion. Let n = 2. Then w1w2
is obviously reduced and has a unique expansion because by assumption
w1w2 6= w2w1.

Assume the statement is true for n. Let w1 . . . wn+1 be a subexpression
of (13). Assume it is not reduced. Hence by the Deletion Condition (see
[5, Ch. 5.8]) there are i < j such that

w1 . . . ŵi . . . ŵj . . . wn+1 = w1 . . . wn+1.(14)

We may assume that j − i ≥ 2, since wi 6= wi+1 by (13). Hence

wi+1 . . . wj−1wj = wiwi+1 . . . wj−1.(15)

Since `(wi+1 . . . wj−1wj) ≤ j−i ≤ n, we may apply the induction hypothesis
to conclude that wi+1 . . . wj−1wj is reduced and has a unique expansion.
Therefore by (15) we obtain wi = wi+1, which leads to a contradiction.
Hence w1 . . . wn+1 is reduced.

Assume now that w1 . . . wn+1 has another reduced expansion, i.e.

v1 . . . vn+1 = w1 . . . wn+1.(16)

By the Exchange Condition there exists k such that

w1 . . . ŵk . . . wn+1vn+1 = w1 . . . wn+1.

Thus
wk+1 . . . wn+1vn+1 = wk . . . wn+1.

If k > 1, then by the induction hypothesis the right side has a unique
reduced expansion. Hence wk = wk+1, which gives a contradiction. Therefore
it suffices to consider the case k = 1. Then

w2 . . . wn+1vn+1 = w1 . . . wn+1.(17)

In the same way, using the fact that

wn+1wn . . . w1 = vn+1vn . . . v1,

we can show that w1 . . . wn+1 has a unique reduced expansion unless

v1w1 . . . wn = w1 . . . wn+1.(18)

So we are done unless both (17) and (18) hold. Observe that the left sides
of (17) or (18) can be put in (16) instead of v1 . . . vn. In particular, we can
substitute the left side of (17) for (16) and apply (18). This shows that
w1 . . . wn+1 has a unique reduced expansion unless

w2(w1 . . . wn) = w1 . . . wn+1.(19)
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Similarly substituting the left side of (18) for (16) and applying (17) implies
that w1w2 . . . wn+1 has a unique expansion unless

(w2 . . . wn+1)wn = w1 . . . wn+1.(20)

Combining (19) and (20) gives

w2(w1 . . . wn) = (w2 . . . wn+1)wn.

Hence
w1 . . . wn−1 = w3 . . . wn+1.

We may now use the induction hypothesis to get

w1 = w3 = w5 = . . . , w2 = w4 = w6 = . . .

Therefore

w1 . . . wn+1 =
{

(w1w2)k if n = 2k − 1,

(w1w2)kw1 if n = 2k.

In both cases the expansions are unique since k < m(w1, w2). The latter
follows from the fact that w1 . . . wn+1 is a subexpression of (13).

The following lemma will be used frequently.

Lemma 2. Assume the product w = w′N(s, s′ ) is reduced. Then ws is
not reduced if and only if w′c(s, s′ ) is not reduced.

Proof. By (4) we have

ws = w′N(s, s′ )s = w′c(s, s′ )N(s, s′ ).

Hence if w′c(s, s′ ) is not reduced neither is ws.
Assume now that ws is not reduced. Let w′ = w1 . . . wk. By the Deletion

Condition and the fact that N(s, s′ )s is reduced, we have

w1 . . . wl . . . wkN(s, s′ )s = w1 . . . ŵl . . . wkN(s, s′ )

for some l ≤ k. This implies

w1 . . . wl . . . wkc(s, s′ ) = w1 . . . ŵl . . . wk.

Thus w′c(s, s′ ) is not reduced.

Definition 2. For w ∈ G let C(w) = {s ∈ S | `(ws) < `(w)}.
Proposition 3. Assume m(s, s′ ) ≥ 3 for any s 6= s′ ∈ S. Let w =

w1 . . . wn be a reduced expansion of w ∈ G. Then either C(w) = {wn} or
C(w) = {wn−1, wn}.

