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ASYMPTOTIC ANALYSIS OF THE
INITIAL BOUNDARY VALUE PROBLEM FOR THE

THERMOELASTIC SYSTEM IN A PERFORATED DOMAIN

BY

M. SANGO (Pretoria)

Abstract. We study the initial boundary value problem for the system of thermoe-
lasticity in a sequence of perforated cylindrical domains Q(s)

T , s = 1, 2, . . . We prove that
as s→∞, the solution of the problem converges in appropriate topologies to the solution
of a limit initial boundary value problem of the same type but containing some additional
terms which are expressed in terms of quantities related to the geometry of Q(s)

T . We give
an explicit construction of that limit problem.

1. Introduction. Let Ω be a bounded domain in R3 with boundary
∂Ω. For 0 < T < ∞, we denote by QT the cylinder Ω × (0, T ). Let F (s)

i ,
i = 1, . . . , I(s), s = 1, 2, . . . , be a sequence of closed sets in Ω. We set F (s) =⋃I(s)
i=1 F

(s)
i and Ω(s) = Ω \F (s); the boundary ∂Ω(s) of Ω(s) is assumed to be

sufficiently smooth (e.g., of class C2). We later formulate some conditions
on F

(s)
i from which it follows in particular that these sets vanish as s →

∞. In the cylindrical domain Q
(s)
T = Ω(s) × (0, T ), we look for a field of

displacements u(s) = u(s)(x, t) = (u(s)
1 (x, t), u(s)

2 (x, t), u(s)
3 (x, t)) and a field of

temperatures θ(s) = θ(s)(x, t) satisfying the initial boundary value problem
of thermoelasticity

(1)
∂2u

(s)
l

∂t2
− ∂

∂xh

(
ahklj (x)

∂u
(s)
j

∂xk

)
+ α

∂θ(s)

∂xl
= f

(s)
l in Q

(s)
T , l = 1, 2, 3,

(2)
∂θ(s)

∂t
−∆θ(s) + α div

(
∂u(s)

∂t

)
= q(s) in Q

(s)
T ,

(3)
u(s)(x, t) = 0

θ(s)(x, t) = 0

}
on ∂Ω(s) × (0, T ),
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(4)

u(s)(x, 0) = u
(s)
0 (x)

∂u(s)

∂t
(x, 0) = u

(s)
1 (x)

θ(s)(x, 0) = θ
(s)
0 (x)





in Ω(s),

where f (s)
i is the ith component of a column vector f (s) = f (s)(x, t) defined

in QT , and q(s) = q(s)(x, t) is a scalar function defined in Ω; ∆ and div
denote respectively the Laplace and divergence operators; ∂• denotes the
boundary of a set •. By ∇ or ∂/∂x we shall denote the gradient. Here and
later on a pair of equal indices will mean summation from 1 to 3. We assume
that the functions ahklj (x) are continuously differentiable in Ω and satisfy the
following conditions:

ahklj (x) = akhjl (x) = alkhj(x),(5)

and the condition of ellipticity:

κ1ηlhηlh ≤ ahklj (x)ηlhηjk ≤ κ2ηlhηlh, x ∈ Ω, κ1, κ2 = const > 0,(6)

where {ηlh} is an arbitrary symmetric matrix with real entries.
In the classical elasticity theory for an isotropic material the coefficients

ahklj (x) are given by the formula

ahklj (x) = λδlhδjk + µ(δljδhk + δlkδhj),(7)

where λ > 0, µ > 0 are the Lamé coefficients and δlj denotes the Kronecker
symbol. In this case

ahklj ηlhηjk = ληhhηll + 2µηlhηlh,

for an arbitrary symmetric real matrix {ηlh}, and as is easily seen, the
ellipticity condition (6) holds with κ1 = 2µ and κ2 = 2µ + 3λ. For further
information on problem (1)–(4) we refer to the monographs [12] and [18].

In this work we investigate the possibilities of approximating problem
(1)–(4) in the perforated cylindrical domain Q

(s)
T by a new homogenized

problem in QT whose solution is the limit of the sequence of vector-functions
(u(s)(x, t), θ(s)(x, t)) as s→∞. Under appropriate conditions on the geom-
etry of the set Ω(s) from which it follows in particular that the set F (s)

vanishes as s → ∞, we prove that any sequence of solutions of (1)–(4)
converges in suitable topologies to a solution of an initial boundary value
problem in QT of the same type as (1)–(4) but containing some additional
terms which are expressed in terms of some quantities connected to the ge-
ometry of Ω(s). This phenomenon is well known in the elliptic case (see e.g.
[19] and [21] in the case of elliptic systems for the type of perforations con-
sidered here). We also refer to the important paper [11] for another approach
in the linear scalar elliptic case and to [1]–[3] for the corresponding exten-
sion to the case of the stationary systems of Stokes and Navier–Stokes; this
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approach leads to a limit problem with an additional term which involves a
Radon measure. It is worth mentioning the papers [10], [8] and [6] where the
ideas of [11] are used to investigate the non-homogeneous initial boundary
value problem for the wave equation and the homogeneous initial boundary
value problem for the viscoelastic system respectively. The techniques that
we use in the present paper are inspired from their elliptic counterpart, in
particular those developed in order to treat elliptic systems as in [21]. We
use an existence and uniqueness result obtained in [13]. The homogenization
of the thermoelastic system in the case of rapidly oscillating coefficients in
a fixed domain has been investigated previously in [17] using the techniques
of asymptotic expansions as in [5] and [20].

Since the initial conditions (4) are not homogeneous (the second con-
dition in particular), it is more convenient to use an analytic approach for
the type of homogenization problem that we consider here, bypassing the
reduction of the problem to a stationary one through the application of the
Laplace transform. We note that even if the use of the Laplace transform
turned out to be successful as in the case of homogeneous initial conditions,
it would have been mainly in the derivation of the limit problem. A rigorous
asymptotic analysis such as provided by the framework that we use here is
beyond the reach of the Laplace transform. Furthermore our approach im-
mediately applies to situations when the coefficients in the system are time
dependent. It is well known that the Laplace transform is powerless in this
case.

We note that the problem studied here is of relevance in the theory of
composite materials (see e.g. [7]) and in general in the study of evolution
processes taking place in strongly inhomogeneous media.

The paper is organized as follows. In the next section, we state the main
assumptions on problem (1)–(4) and the perforated domain Ω(s), we for-
mulate a theorem on existence and uniqueness from [13], and we introduce
some functions that are solutions of auxiliary elliptic boundary problems in
the neighborhood of the sets F (s)

i ; the geometry of Ω(s) is closely related to
those functions whose a priori pointwise estimates play a central role in our
investigations. In Section 3, we construct some asymptotic expansions with
remainder terms for the solution (u(s), θ(s)) of problem (1)–(4) and we prove
that the remainder terms converge to zero in suitable topologies, thus justi-
fying the expansions. In Section 4, we prove our main result by constructing
the initial boundary value problem satisfied by the limit of (u(s), θ(s)) as
s→∞.

2. Preliminary results. We shall use the following function spaces
as defined in [15]: C(·), C l(·), C∞0 (·), Lp(·), W 1

p (·), W
◦ 1
p(·), H1

0 (·), H−1(·),
Y (0, T,X), where Y and X can be one of the previous spaces; X can be a
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direct product of one of them, l and p can assume any non-negative integer
value. We denote by X ′ the dual of X.

