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Abstract. We show that there are (1) nonhomogeneous metric continua that admit
minimal noninvertible maps but have the fixed point property for homeomorphisms, and
(2) nonhomogeneous metric continua that admit both minimal noninvertible maps and
minimal homeomorphisms. The former continua are constructed as quotient spaces of the
torus or as subsets of the torus, the latter are constructed as subsets of the torus.

1. Introduction. Minimality is a central topic in topological dynamics
(see e.g. [Au], [Br] and [deV]). A dynamical system (X, f), where X is a
topological space and f : X → X is continuous, is called (topologically)
minimal if there is no proper subset M ⊆ X which is nonempty, closed and
f -invariant (i.e., f(M) ⊆ M). In such a case we also say that the map f
itself is minimal. Clearly, the system (X, f) is minimal if and only if the
(forward) orbit of every point x ∈ X is dense in X.

We will call a space X minimal if it admits a minimal map f : X → X.
An important and old question is which compact Hausdorff spaces (compact
metric spaces, continua, . . . ) admit minimal maps.

If a space allows a minimal map, the proof usually builds on a standard
example of a minimal homeomorphism (see [E1], [P], [GW]). Such standard
examples are the Cantor set and the torus of dimension ≥ 2, which ad-
mit both minimal noninvertible maps and minimal homeomorphisms (see
[KST]). The circle (see [AK]) admits no minimal noninvertible map, while
admitting a minimal homeomorphism. The Klein bottle admits a minimal
homeomorphism [E2], [P] (and we conjecture that also a minimal nonin-
vertible map). A general theorem by Fathi & Herman [FH] ties the exis-
tence of minimal diffeomorphisms to the existence of locally free diffeomor-
phisms.

Proofs of nonminimality often rely on the fixed (periodic) point property.
For example, any homeomorphism on a compact manifold with nonzero
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Euler characteristic (homotopic to the identity or not) has a periodic point
([Fu] and [DG, p. 138]), hence all compact surfaces except the torus and the
Klein bottle do not admit minimal homeomorphisms.

In this paper we give an affirmative answer to a question posed in [KST]:

Are there compact Hausdorff spaces that admit minimal noninvertible
maps but do not admit any minimal homeomorphism (1)?

More precisely, we construct a continuum with these properties which is
a nonhomogeneous quotient space of the torus (see Theorem A) or a nonho-
mogeneous subset of the torus (see Corollary D). (Recall that a continuum
is a nondegenerate compact connected Hausdorff space. A space X is called
homogeneous if for any two points x, y ∈ X there is a homeomorphism
h : X → X such that h(x) = y.) It is also worth noticing that our construc-
tions give spaces that have the fixed point property for homeomorphisms
but not for general continuous maps (see Corollaries B and D).

The classical examples of minimal maps were given on homogeneous
spaces (circle, torus, Cantor set). Since nonhomogeneity of the space in-
creases the likelihood that the space has the fixed (periodic) point (invari-
ant subset) property, it was a natural question to ask whether there exists
a nonhomogeneous minimal space. The first examples of nonhomogeneous
compact metric spaces admitting minimal homeomorphisms were provided
by Floyd in [Fl] (disconnected spaces) and by Jones, see [GH, Theorem 14.24]
(metric continuum which is not locally connected). Today many examples
of nonhomogeneous (usually disconnected) compact metric spaces admitting
minimal homeomorphisms are known.

In this paper we use homeomorphisms of the torus with wandering do-
mains (the analog of Denjoy’s example on the circle) to show the existence
of nonhomogeneous metric continua (in fact subsets of the torus which are
similar to the Sierpiński curve of the sphere, on which however no minimal
homeomorphism exists [G2], [AO]), admitting both minimal noninvertible
maps and minimal homeomorphisms (see Theorem C). A slight modification
of this construction also provides nonhomogeneous metric continua which
admit minimal maps but not minimal homeomorphisms. Moreover, these
continua are locally connected (see Corollary D and cf. Theorem A).

Remarks and open problems. In the case of homeomorphisms, there exist
two (in general nonequivalent) definitions of minimality. Since this is some-
times a source of confusion, we repeat that in the present paper minimality
means the density of all forward orbits regardless of whether the map is in-

(1) Without the requirement that the space be Hausdorff the answer is trivially affir-
mative—take X = {a, b} with a 6= b and the topology T = {∅,X, {b}}.



MINIMAL NONHOMOGENEOUS CONTINUA 125

vertible or not (2). For clarity, let us call a homeomorphism weakly minimal if
all its full orbits are dense, i.e.,

⋃
i∈Z f

i(x) = X for all x ∈ X. Obviously, min-
imal homeomorphisms are weakly minimal, but the converse is not true (take
f(n) = n+ 1, n ∈ Z). In compact metric spaces, minimality and weak mini-
mality of a homeomorphism are equivalent [G1]. Note also that a noncompact,
locally compact metric space does not admit any minimal map at all [G1].

The present paper deals with discrete dynamical systems. Concerning the
analogous problem of the existence of minimal flows (i.e. with continuous
time t ∈ R; here minimality traditionally means the denseness of all full
orbits), let us only mention that the Klein bottle is an example of a space
that admits a minimal homeomorphism, but does not admit a minimal flow
[Kn]. Ellis [E1] showed that the Cartesian product of the 2-torus and the
Klein bottle admits a minimal flow (see [BM] and [I] for more details about
the existence of minimal flows).