Proof. Assume `(ws) < `(w) for some s ∈ S and s 6= wn. Then there
exists k such that

w1 . . . ŵk . . . wns = w1 . . . wn.

Thus
(wk+1 . . . wn)s = wk(wk+1 . . . wn).
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By Propositions 1 and 2 we know that wk+1 . . . wn has a unique reduced
expansion of the form

wk+1 . . . wn = N(am, bm) . . .N(a1, b1),

where a1 = s. Since `(N(a1, b1)) ≥ 2 we get wn−1 = a1 = s. Thus C(w) =
{wn−1, wn}.

Remark. Professor R. B. Howlett observed that Proposition 3 can be
obtained otherwise as follows. Let I = {s ∈ S | `(ws) < `(w)}. By [5, Prop.
1.10(c)] the element w has a unique representation of the form w = wIwI ,
where wI belongs to WI , the group generated by I, and `(wIs) > `(wI) for
any s ∈ I. Thus `(wIs) < `(wI) for any s ∈ I. Hence the element wI has a
maximal length in WI , i.e. the group WI is finite. Since no two generators
in I commute, there can be two elements in I at most. Now the conclusion
of Proposition 3 follows easily.

Corollary 1. Let m(a, b) > 2 for any a, b ∈ S, a 6= b. Any product of
the form

N(am, bm) . . .N(a1, b1)a1,(21)

where c(ai, bi) = ai+1 and d(ai, bi) 6= bi+1, is reduced. All reduced expansions
of this product are given by the formula

N(am, bm) . . .N(ak+1, bk+1)ak+1N(ak, bk) . . .N(a1, b1),(22)

where 0 ≤ k ≤ m− 1 and am+1 = c(am, bm).

Proof. We proceed by induction on m. It is clear that N(a1, b1)a1 is a
reduced product. Assume that any product of the form (21) is reduced for
m ≤M . Assume that the product

N(aM+1, bM+1) . . .N(a1, b1)a1

is not reduced. By Lemma 2 the product

N(aM+1, bM+1) . . .N(a2, b2)a2

is not reduced. On the other hand, by the induction hypothesis, this product
is reduced. Thus we have arrived at a contradiction.

In view of (4) the elements (22) represent different reduced expansions
of (21). We have to show that any reduced representation of (21) is of the
form (22). We use induction on m. Assume that

N(am, bm) . . .N(a1, b1)a1 = v1 . . . vn−1vn

is another reduced representation of (21). If vn = a1, then

N(am, bm) . . .N(a1, b1) = v1 . . . vn−1.

By Proposition 2 these words are identical. Hence v1 . . . vn is of the form (21).
Assume that vn 6= a1. Then by Proposition 3 we get vn = b1. Moreover, since
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the product v1 . . . vna1 is not reduced, v1 . . . vn must end in N(a1, b1). Hence
we get

N(am, bm) . . .N(a2, b2)a2N(a1, b1) = v1 . . . vlN(a1, b1).

This gives
N(am, bm) . . .N(a2, b2)a2 = v1 . . . vl.

Now we can apply the induction hypothesis.

3. Hyperbolic Coxeter groups. The results in this section are true
only for Coxeter groups such that m(s, s′ ) ≥ 3 for any s, s′ ∈ S, and there
are no three generators a, b and c satisfying m(a, b) = m(a, c) = 3. By [6]
this implies that the group W is hyperbolic in the sense of Gromov, because
it does not contain Z ⊕ Z as a subgroup. The fact that the group W is
hyperbolic will also follow from Theorem 1, by a result of Papasoglu [7,
Theorem 1.4].

Lemma 3. Assume m(si, sj) ≥ 3 for each i 6= j, and there are no i, j
and k such that

m(si, sj) = m(si, sk) = m(sj, sk) = 3.