Definition 1. We call the pair (u(s), θ(s)) a solution of problem (1)–(4)
if for all s, u(s)(x, 0) = u

(s)
0 (x) and (u(s), θ(s)) satisfy the conditions

u(s) ∈ L2(0, T, (H1
0 (Ω(s)))3),

∂u(s)

∂t
∈ L2(0, T, (L2(Ω(s)))3),

∂2u(s)

∂t2
∈ L2(0, T, (H1

0 (Ω(s)))3′),

θ(s) ∈ L2(0, T,H1
0 (Ω(s))),

∂θ(s)

∂t
∈ L2(0, T, L2(Ω(s))),

θ(s) ∈ L2(0, T, L2(Ω(s))),

and the integral identities

(8)
�

Q
(s)
T

−∂u
(s)

∂t

∂ϕ

∂t
dx dt+ A(u(s), ϕ) + C1(θ(s), ϕ)−

�

Ω(s)

u
(s)
1 (x)ϕ(x, 0) dx

=
�

Q
(s)
T

f (s)(x, t)ϕ(x, t) dx dt,

(9)
�

Q
(s)
T

−θ(s)∂ψ

∂t
dx dt+K(θ(s), ψ) + C2

(
∂u(s)

∂t
, ψ

)

−
�

Ω(s)

θ
(s)
0 (x)ψ(x, 0) dx =

�

Q
(s)
T

q(s)(x, t)ψ(x, t) dx dt,

for all vector-functions ϕ = ϕ(x, t) = (ϕ1, ϕ2, ϕ3) ∈ L2(0, T, (H1
0 (Ω(s)))3),

with ∂ϕ/∂t ∈ L2(0, T, (L2(Ω(s)))3), ϕ(x, T ) = 0, and scalar functions ψ =
ψ(x, t) ∈ L2(0, T,H1

0 (Ω(s))) with ∂ψ/∂t ∈ L2(0, T, L2(Ω(s))), ψ(x, T ) = 0,
where

(10)

A(v, ζ) =
�

Q
(s)
T

ahklj (x)
∂v

∂xk

∂ζl
∂xh

dx dt, C1(w, ζ) =
�

Q
(s)
T

αζl
∂w

∂xl
dx dt,

K(w, ξ) =
�

Q
(s)
T

∂w

∂xl

∂ξ

∂xl
dx dt, C2

(
∂v

∂t
, ξ

)
= −

�

Q
(s)
T

∂vl
∂t

∂ξ

∂xl
dx dt.

Throughout we assume the following conditions on the data: For any
s = 1, . . . ,

(11)
f (s) ∈ L2(0, T, (L2(Ω(s)))3), q(s) ∈ L2(0, T, L2(Ω(s))),

u
(s)
0 ∈ (H1

0 (Ω(s)))3, u
(s)
1 ∈ (L2(Ω(s)))3, θ

(s)
0 ∈ H1

0 (Ω(s)).
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Remark 2. If u(s) and θ(s) satisfy the conditions imposed in Definition 1
and if the above conditions on the data hold, then

u(s) ∈ C([0, T ], (H1
0(Ω(s)))3),

∂u(s)

∂t
∈ C([0, T ] , (L2(Ω(s)))3),

θ(s) ∈ C([0, T ], L2(Ω(s))) ∩ L2(0, T,H1
0 (Ω(s))),

that is, the above functions are continuous with respect to t on the interval
[0, T ].

We have the following existence and uniqueness result which can be
established by adapting the arguments used by Lions and Duvaut in [13]
and [14] and based on the Galerkin method.

Theorem 3. Under the above conditions, problem (1)–(4) has a unique
solution (u(s), θ(s)) which satisfies the a priori estimates

ess sup
0≤t≤T

(
‖u(s)(t)‖(H1

0 (Ω(s)))3 +

∥∥∥∥
∂u(s)(t)
∂t

∥∥∥∥
(L2(Ω(s)))3

)

+

∥∥∥∥
∂2u(s)(t)
∂t2

∥∥∥∥
L2(0,T,(H1

0 (Ω(s)))3′)
≤ C1,

ess sup
0≤t≤T

‖θ(s)(t)‖L2(Ω(s)) + ‖θ(s)‖L2(0,T,H1
0 (Ω(s)))

+

∥∥∥∥
∂θ(s)

∂t

∥∥∥∥
L2(0,T,H−1(Ω(s)))

≤ C2,

where C1 and C2 are constants independent of s.

Extend the vector-functions (u(s), θ(s)) to QT by setting them equal to
zero in F (s)×(0, T ) and denote the resulting functions by the same symbols.
From the theorem, we deduce that u(s), ∂u(s)/∂t and ∂2u(s)/∂t2 are bounded
in L∞(0, T, (H1

0 (Ω))3), L∞(0, T, (L2(Ω))3) and L2(0, T, (H1
0 (Ω))3′), respec-

tively. Analogously θ(s) and ∂θ(s)/∂t are bounded in L∞(0, T, L2(Ω)) ∩
L2(0, T,H1

0 (Ω)) and L2(0, T,H−1(Ω)). Thus there exist functions u, v1, v2,
θ and w defined in the cylinder QT such that

(12)

u(s) ⇀ u weakly∗ in L∞(0, T, (H1
0 (Ω))3),

∂u(s)

∂t
⇀ v1 weakly∗ in L∞(0, T, (L2(Ω))3),

∂2u(s)

∂t2
⇀ v2 weakly∗ in L2(0, T, (H1

0 (Ω))3′),

θ(s) ⇀ θ weakly in L2(0, T,H1
0 (Ω))

and weakly∗ in L∞(0, T, L2(Ω)),
∂θ(s)

∂t
⇀ w weakly in L2(0, T,H−1(Ω)).
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We note that all the weak∗ convergences in (12) can be replaced by weak
convergences in the corresponding spaces with L∞ changed into L2. It can
be shown (see e.g. Evans [15, Problems 4, 5, pp. 425–426]) that v1 = ∂u/∂t,
v2 = ∂2u/∂t2, w = ∂θ/∂t and that u, ∂u/∂t, ∂2u/∂t2, θ, ∂θ/∂t belong to the
same function spaces as u(s), ∂u(s)/∂t, ∂u(s)/∂t2, θ(s), ∂θ(s)/∂t respectively.

Assuming that the data functions are extended to QT or to Ω by setting
them equal to zero on F (s)×(0, T ) or on F (s), depending on the set on which
they are defined, we require that the following convergences hold:

(13)

f (s) ⇀ f weakly in L2(0, T, (L2(Ω))3),

q(s) ⇀ q weakly in L2(0, T, L2(Ω)),

u
(s)
0 ⇀ u0 weakly in (H1

0 (Ω))3,

u
(s)
1 ⇀ u1 weakly in (L2(Ω))3,

θ
(s)
0 ⇀ θ0 weakly in H1

0 (Ω).

Our goal is to determine the initial boundary value problem satisfied by
the vector-function (u, θ). To do that, we need some geometric conditions on
Ω(s). Let us introduce a few notations. Let B(x, %) be the ball of radius %
centered at x; d(s)

i = min{% : F (s)
i ⊂ B(x, %)}; x(s)

i denotes the center of the

ball of radius d(s)
i such that F (s)

i ⊂ B(x(s)
i , d

(s)
i ) (closed ball); r(s)

i denotes

the distance between B(x(s)
i , d

(s)
i ) and

⋃
i6=j B(x(s)

j , d
(s)
j ) ∪ ∂Ω.

From now we assume that the balls B(x(s)
i , 1) lie inside Ω and that d(s)

i <

1/2 for all i and s. Let Ḃ(s)
i = B(x(s)

i , 1) \ F (s)
i . We introduce the auxiliary

vector-functions (vr(s)i (x), λ(s)
i (x)) ∈ (H1(Ḃ(s)

i ))3 × H1(Ḃ(s)
i ), r = 1, 2, 3,

which satisfy the following two elliptic boundary value problems:

∂

∂xh

(
ahklj (x(s)

i )
∂v

r(s)
ij

∂xk

)
= 0 in Ḃ

(s)
i , l = 1, 2, 3,(14)

v
r(s)
i (x) = e(r) on ∂F

(s)
i ,(15)

v
r(s)
i (x) = 0 on ∂B(x(s)

i , 1);(16)

∆λ
(s)
i = 0 in B(x(s)

i , 1) \ F (s)
i ,(17)

λ
(s)
i (x) = 1 on ∂F

(s)
i ,(18)

λ
(s)
i (x) = 0 on ∂B(x(s)

i , 1),(19)

where e(r) is the 3-vector whose rth component equals 1 and the remaining
ones are 0, and v

r(s)
ij is the jth component of vr(s)i . We extend the vector-

function (vr(s)i , λ
(s)
i ) to Ω, by setting it equal to (e(r), 1) on F

(s)
i and equal

to zero outside B(x(s)
i , 1). It is well known that problems (14)–(16) (resp.
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(17)–(19)) are uniquely solvable; we refer for instance to Kupradze [18] (resp.
Evans [15]). In particular, from [18], we see that under our smoothness
conditions, vr(s)i is a regular (classical) solution of (14)–(16), i.e., vr(s)i ∈
(C2(Ḃ(s)

i ))3 ∩ (C1(Ḃ(s)
i ))3. Analogously λ(s)

i ∈ C2(Ḃ(s)
i ) ∩ C1(Ḃ(s)

i ).

We introduce the matrix M(F (s)
i ) = {M rq(F (s)

i )}3r,q=1 where

M rq(F (s)
i ) =

�

B(x(s)
i ,1)

ahklj (x(s)
i )

∂v
r(s)
ij (x)

∂xk

∂v
q(s)
ij (x)

∂xh
dx, r, q = 1, 2, 3,

and the functions vr(s)i are solutions of problem (14)–(16). We also set

C(F (s)
i ) =

�

B(x(s)
l ,1)

|∇λ(s)
i (x)|2 dx,

where λ(s)
i is a solution of (17)–(19); in C(F (s)

i ) we recognize the capacity

of the set F (s)
i (see e.g. Evans and Gariepy [16] for the definition of capaci-

ties). The following pointwise a priori estimates are particular cases of those
obtained in [19, Chap. 2]:

|vr(s)i (x)| ≤ C1
d

(s)
i

|x− x(s)
i |

, d
(s)
i < |x− x(s)

i | < 1,(20)

�

B(x(s)
i ,1)

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx ≤ C2d
(s)
i ,(21)

|λ(s)
i (x)| ≤ C3

d
(s)
i

|x− x(s)
i |

, d
(s)
i < |x− x(s)

i | < 1,(22)

�

B(x(s)
i ,1)

|∇λ(s)
i |2 dx ≤ C4d

(s)
i ,(23)

where the constants Cl are independent of s.
We require the following hypotheses on the perforated domain Ω(s):

d
(s)
i ≤ A1r

(s)
i , lim

s→∞
max

1≤i≤I(s)
{r(s)
i } = 0.(H1)

I(s)∑

i=1

[d(s)
i ]2

[r(s)
i ]3

≤ A2.(H2)

(H3) There exist a 3 × 3 matrix-function m(x) = {mrq(x)}3r,q=1 with
bounded entries and a bounded function c(x) such that for all sets
G ⊂ Ω,
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lim
s→∞

∑

i∈I(G)

M(F (s)
i ) =

�

G

m(x) dx,

lim
s→∞

∑

i∈I(G)

C(F (s)
i ) =

�

G

c(x) dx,

where I(G) is the set of indices i such that F (s)
i ⊂ G.

Our main result is

Theorem 4. Let conditions (5), (6), (13), (H1), (H2) and (H3) be sat-
isfied and let (u(s), θ(s)) be the sequence of solutions of problem (1)–(4)
in the sense of Definition 1 such that ∂2u(s)/∂t2 and ∂θ(s)/∂t are uni-
formly bounded in L2(0, T, (L2(Ω))3) and in L2(0, T, L2(Ω)), respectively.
Then (u(s), θ(s)) weakly converges in the sense of (12) to a weak solution of
the initial boundary value problem

(24)
∂2ul
∂t2
− ∂

∂xh

(
ahklj (x)

∂uj
∂xk

)
+α

∂θ

∂xl
+mlj(x)uj = fl in Q, l = 1, 2, 3,

(25)
∂θ

∂t
−∆θ + α div

(
∂u

∂t

)
+ c(x)θ = q, in Q,

(26)
u(x, t) = 0

θ(x, t) = 0

}
on ∂Ω × (0, T )

(27)

u(x, 0) = u0(x)

∂u

∂t
(x, 0) = u1(x)

θ(x, 0) = θ0(x)





in Ω.

Furthermore (u(s), θ(s)) strongly converges to (u, θ) in L2(0, T, (W
◦ 1
p(Ω))3)×

L2(0, T,W
◦ 1
p(Ω)) for all 1 < p < 2.

Remark 5. The limit problem (24)–(27) differs from the original prob-
lem (1)–(4) by some additional terms containing the functions m(x) and
c(x) from hypothesis (H3). In certain cases these functions can be derived
explicitly.

Let us cover R3 with a sequence of cubes K(x(s)
i , ε) of edge ε cen-

tered at the points x(s)
i . We remove from each K(x(s)

i , ε) a ball B(s)
i =

B(x(s)
i , d

(s)
i ), i = 1, . . . , s, with 2d(s)

i ≡ d < ε/3, such that ε→ 0 as s→∞.

Thus the points x(s)
i form a periodic 3-dimensional lattice of period ε. Let

Ω ⊂ R3 be a domain whose boundary does not intersect any B
(s)
i . Let

Ω(s) = Ω \⋃iB
(s)
i , s = 1, 2, . . . We consider problem (1)–(4) in Ω(s)× [0, T ]

and problems (14)–(19) with B(x(s)
i , 1) (resp. F (s)

i ) replaced by B(x(s)
i , ε/2)
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(resp. B(s)
i ) and such that the coefficients in (14) are given by formula (7).

Choosing d = ε3, it can be shown that conditions (H1) and (H2) of Theo-
rem 4 are satisfied and c(x) = c = 2π. Furthermore

m(x) = C(µ, λ)a(x)E,

where E is the 3×3 unit matrix, C is a constant depending on µ and λ and
�

G

a(x) dx = lim
s→∞

∑

i∈I(G)

d
(s)
i .

We refer to [19, Chap.1 (pp. 55–56), Chap. 2 (pp. 167–169)] and to [6] for
details and references.

3. Asymptotic expansion of (u(s), θ(s)). In this section we construct
an asymptotic expansion with remainder term for a solution (u(s), θ(s)) of
problem (1)–(4). We justify the asymptotic expansion by proving that the
remainder term converges to zero in suitable topologies. As a corollary we
get the second assertion of Theorem 4. We start by introducing appropriate
test functions.

Let

%
(s)
i = max

{(
1 +

1
2A1

)
d

(s)
i ,

1
2A4

(r(s)
i )3 ln2 r

(s)
i

}
,

where A1 is the constant from hypothesis (H1) and

A4 = max
0<t≤diamΩ

{t2 ln2 t}.