Let w = w1 . . . wn be a reduced expansion. Assume that ws and ws′ are
reduced for s 6= s′ ∈ S.

(i) If m(s, wn) ≥ 4 or m(s, wn) ≥ 4 then either C(ws) = {s} or
C(ws′ ) = {s′}. In other words the last letter of either ws or ws′ is uniquely
determined.

(ii) If neither ws nor ws′ determines its last letter then m(s, wn) =
m(s′, wn) = 3 and w ends in N(s, s′ )wn or in N(s′, s)wn.

Proof. Assume that there are t, t′ ∈ S such that t 6= s, t′ 6= s′ and
`(wst) < `(ws), `(ws′t′) < `(ws′ ). Let w1 . . . wn be any reduced expansion
for w. By the Deletion Condition there are i and j such that

wiwi+1 . . . wns = wi+1 . . . wnst,(23)

wjwj+1 . . . wns
′ = wj+1 . . . wns

′t′.(24)

By Propositions 1 and 2 the elements wi+1 . . . wns and wj+1 . . . wns
′ have

unique reduced expansions which end in N(t, s) and N(t′, s′ ), respectively.
By assumptions and by Definition 1 we get `(N(t, s)), `(N(t′, s′ )) ≥ 2. Hence
the last letter of wn is t and t′, simultaneously. Thus t = t′.

We will break the proof into three cases.

(a) m(t, s) ≥ 4 and m(t, s′ ) ≥ 4.

Then `(N(t, s)), `(N(t, s′ )) ≥ 3. Thus wn−1 = s and wn−1 = s′, which gives
a contradiction.

(b) m(t, s) = 3 and m(t, s′ ) ≥ 4.
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Then `(N(t, s)) = 2 and `(N(t, s′ )) ≥ 3. This implies wn−1 = s′. Thus
the expression wi+1 . . . wns ends in s′N(t, s). By Corollary 1 it ends in
N(s, s′ )N(t, s). Hence wn−2 = s. Now we consider two subcases.

(b1) m(s, s′ ) ≥ 4.

Thus `(N(s, s′ )) ≥ 3. Hence wn−3 = s′. This implies that w ends in s′ss′t.
Applying Propositions 1 and 2 to (24) yields `(N(t, s′ )) = 3. Hence ws′ ends
in s′sN(t, s′ ), so it can be written as a reduced product w′s′sN(t, s′ ), where
w′ = w1 . . . wn−4. Since ws′t is not reduced, Lemma 2 shows that w′s′st is
not reduced. By Propositions 1 and 2 the element w′s′s must end in N(t, s).
This implies t = s′, which gives a contradiction.

(b2) m(s, s′ ) = 3.

Thus `(N(s, s′ )) = 2. We already know that ws ends in N(s, s′ )N(t, s′ ).
Hence it can be written as a reduced product w′N(s, s′ )N(t, s), where w′ =
w1 . . . wn−3. The product wst is not reduced. Hence by Lemma 2 the prod-
uct w′N(s, s′ )s is not reduced. Applying Lemma 2 again shows that w′s′ is
not reduced either. The product wi+1 . . . wn−3s

′ is reduced. Thus by Propo-
sitions 1, 2 and Corollary 1, either wn−3 = s′ or w′ ends in N(s′, wn−3). The
first case has already been considered in (b1). Therefore we can assume that
ws ends in N(s′, wn−3)N(s, s′ )N(t, s). Thus ws′ ends in N(s′, wn−3)ss′ts′,
because N(s, s′ ) = ss′ and N(t, s) = ts. The product ws′t is not reduced,
hence by Propositions 1 and 2 we get `(N(t, s′ )) = 3. This implies that ws′

can be written in reduced form as

ws′ = w′′N(s′, wn−3)sN(t, s′ ).(25)

The product ws′t is not reduced. By Lemma 2 the product w′′N(s′, wn−3)st
is not reduced either. In view of Propositions 1 and 2 this yields wn−3 = t.
Summarizing, we have shown that the product ws′t = w′′ts′tst is not re-
duced (note that N(s′, t) = ts′t). By Lemma 2 the product w′′ts′s is not
reduced either. By Propositions 1 and 2 this implies t = s, which is a con-
tradiction.