It is easy to show that %(s)
i ≤ d

(s)
i + r

(s)
i /2 and that B(x(s)

i , d
(s)
i + r

(s)
i /2) ∩

B(x(s)
j , d

(s)
j + r

(s)
j /2) = ∅ for i 6= j. Let θ1 and θ2 be such that 0 < θ2 <

θ1 < 1. We consider the functions ψ(s)
i ∈ C∞0 (R3) such that 0 ≤ ψ(s)

i (x) ≤ 1,

ψ
(s)
i (x) = 0 for |x − x

(s)
i | ≥ θ1%

(s)
i , ψ(s)

i (x) = 1 for |x − x
(s)
i | ≤ θ2%

(s)
i ,

|∂ψ(s)
i /∂x| ≤ C/%

(s)
i ; C is a constant independent of s. We define D(s)

i =

B(x(s)
i , θ1%

(s)
i ) and

I ′s =
{
i = 1, . . . , I(s) :

(
1 +

1
2A1

)
d

(s)
i ≥

1
2A4

(r(s)
i )3 ln2 r

(s)
i

}
,

I ′′s =
{
i = 1, . . . , I(s) :

(
1 +

1
2A1

)
d

(s)
i <

1
2A4

(r(s)
i )3 ln2 r

(s)
i

}
.

Simple calculations show the following relations (see [21]):

lim
s→∞

∑

i∈I′s
d

(s)
i = 0,(28)

lim
s→∞

∑

i∈I′′s
[%(s)
i ]3 = 0,(29)
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I(s)∑

i=1

d
(s)
i < K1,(30)

I(s)∑

i=1

[r(s)
i ]3 < K2,(31)

where K1 and K2 are some constants independent of s.
By Remark 2 and the density result [9, Proposition 3.60], since u ∈

L∞(0, T, (H1
0 (Ω))3)∩C([0, T ], (L2(Ω))3) and θ ∈ L2(0, T,H1

0 (Ω))∩C([0, T ],
L2(Ω)), there exist sequences of functions um and θm, m = 1, 2, . . . , such
that um ∈ C∞([0, T ], (C∞0 (Ω))3) and θm ∈ C∞([0, T ], C∞0 (Ω)) and

(32)

um → u strongly in C([0, T ], (L2(Ω))3),

um → u strongly in L∞(0, T, (H1
0 (Ω))3),

∂um
∂t
→ ∂u

∂t
strongly in C([0, T ], L2(Ω)),

θm → θ strongly in C([0, T ], L2(Ω)),

θm → θ strongly in L2(0, T,H1
0 (Ω)).

In what follows we denote by Cm constants depending on m and independent
of s.

We seek a solution (u(s), θ(s)) of (1)–(4) in the form of the asymptotic
expansions

u(s)(x, t) = um(x, t)−H1s(x, t)−H2s(x, t) +R1s(x, t),(33)

θ(s)(x, t) = θm(x, t)−H3s(x, t)−H4s(x, t) +R2s(x, t),(34)

where

H1s(x, t) =
3∑

r=1

∑

i∈I′s
v
r(s)
i (x)umr(x, t)ψ

(s)
i (x),

H2s(x, t) =
3∑

r=1

∑

i∈I′′s
v
r(s)
i (x)umr(x, t)ψ

(s)
i (x),

H3s(x, t) =
3∑

r=1

∑

i∈I′s
λ

(s)
i (x)θm(x, t)ψ(s)

i (x),

H4s(x, t) =
3∑

r=1

∑

i∈I′′s
λ

(s)
i (x)θm(x, t)ψ(s)

i (x),

v
r(s)
i , λ(s)

i are respectively the solutions of (14)–(16) and (17)–(19), umr is the
rth component of um, R1s and R2s are the remainder terms; it is understood
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that the functions Hks (k = 1, . . . , 4) and Rks (k = 1, 2) depend on m but
the omission in the notation is for sake of simplicity.

We establish the following corrector results which justify the expan-
sions (33).

Theorem 6. Let the assumptions of Theorem 4 be satisfied. Then

(35) H1s → 0 strongly in L2(0, T, (H1
0 (Ω(s)))3),

(36) H2s → 0 strongly in L2(0, T, (W 1
p (Ω(s)))3) for all p ∈ (1, 2),

(37)
∂H1s

∂t
,
∂H2s

∂t
→ 0 strongly in L2(0, T, (L2(Ω))3).

Proof. Step 1. We show that

‖H1s‖L2(0,T,(H1
0 (Ω(s)))3) → 0 as s→∞.(38)

We have

‖H1s‖2L2(0,T,(H1
0 (Ω(s)))3) ≤ 2(I1s + I2s + I3s),(39)

where

I1s =
3∑

r=1

∑

i∈I′s

T�

0

�

D
(s)
i

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

|umr|2 dx dt,

I2s =
3∑

r=1

∑

i∈I′s

T�

0

�

D
(s)
i

∣∣∣∣
∂umr
∂x

∣∣∣∣
2

|vr(s)i |2 dx dt,

I3s =
3∑

r=1

∑

i∈I′s

T�

0

�

D
(s)
i

|vr(s)i |2|umr|2
∣∣∣∣
∂ψ

(s)
i

∂x

∣∣∣∣
2

dx dt.

By (21) and the boundedness of um, we have

I1s ≤ Cm
∑

i∈I′s
d

(s)
i .(40)

Next by the boundedness of the gradient of um, Poincaré’s inequality and
inequality (21), we have

I2s ≤ Cm
∑

i∈I′s
d

(s)
i .(41)

Since v
r(s)
i ∈ C2(Ḃ(s)

i ) ∩ C1(Ḃ(s)
i ), it follows that v

r(s)
i is bounded on

B(x(s)
i , 1) thanks to its extension by e(r) in F

(s)
i . Thus, by the definition
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of ψ(s)
i and boundedness of vr(s)i ,

I3s≤Cm
3∑

r=1

∑

i∈I′s
[%(s)
i ]−2

T�

0

�

D
(s)
i

|vr(s)i |2 dx≤Cm
∑

i∈I′s
%

(s)
i ≤Cm

∑

i∈I′s
d

(s)
i .(42)

By (39)–(42), passing to the limit as s → ∞ and using the fact that Cm is
independent of s, we deduce from (28) that (38) holds. This proves (35).

Step 2. We show that

lim
s→∞

‖H2s‖L2(0,T,(W
◦

1
p(Ω(s)))3)

= 0.(43)

We begin by establishing the inequality

‖H2s‖(H1
0 (Ω))3 < Cm, with Cm independent of t.(44)

Arguing as in Step 1, we have

‖H2s‖2(H1
0 (Ω))3 ≤

3∑

r=1

∑

i∈I′′s

∥∥∥∥
∂

∂x
(vr(s)i umrψ

s
i )

∥∥∥∥
2

(L2(Ω))3

≤ C
3∑

r=1

∑

i∈I′′s

{ �

D
(s)
i

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

|umr|2 dx+
�

D
(s)
i

∣∣∣∣
∂umr
∂x

∣∣∣∣
2

|vr(s)i |2 dx

+
�

D
(s)
i

∣∣∣∣
∂ψ

(s)
i

∂x

∣∣∣∣
2

|vr(s)i |2|umr|2 dx
}

≤ Cm
3∑

r=1

∑

i∈I′′s

{ �

D
(s)
i

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx+
�

D
(s)
i

∣∣∣∣
∂ukr
∂x

∣∣∣∣
2

dx

+ [%(s)
i ]−2

�

D
(s)
i \B(x(s)

i ,θ2%
(s)
i )

|vr(s)i |2 dx
}

≤ Cm
{∑

i∈I′′s
d

(s)
i +

∑

i∈I′′s
[%(s)
i ]3 +

�

⋃
i∈I′′s D

(s)
i

∣∣∣∣
∂umr
∂x

∣∣∣∣
2

dx

}
,

where we have used the properties of ψ(s)
i and um and inequalities (20)

and (21). Thanks to (29) the second term in the last bracket converges
to zero, the third term converges to zero by absolute continuity of inte-
grals since |⋃i∈I′′s D

(s)
i | → 0, while the first term is bounded by (30). This

proves (44).
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Next since for all t, H2s(x, t) = 0 outside
⋃
i∈I′′s D

(s)
i , we get

‖H2s‖2
(W
◦

1
p(Ω))3

≤ Cm‖H2s‖2(H1
0 (Ω))3

{∑

i∈I′′s
[%(s)
i ]3

}2/p−1
.

Integrating both sides over t from 0 to T , passing to the limit as s→∞, and
using (29) and (44), we get (43) thanks to the fact that Cm is independent
of s. This proves the relation (36). Using the same arguments as in the
proofs of the two previous assertions of the theorem we easily get (37). The
theorem is proved.

The next result concerns the behavior of the remainder term in the
asymptotic expansion (33).

Theorem 7. Let the conditions of Theorem 4 be satisfied. Then

R1s(x, t)→ 0 strongly in L2(0, T, (H1
0 (Ω))3),(45)

∂R1s

∂t
→ 0 weakly in L2(0, T, (L2(Ω))3).(46)

Proof. The statement (46) is a straightforward consequence of the asymp-
totic expansion (33), and the convergences (12) and (37). By (33), (12) and
Theorem 6, we see that R1s ∈ L2(0, T, (H1

0 (Ω(s)))3) and it converges weakly
to zero in L2(0, T, (H1

0 (Ω(s)))3). Since ∂R1s/∂t converges weakly to zero
in L2(0, T, (L2(Ω(s)))3), it follows from Aubin’s Theorem [4] (see also [9,
p. 61]) that R1s strongly converges to zero in L2(0, T, (L2(Ω(s)))3). Multi-
plying both sides of the system (1) by R1s and integrating over Q(s)

T , we get

(47)
�

Q
(s)
T

∂2u(s)

∂t2
R1s dx dt+ A(u(s), R1s) + C1(θ(s), R1s)

=
�

Q
(s)
T

f(x, t)R1s(x, t) dx dt.

It is obvious that strong convergence of R1s to zero in L2(0, T, (L2(Ω(s)))3)
implies

(48) lim
s→∞

(
|C1(θ(s), R1s)|+

∣∣∣
�

Q
(s)
T

f(x, t)R1s(x, t) dx dt
∣∣∣

+

∣∣∣∣
�

Q
(s)
T

∂2u(s)

∂t2
R1s dx dt

∣∣∣∣
)

= 0;

for the estimation of the last term on the left-hand side of this equality
we have used the assumption on uniform boundedness of ∂2u(s)/∂t2 in
L2(0, T, (L2(Ω))3). We now proceed to the estimation of the second term on
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the left-hand side of (47). Since vr(s)i is a weak solution of problem (14)–(16),
it satisfies the integral identity

�

B(x(s)
i ,1)\F (s)

i

ahklj (x)
∂v

r(s)
ij

∂xk

∂ϕl
∂xh

dx = 0(49)

for all ϕ(x) = (ϕ1, ϕ1, ϕ3) ∈ (H1
0 (B(x(s)

i , 1) \ F (s)
i ))3.

We write

A(u(s), R1s) = A(u,R1s)−A(H1s, R1s)−A(H2s, R1s) +A(R1s, R1s).(50)

Since R1s converges weakly to zero in L2(0, T, (H1
0 (Ω))3) and H1s con-

verges strongly to zero in L2(0, T, (H1
0 (Ω))3), it follows that A(u,R1s) and

A(H1s, R1s) converge to zero as s→∞. We now estimate the third term on
the right-hand side of (50). We write

A(H2s, R1s) = J1s − J2s + J3s,(51)

where

J1s =
T�

0

[ 3∑

r=1

∑

i∈I′′s

�

D
(s)
i \F

(s)
i

ahklj (x)
∂v

r(s)
ij

∂xk

∂(Rl1sumrψ
(s)
i )

∂xh
dx

]
dt,

J2s =
T�

0

3∑

r=1

∑

i∈I′′s

�

D
(s)
i

ahklj (x)Rl1s
∂v

r(s)
ij

∂xk

∂(umrψ
(s)
i )

∂xh
dx dt,

J3s =
T�

0

3∑

r=1

∑

i∈I′′s

�

D
(s)
i

ahklj (x)vr(s)ij

∂(umrψ
(s)
i )

∂xk

∂Rl1s
∂xh

dx dt,

and Rl1s is the lth component of R1s; we have used the fact that vr(s)i =

e(r) on F
(s)
i . For s sufficiently large we may assume that θ1%

(s)
i < 1. Thus

ψ
(s)
i (x) = 0 outsideB(x(s)

i , 1). Hence the integral in J1s reduces to an integral

over B(x(s)
i , 1) \ F (s)

i . Since Rl1sumrψ
(s)
i ∈ H1

0 (B(x(s)
i , 1) \ F (s)

i ), thanks to
the integral identity (49), we see that J1s = 0.

We shall need the following Poincaré inequality proved in [22, Lemma 1.4,
Chap. 8]: Let K(%1, %2) be the ring {x : 0 ≤ %1 < |x| < %2 ≤ a}; then for
any function f ∈ H1(B(0, a)) we have

�

K(%1,%2)

|f(x)|2 dx ≤ c[%2
2 − %2

1]
�

B(0,a)

∣∣∣∣
∂f

∂x

∣∣∣∣
2

dx(52)

+ c
%3

2 − %3
1

a3

�

K(a/2,a)

|f(x)|2 dx.
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From now on we assume that s is so large that θ1%
(s)
i < 1. For 0 < µ < 1,

let

Bµ = {x ∈ B(x(s)
i , 1) : 0 ≤ |vr(s)i (x)| ≤ µ}.

We define

v
(s)
iµ (x) =

{
v
r(s)
i (x) if x ∈ Bµ,
µe(r) if x 6∈ Bµ.

It is clear that ϕ(x) = v
r(s)
iµ (x)−µe(r)v

r(s)
i (x) ∈ (H1

0 (B(x(s)
i , 1)\F (s)

i ))3, since

v
r(s)
i (x) = e(r) on F

(s)
i , i.e., |vr(s)i (x)| = 1 on ∂F

(s)
i and v

(s)
iµ (x)=µe(r), thus

ϕ(x) = 0 on ∂F
(s)
i ; analogously v

(s)
i (x) = 0 on ∂B(x(s)

i , 1), hence v(s)
iµ (x) =

v
r(s)
i (x), i.e., ϕ(x) = 0 on ∂B(x(s)

i , 1). Hence substituting this function in
the integral identity (49) we get, after standard calculations with the use of
the ellipticity condition (6),

�

Bµ

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx ≤ Cµ
�

B(x(s)
i ,1)

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx.