(c) m(t, s) = m(t, s′ ) = 3.

We already know that wn = t = t′. Assume that wn−1 = s. Hence w1 . . . wns
ends in sts. Thus ws′ can be written as ws′ = w′sts′. The word ws′t is not
reduced, and neither is w′ss′, by Lemma 2. By Propositions 1 and 2 the
element w′s must end in N(s′, s). Hence w ends in N(s′, s)t. If wn−1 = s′

the reasoning is the same. Assume now that wn−1 6= s and wn−1 6= s′. We
know that ws is of the form w′′N(t, s), where w′′ = w1 . . . wn−1. Moreover,
by Lemma 2, the product w′′s is not reduced because wst is not. Hence w′′

ends in N(s, wn−1). In the same way we show that w′′ ends in N(s′, wn−1).
This implies s = s′, which gives a contradiction.
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Theorem 1. Let W be a Coxeter group such that m(s, s′ ) ≥ 3 for any
s 6= s′ ∈ S.

(i) Assume that there are no s, s′ and s′′ such that m(s, s′ ) = m(s, s′′)
= 3. Then for each w ∈W and each k < `(w) there are at most two different
decompositions w = uv such that `(u) = k and `(v) = `(w)− k.

(ii) Assume that there are no s, s′ and s′′ such that m(s, s′ ) = m(s, s′′) =
m(s′, s′′) = 3. Then for each w ∈ W and each k < `(w) there are at
most three different decompositions w = uv such that `(u) = k and `(v) =
`(w)− k.

Moreover if w = uv = u′v′ are decompositions such that

`(u) + `(v) = `(u′) + `(v′) = `(w)

and `(u) = `(u′), then `(u−1u′) ≤ M , where M = max{m(s, s′ ) | s, s′ ∈ S,
m(s, s′ ) <∞}.

Proof. (i) For a subset X ⊂W let

T(X) = {ws | w ∈ X, s ∈ C(w)}.
Let Tj+1 = T(Tj). The statement will be proved if we show that
card{Tj(w)} ≤ 2 for every w ∈ W and j < `(w). The proof is by induction
on `(w). Assume that k(w) = `(w), i.e. the last letter of w is unique. Hence
T(w) contains a single element, say w′, such that `(w′) = `(w)− 1. By the
induction hypothesis we get the conclusion.

Assume now that there are a 6= b ∈ S such that `(wa) = `(wb) = `(w)−1.
By Proposition 3 any expansion for w ends in either a or b. Moreover by
Propositions 1 and 2 any expansion for w which ends in amust end in N(b, a).
Similarly any expansion which ends in b must end in N(a, b). Therefore any
reduced expansion for w must be of the form either

w = w(1)N(a, b) or w = w(2)N(b, a).(26)

Set l = m(a, b)− 1. Thus card{Tj(w)} = 2 for 1 ≤ j ≤ l. Moreover

Tl(w) = {w1, w2}.(27)

Define s = c(a, b) and s′ = d(a, b). We have (see (1))

wa = w(1)N(a, b)a = w(1)sN(a, b),

wa = w(2)N(b, a)a = w(2)s
′N(a, b).

Therefore w(1)s = w(2)s
′. Moreover by Lemma 2 and (26) the products w(1)s

and w(2)s
′ are not reduced. Let v = w(1)s = w(2)s

′. Thus the expressions
w(1) = vs, w(2) = vs′ are reduced. Since s 6= s′, Lemma 3(i) shows that
either

C(w(1)) = {s} or C(w(2)) = {s′}.
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Thus either
T(w(1)) = {v} or T(w(2)) = {v}.