Applying inequality (21) to the right-hand side we get

�

Bµ

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx ≤ Cµd(s)
i .(53)

We have
J2s ≤ J ′2s + J ′′2s.

where

J ′2s =
3∑

r=1

∑

i∈I′′s

T�

0

�

D
(s)
i

|R1s|
∣∣∣∣
∂umr
∂x

∣∣∣∣ |ψ
(s)
i |
∣∣∣∣
∂v

r(s)
i

∂xk

∣∣∣∣ dx,

J ′′2s =
3∑

r=1

∑

i∈I′′s

T�

0

�

D
(s)
i

|R1s| |umr|
∣∣∣∣
∂ψ

(s)
i

∂x

∣∣∣∣
∣∣∣∣
∂v

r(s)
i

∂xk

∣∣∣∣ dx.

Since vr(s)i ∈ C2(Ḃ(s)
i ) ∩ C1(Ḃ(s)

i ) it is clear that |∂vr(s)i /∂xk| is bounded.
Thus by Hölder’s inequality we have

J ′2s ≤ C
3∑

r=1

∑

i∈I′′s

[ T�

0

�

D
(s)
i

|R1s|2 dx dt
]1/2[ T�

0

�

D
(s)
i

∣∣∣∣
∂umr
∂x

∣∣∣∣
2∣∣∣∣
∂v

r(s)
i

∂xk

∣∣∣∣
2

dx dt

]1/2

≤ C
[ �

QT

|R1s|2 dx dt
]1/2

[ �

QT

∣∣∣∣
∂um
∂x

∣∣∣∣
2

dx dt

]1/2

.
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As R1s → 0 strongly in L2(0, T, (L2(Ω))3) and the second integral is finite,
we obtain J ′2s → 0 as s→∞.

We now estimate J ′′2s. Since by (20),

µ
(s)
i = sup

D
(s)
i \B(x(s)

i ,θ2%
(s)
i )

|vr(s)i (x)| ≤ C d
(s)
i

%
(s)
i

,(54)

we have by Hölder’s inequality, the definition of ψ(s)
i and boundedness of um,

J ′′2s ≤ Cm
3∑

r=1

∑

i∈I′′s

[
[%(s)
i ]−2

�

B
µ

(s)
i

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx

]1/2

×
[ T�

0

�

D
(s)
i

|R1s|2 dx dt
]1/2

.

By (53), (54) and (52) (with %1 = 0, %2 = θ1%
(s)
i , and a = a

(s)
i = d

(s)
i +r(s)

i /2)
we get

J ′′2s ≤ Cm
∑

i∈I′′s
[[%(s)

i ]−2µ
(s)
i d

(s)
i ]1/2(55)

×
[
[%(s)
i ]2

T�

0

�

B(x(s)
i ,a

(s)
i )

∣∣∣∣
∂R1s

∂x

∣∣∣∣
2

dx dt

+
[%(s)
i ]3

[r(s)
i /2 + d

(s)
i ]3

T�

0

�

B(x(s)
i ,a

(s)
i )

|R1s|2 dx dt
]1/2

≤ Cm
[∑

i∈I′′s

[d(s)
i ]2

%
(s)
i

]1/2[∑

i∈I′′s

T�

0

�

B(x(s)
i ,a

(s)
i )

∣∣∣∣
∂R1s

∂x

∣∣∣∣
2

dx dt

]1/2

+ Cm

[∑

i∈I′′s

[d(s)
i ]2

[r(s)
i ]3

]1/2[∑

i∈I′′s

T�

0

�

B(x(s)
i ,a

(s)
i )

|R1s|2 dx dt
]1/2

.

By definition of I ′′s we have

∑

i∈I′′s

[d(s)
i ]2

%
(s)
i

≤ sup
{

1

ln2 r
(s)
i

} I(s)∑

i=1

[d(s)
i ]2

[r(s)
i ]3

.

By hypothesis (H2) the sum on the right-hand side is uniformly bounded.
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Thus letting s→∞ on both sides we see that

lim
s→∞

∑

i∈I′′s

[d(s)
i ]2

%
(s)
i

= 0.(56)

As the balls B(x(s)
i , a

(s)
i ) do not intersect, we easily infer that the right-hand

side of (55) converges to zero. This implies that J ′′2s → 0 as s → ∞. Hence
we have proved that J2s → 0 as s→∞.

We proceed to the estimation of J3s. The properties of um and v
r(s)
i

lead to

J3s ≤
[ 3∑

r=1

∑

i∈I′′s

�

D
(s)
i

|vr(s)i |2 dx+ [%(s)
i ]−2

�

D
(s)
i \B(x(s)

i ,θ2%
(s)
i )

|vr(s)i |2 dx
]1/2

×
( �

QT

∣∣∣∣
∂R1s

∂x

∣∣∣∣
2

dx dt

)1/2

≤ Cm
[∑

i∈I′′s
[%(s)
i ]3

]1/2
+ Cm

[∑

i∈I′′s
[%(s)
i ]−2

�

D
(s)
i \B(x(s)

i ,θ2%
(s)
i )

[d(s)
i ]2

|x− x(s)
i |2

dx

]1/2

≤ Cm
[∑

i∈I′′s
[%(s)
i ]3

]1/2
+ Cm

[∑

i∈I′′s

[d(s)
i ]2

%
(s)
i

]1/2

.

Here we have used inequality (20). By a passage to the limit as s→∞ and
using (56) and (29) we get lims→∞ J3s = 0.

Recapitulating we deduce from (51) that lims→∞A(H2s, R1s) = 0. Hence
from (47), (48) and (50), we conclude that

lim
s→∞

A(R1s, R1s) = 0.

Thus

lim
s→∞

�

Q
(s)
T

∣∣∣∣
∂R1s

∂x

∣∣∣∣
2

dx dt = 0.

This proves (45). Theorem 7 is proved.

In analogy with Theorems 6 and 7 we get the following corrector result
justifying the asymptotic expansion (34).

Theorem 8. Let the conditions of Theorem 4 be satisfied. Then for the
functions H3s and H4s from (34) the following convergences hold :

lim
s→∞

‖H3s‖L2(0,T,H1
0 (Ω)) = 0,

lim
s→∞

‖H4s‖L2(0,T,W
◦

1
p(Ω(s)))

= 0, p ∈ (1, 2).



108 M. SANGO

Furthermore
R2s(x, t)→ 0 strongly in L2(0, T,H1

0 (Ω)).

Remark 9. Thanks to Theorems 6, 7 and 8, and the relations (32),
we see that (u(s), θ(s)) strongly converges to (u, θ) in L2(0, T, (W

◦ 1
p(Ω))3) ×

L2(0, T,W
◦ 1
p(Ω)) for all 1 < p < 2. Hence the last assertion of Theorem 4 is

proved.

4. Derivation of the limit problem. Let g(x, t) = (g1(x, t), g2(x, t),
g3(x, t)) and h(x, t) be arbitrary functions which belong respectively to
C∞(0, T, (C∞0 (Ω))3) and C∞(0, T, C∞0 (Ω)) such that g(x, T ) = 0 and h(x, T )
= 0. We consider the sequences of functions

gs(x, t) = g(x, t)−G1s(x, t)−G2s(x, t),(57)

hs(x, t) = h(x, t)−G3s(x, t)−G4s(x, t),(58)

where
G1s(x, t) =

3∑

r=1

∑

i∈I′s
v
r(s)
i (x)gr(x, t)ψ

(s)
i (x),

G2s(x, t) =
3∑

r=1

∑

i∈I′′s
v
r(s)
i (x)gr(x, t)ψ

(s)
i (x),

G3s(x, t) =
3∑

r=1

∑

i∈I′s
v
r(s)
i (x)h(x, t)ψ(s)

i (x),

G4s(x, t) =
3∑

r=1

∑

i∈I′′s
v
r(s)
i (x)h(x, t)ψ(s)

i (x),

where ψ(s)
i are the functions defined in the previous section. It is easy to ver-

ify that gs and hs vanish on F (s)
i × (0, T ], gs ∈ L2(0, T, (H1

0 (Ω))3), ∂gs/∂t ∈
L2(0, T, (H1

0 (Ω))3), ∂2gs/∂t
2 ∈ L2(0, T, (L2(Ω))3), hs ∈ L2(0, T,H1

0 (Ω)),
∂hs/∂t ∈ L2(0, T, L2(Ω)). Using the same arguments as in the previous sec-
tion when proving Theorems 6 and 7, we have the following relations for
p ∈ (1, 2):

lim
s→∞

‖G1s‖L2(0,T,(H1
0 (Ω))3) = 0,

lim
s→∞

‖G2s‖L2(0,T,(W 1
p (Ω))3) = 0,

lim
s→∞

∥∥∥∥
∂Gls
∂t

∥∥∥∥
L2(0,T,(L2(Ω))3)

= 0, l = 1, 2,(59)

lim
s→∞

‖G3s‖L2(0,T,H1
0 (Ω)) = 0,

lim
s→∞

‖G4s‖L2(0,T,W 1
p (Ω)) = 0.
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In particular,

(60)

gs(x, t) ⇀ g(x, t) weakly in L2(0, T, (H1
0 (Ω))3),

gs(x, t)→ g(x, t) strongly in L2(0, T, (W 1
p (Ω))3),

∂gs(x, t)
∂t

→ ∂g(x, t)
∂t

strongly in L2(0, T, (L2(Ω))3),

hs(x, t) ⇀ h(x, t) weakly in L2(0, T,H1
0 (Ω)),

hs(x, t)→ h(x, t) strongly in L2(0, T,W 1
p (Ω)),

for p ∈ (1, 2).
Substituting gs and hs as test functions in (8) and (9) respectively we

get

(61)
�

QT

−∂u
(s)

∂t

∂gs
∂t

dx dt+ A(u(s), gs) + C1(θ(s), gs)−
�

Ω

u
(s)
1 (x)gs(x, 0) dx

=
�

QT

f (s)(x, t)gs(x, t) dx dt,

and

(62)
�

QT

−θ(s)∂hs
∂t

dx dt+K(θ(s), hs)+C2

(
∂u(s)

∂t
, hs

)
−

�

Ω

θ
(s)
0 (x)hs(x, 0) dx

=
�

QT

q(s)(x, t)hs(x, t) dx dt,

where K and C2 are defined in (10). By (59), (60), (12) and (13), we get as
s→∞ the following convergences:

(63)
�

QT

−∂u
(s)

∂t

∂gs
∂t

dx dt−
�

Ω

u
(s)
1 (x)gs(x, 0) dx

→
�

QT

−∂u
∂t

∂g

∂t
dx dt−

�

Ω

u1(x)g(x, 0) dx,

(64) C1(θ(s), gs)→ C1(θ, gs),

(65)
�

QT

f (s)(x, t)gs(x, t) dx dt→
�

QT

f(x, t)g(x, t) dx dt,

(66)
�

QT

−θ(s) ∂hs
∂t

dx dt−
�

Ω

θ
(s)
0 (x)hs(x, 0) dx

→
�

QT

−θ ∂h
∂t

dx dt−
�

Ω

θ0(x)h(x, 0) dx,
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(67) C2

(
∂u(s)

∂t
, hs

)
→ C2

(
∂u

∂t
, h

)
,

(68)
�

QT

q(s)(x, t)hs(x, t) dx dt→
�

QT

q(x, t)h(x, t) dx dt.

We now estimate A(u(s), g(s)) and K(θ(s), hs). Since these two expres-
sions are similar in form, we restrict ourselves to A(u(s), g(s)). By (57) we
have

A(u(s), gs) = A(u(s), g)− A(u(s), G1s)− A(u(s), G2s).(69)

From (59) and the weak∗ convergence of u(s) to u in L∞(0, T, (H1
0 (Ω))3) as

s→∞, it follows that

A(u(s), g)→ A(u, g), A(u(s), G1s)→ 0.(70)

For similar reasons,

A(u(s), G2s) = βs + A(H2s, G2s),(71)

where lims→∞ βs = 0. Let us introduce the matrices Akh(x) = {ahklj (x)}3l,j=1,
k, h = 1, 2, 3. Thus

A(H2s, G2s) =
∑

i∈I′′s

�

Q
(s)
T

Akh(x)
∂

∂xk
(vr(s)i (x)umr(x, t)ψ

(s)
i (x))

× ∂

∂xh
(vq(s)i (x)gq(x, t)ψ

(s)
i (x)) dx dt

= J1s + J2s + J3s + J4s,

where

J1s =
∑

i∈I′′s

�

QT

Akh(x(s)
i )

∂v
r(s)
i

∂xk

× ∂

∂xh
(vq(s)i (x)umr(x, t)gq(x, t)[ψ

(s)
i (x)]2) dx dt,

J2s =
∑

i∈I′′s

�

QT

Akh(x)vr(s)i (x)

× ∂

∂xk
(umr(x, t)ψ

(s)
i (x))

∂

∂xh
(vq(s)i (x)gq(x, t)ψ

(s)
i (x)) dx dt,

J3s = −
∑

i∈I′′s

�

QT

Akh(x)vq(s)i (x)gq(x, t)ψ
(s)
i (x)

× ∂v
r(s)
i (x)
∂xh

∂

∂xk
(umr(x, t)ψ

(s)
i (x)) dx dt,
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J4s =
∑

i∈I′′s

�

D
(s)
i

[Akh(x)− Akh(x(s)
i )]

∂v
r(s)
i

∂xk

× ∂

∂xh
(vq(s)i (x)umr(x, t)gq(x, t)[ψ

(s)
i (x)]2) dx dt.

Let us estimate J2s. We note that it is a sum of expressions of the type

∑

i∈I′′s

�

QT

Akh(x)vr(s)i

∂α1umr
∂xα1

k

∂α2ψ
(s)
i

∂xα2
k

∂α3v
q(s)
i

∂xα3
h

∂α4gq
∂xα4

h

∂α5ψ
(s)
i

∂xα5
h

dx dt,(72)

with α1 + α2 = 1, α3 + α4 + α5 = 1, αl ∈ {0, 1}. We estimate one of these
expressions, say

J1
2s =

∑

i∈I′′s

�

QT

Akh(x)vr(s)i umrψ
(s)
i

∂ψ
(s)
i

∂xk

∂v
q(s)
i

∂xh
gq dx dt.

Since umr is bounded, we see that

J1
2s ≤ C

∑

i∈I′′s

�

Ω

|vr(s)i |
∣∣∣∣
∂ψ

(s)
i

∂xk

∣∣∣∣
∣∣∣∣
∂v

q(s)
i

∂xh

∣∣∣∣ dx dt.