As w(1) = vs and w(2) = vs′ we have v ∈ T(w(i)) for i = 1, 2. Thus either

T(w(1), w(2)) = T(w(1)) or T(w(1), w(2)) = T(w(2)).

Combining this with (27) and applying the induction hypothesis implies
card{Tj(w)} ≤ 2 for every j < `(w).

We now turn to (ii). Again we will use induction to show that card{T(w)}
≤ 3. In doing so we can follow the lines of the proof of (ii) until we arrive at
the place where Lemma 3(i) is applied. Let v = v1 . . . vn be a reduced expan-
sion for v. If m(vn, s) ≥ 4 or m(vn, s′ ) ≥ 4, then we can apply Lemma 3(i)
and conclude as in the proof of (i). Thus it suffices to consider the case
m(vn, s) = 3 and m(vn, s′ ) = 3. We can also assume that C(vs) = {vn, s}
and C(vs′ ) = {vn, s′}, because if either vs or vs′ has a unique last letter
then, again, we can conclude as in the proof of (i). By Lemma 3(ii), v ends
in N(s, s′ )vn or in N(s′, s)vn. Assume the former, i.e. v = v′′N(s, s′ )vn is
reduced for some v′′ ∈W . Then, as N(vn, s) = vns, we have

vsvn = v′′N(s, s′ )N(vn, s)vn.

Since `(vsvn) < `(vs), applying Lemma 2 we find that v′′c(s, s′ ) is not
reduced. Hence v′′ can be written as v′′ = v′c(s, s′ ), where `(v′) = `(v′′)− 1.
Therefore we can represent v as a reduced product as follows:

v = v′c(s, s′ )N(s, s′ )vn.

Now, since w(1) = vs and w(2) = vs′, we can compute easily that

T(w(1), w(2)) = {v′c(s, s′ )N(s, s′ )vn, v′N(s, s′ )vns, v′N(s′, s)vns′},
T2(w(1), w(2)) = {v′c(s, s′ )N(s, s′ ), v′N(s, s′ )vn, v′N(s′, s)vn}.

(28)

The second equality follows from the fact that all three elements in
T(w(1), w(2)) have unique last letters. From (28) we get

T3(w(1), w(2)) = T (v′c(s, s′ )N(s, s′ )) = {v′N(s, s′ ), v′N(s′, s)},(29)

because v′N(s, s′ )vn and v′N(s′, s)vn have unique last letters. Summarizing,
we have shown that card{Tj(w)} ≤ 3 for j ≤ k = m(a, b) + 2 and Tk(w) =
T(v′c(s, s′ )N(s, s′ )). We now apply the induction hypothesis to conclude
that card{Tj(w)} ≤ 3 for j ≤ `(w).

The estimate for the distance `(u−1u′) can be derived easily from the
proof.

Remark. The statement is not true if we allow m(a, b) = m(a, c) =
m(a, b) = 3. Indeed, the Cayley graph of the group generated by a, b and c
yields a hexagonal tiling of the plane. Then one can easily find two vertices
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x and y for which there are arbitrarily many intermediate vertices at a given
distance from x and y.
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[1] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4–6, Hermann, Paris, 1968.
[2] B. Brink, The centralizer of a reflection in a Coxeter group, Bull. London Math. Soc.

28 (1996), 465–470.
[3] M. Gromov, Hyperbolic groups, in: Essays in Group Theory, S. M. Gersten (ed.),

M.S.R.I. Publ. 8, Springer, New York, 1987, 75–263.
[4] R. B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London

Math. Soc. 21 (1980), 62–80.
[5] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press,

Cambridge, 1990.
[6] G. Moussong, Hyperbolic Coxeter groups, PhD thesis, Ohio State Univ., 1988.
[7] P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent. Math.

121 (1995), 323–334.

Institute of Mathematics
Wrocław University
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: szwarc@math.uni.wroc.pl

Received 3 June 2002;
revised 14 June 2002 (4233)