We assume that s is so large that θ1%
(s)
i < 1. We have ψ

(s)
i (x) ≡ 1 in

B(x(s)
i , θ2%

(s)
i ) and ψ

(s)
i (x) = 0 for |x− x(s)

i | > θ1%
(s)
i , thus

J1
2s ≤ C

∑

i∈I′′s

T�

0

�

D
(s)
i \B(x(s)

i ,θ2%
(s)
i )

|vr(s)i |
∣∣∣∣
∂ψ

(s)
i

∂xk

∣∣∣∣
∣∣∣∣
∂v

q(s)
i

∂xh

∣∣∣∣ dx dt

≤ CT
∑

i∈I′′s
[%(s)
i ]−1

( �

D
(s)
i \B(x(s)

i ,θ2%
(s)
i )

|vr(s)i |2 dx
)1/2

×
( �

B(x(s)
i ,1)

∣∣∣∣
∂v

r(s)
i

∂x

∣∣∣∣
2

dx

)1/2

≤ C
∑

i∈I′′s
[d(s)
i ]1/2

d
(s)
i

[%(s)
i ]1/2

≤ C
∑

i∈I′′s
d

(s)
i

∑

i∈I′′s

[d(s)
i ]2

%
(s)
i

≤ C sup
{

1

ln2 r
(s)
i

}∑

i∈I′′s
d

(s)
i

∑

i∈I′′s

[d(s)
i ]2

[r(s)
i ]3

.

The last two factors are bounded by hypothesis (H2) and the relation (30).
Thus by letting s→∞, we get

lim
s→∞

J1
2s = 0.
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The other expressions in (72), as well as J3s and J4s are proved to converge
to zero analogously; we use the fact that the entries of Ahk are continuous.
Hence

lim
s→∞

J2s = lim
s→∞

J3s = lim
s→∞

J4s = 0.

It remains to estimate J1s. We have

J1s = J1
1s + J2

1s,

where

J1
1s =

∑

i∈I′′s

�

QT

Akh(x(s)
i )

∂v
r(s)
i

∂xk

∂

∂xh
(vq(s)i umrgq(ψ

(s)
i − 1)(ψ(s)

i + 1)) dx dt,

J2
1s =

∑

i∈I′′s

�

QT

Akh(x(s)
i )

∂v
r(s)
i

∂xk

∂

∂xh
(vq(s)i umrgq) dx dt.

The function to which ∂/∂xh is applied in the expression of J1
1s and which

we denote by Φ(s)
i (x, t) is equal to zero on F (s)

i and outside D(s)
i ⊂ B(x(s)

i , 1),
thus

J1
1s =

∑

i∈I′′s

T�

0

[ �

B(x(s)
i ,1)\F (s)

i

Akh(x)
∂v

r(s)
i (x)
∂xk

∂Φ
(s)
i (x, t)
∂xh

dx

]
dt.

By the definition of vr(s)i , we see that J1
1s = 0.

Next

J2
1s =

∑

i∈I′′s

�

QT

Akh(x(s)
i )

∂v
r(s)
i

∂xk

∂v
q(s)
i

∂xh
umrgq dx dt

+
∑

i∈I′′s

�

QT

Akh(x(s)
i )vq(s)i

∂v
r(s)
i

∂xk

∂[umrgq]
∂xh

dx dt.

Arguments similar to those used previously show that the second term in
the above sum converges to zero as s → ∞. Let us estimate the first term.
We call it J2′

1s. We can write

J2′
1s =

∑

i∈Is

�

QT

Akh(x(s)
i )

∂v
r(s)
i

∂xk

∂v
q(s)
i

∂xh
umrgq dx dt+ δs,

where δs → 0 as s → ∞. Here we have used the fact that the sum of the
integrals in J2′

1s over i ∈ I ′s converges to zero as s→∞ in order to rewrite the
sum over all i ∈ Is. We cover Ω with a system of sufficiently smooth disjoint
sets Gl, l = 1, . . . , L, such that diamGl < 2, Ω =

⋃
lGl. We denote by

Is(Gl) the set of indices i = 1, . . . , I(s) such that F (s)
i ⊆ Gl. Since diamF

(s)
i

vanishes as s→∞, for sufficiently large s the Gl’s can be chosen such that
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⋃
l Is(Gl) = {1, . . . , I(s)}, i.e., all F (s)

i lie inside some Gl. Let mrq(x) be the
entries of the matrix m(x) defined in hypothesis (H3). For large s, we have

J2′
1s =

T�

0

�

Ω

mrq(x)urgq(x, t) dx dt

+
L∑

l=1

T�

0

{ ∑

i∈I(Gl)

�

B(x(s)
i ,1)

Akh(x(s)
i )

∂v
r(s)
i

∂xk

∂v
q(s)
i

∂xh
dx

−
�

Gl

mrq(x) dx
}
umrgq(x, t) dt

+
L∑

l=1

T�

0

�

Gl

mrq(x)(umr − ur)gq(x, t) dx dt+ δs.

Taking into account hypothesis (H3), using the fact that umr converges to
ur strongly in L2(QT ), we see by passing to the limit as s,m→∞ that the
last three terms on the right-hand side of the above equality converge to
zero. Thus we have

lim
s→∞

J2′
1s =

T�

0

�

Ω

mrq(x)urgq dx dt.

Combining the above convergences, we conclude from (71) that

lim
s→∞

A(u(s), G2s) =
�

QT

mrq(x)ur(x, t)gq(x, t) dx dt.

Hence from (61), (63)–(70) we find that (u, θ) satisfies the integral identity

(73)
�

QT

−∂u
∂t

∂g

∂t
dx dt+

�

QT

Akh(x)
∂u

∂xk

∂g

∂xh
dx dt+

�

QT

m(x)ug dx dt

+
�

QT

αgl
∂θ

∂xl
dx dt−

�

Ω

u1(x)g(x, 0) dx =
�

QT

fg dx dt.

Analogously it is shown that (u, θ) also satisfies the integral identity

(74)
�

QT

−θ ∂h
∂t

dx dt+
�

QT

∂θ

∂xl

∂h

∂xl
dx dt+

�

QT

∂

∂xl

(
∂ul
∂t

)
h dx dt

+
�

QT

c(x)θh dx dt−
�

Ω

θ0(x)h(x, 0) dx =
�

QT

qh dx dt.

Finally let us show that (u, θ) satisfies the initial conditions (27). We limit
ourselves to the verification of the first two conditions. We follow [15, Section
7.2]. We consider an arbitrary vector-function v ∈ C2(0, T, (H1

0 (Ω))3) such
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that v(x, 0) = v(x, T ) = 0. Let 〈·, ·〉 denote the duality pairing between
(H1

0 (Ω))3 and ((H1
0 (Ω))3)′. By integrating by parts twice we have

(75)
T�

0

〈
u(s)(t),

d2v

dt
(t)
〉
dt

= −
〈
u(s)(0),

dv

dt
(0)
〉

+
〈
du(s)

dt
(0), v(0)

〉
+

T�

0

〈
d2u(s)

dt2
(t), v(t)

〉
dt,

(76)
T�

0

〈
u(t),

d2v

dt
(t)
〉
dt

= −
〈
u(0),

dv

dt
(0)
〉

+
〈
du

dt
(0), v(0)

〉
r +

T�

0

〈
d2u

dt2
(t), v(t)

〉
dt.

Passing to the limit in (75) and taking account of the relations (13) and
(12), we deduce from the resulting equation and (76) that

−
〈
u(0),

dv

dt
(0)
〉

+
〈
du

dt
(0), v(0)

〉
= −

〈
u0,

dv

dt
(0)
〉

+ 〈u1, v(0)〉.

Since dv
dt (0) and v(0) are arbitrary it follows that u(x, 0) = u0(x), and

du
dt (x, 0) = u1(x). Thus u satisfies the first two initial conditions in (27).
Analogous arguments show that θ satisfies the third condition in (27). Since
g and h are arbitrary test functions and (u, θ) satisfies the integral iden-
tities (73) and (74) we conclude that (u, θ) is a weak solution of problem
(24)–(27). This completes the proof of Theorem 4.
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