In the table below, we indicate for some spaces whether they allow a min-
imal homeomorphism, a minimal noninvertible map, resp. a weakly minimal
homeomorphism.

min. homeo. min. noninv. map weakly min. homeo.
Cantor set yes yes yes
S1 yes no, [AK] yes
S2 no no no
S2\finite set no, [G1] no, [G1] no, [H], [LCY], [Fr]
T2 yes yes, [KST] yes
T2 \ {p} no, [G1] no, [G1] yes, [A]
Klein bottle yes, [E2], [P] ? yes
closed annulus no ? no

(According to [A], a weakly minimal homeomorphism on the punctured torus
T2 \ {p} can be constructed as the time-1 map of an irrational flow on T2

with a rest point p; cf. [O]. Related results were presented in [LT] and [Eg].)
The next table summarizes some examples of metric continua which have

prescribed properties: The upper two entries in each column indicate if the
space admits or does not admit a minimal noninvertible map resp. a minimal
homeomorphism. The lower two entries give examples of such spaces in the
class of nonhomogeneous resp. homogeneous metric continua.

min. noninv. map no no yes yes
min. homeo no yes no yes
nonhomog. cont. [0, 1] ? Thm. A Thm. C
homog. cont. S2 S1, [AK] ? T2, [KST]

(2) Some authors call this notion semiminimality (see e.g. [G1]), while minimality
(defined then only for homeomorphisms) is reserved for the denseness of all full orbits⋃
i∈Z f

i(x).
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Of course, many open questions remain. The above tables contain several
question marks. There are many more, for example:

(i) If spaces X and Y allow minimal homeomorphisms (maps), does the
same hold for X × Y ?

(ii) Is the circle the only infinite continuum that admits a minimal hom-
eomorphism but no minimal noninvertible map? The pseudo-circle is possi-
bly a candidate.

Acknowledgements. The authors thank Jan Aarts, François Blan-
chard, Robbert Fokkink, Boju Jiang, Chris McCord and Sergĕı Trofimchuk
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2. The constructions. Recall that an arc is any space which is hom-
eomorphic to the closed interval [0, 1].

Let f : X → X, g : Y → Y and ϕ : X → Y be continuous and surjective.
If ϕ ◦ f = g ◦ ϕ, i.e., ϕ is a semiconjugacy , then f is called an extension
of g and g a factor of f . This extension of g (factor of f) is called almost
one-to-one if the semiconjugacy ϕ is an almost one-to-one map, i.e., if for
every y in a residual subset of Y , card(ϕ−1(y)) = 1.

Let (X, %) be a metric space and f : X → X be continuous. Then two
different points x, y ∈ X are called asymptotic if limn→∞ %(fnx, fny) = 0.

A decomposition D of a topological space X is upper semicontinuous
(u.s.c.) if for each element E in D and each open set U containing E, there
is an open set V such that E ⊂ V ⊂ U and V is the union of members of D.

Let us recall the classical Moore theorem from [Mo], [RS] and [Bo]. Let
M be a surface without boundary (not necessarily orientable). By a Moore
decomposition of a space M we understand any u.s.c. decomposition G of
M such that each element g of G is a continuum having arbitrarily small
neighborhoods (in M) homeomorphic to the plane R2. Obviously, each u.s.c.
decomposition G of a surface M into elements which are disks, arcs and in-
dividual points is necessarily a Moore decomposition. The Moore theorem
says that for every Moore decomposition G of M the quotient space M/G is
homeomorphic to M . This construction may be less abstract than it seems.
In complex dynamics, the mating construction between (the Julia sets of)
polynomials on C is based on the Moore theorem [Mo], and provides ex-
tremely nice geometric results (see [T], [R2], [Mi]).
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A continuous map S from the 2-torus T2 into itself is called a skew
product if it is of the form S(x, y) = (f(x), g(x, y)). Obviously, if S is
minimal then so is the circle map f . But then f is topologically conjugate
to an irrational rotation x 7→ x+α (see [AK]). A set of the form {x0}×I ⊆ T2

where I is an interval on the circle is said to be a vertical interval on the
torus.

Using the Moore theorem, it is proved in [KST] that any minimal skew
product homeomorphism of the 2-torus T2 having an asymptotic pair of
points (an example of such a homeomorphism is constructed by Rees [R1])
has an almost one-to-one factor which is a noninvertible minimal map of T2.
We will sketch the proof from [KST], because it will be used later.

Let S(x, y) = (f(x), g(x, y)) be a minimal skew product homeomorphism
of T2. Further assume that S has an asymptotic pair of points {z1, z2}. Of
course, these points lie in one fiber, i.e., they are of the form z1 = (x, y1),
z2 = (x, y2).

Since the homeomorphism S is a skew product, the S-image of a vertical
interval is again a vertical interval whose endpoints are the S-images of the
endpoints of the original interval. The points z1 and z2 are the endpoints
of two “complementary” vertical compact intervals. Since z1 and z2 are
asymptotic and S is uniformly continuous, one of these two vertical intervals,
denote it by I0, is such that for In := Sn(I0) we have diam In → 0 as n→∞.
In fact, Rees’ example also gives diam In → 0 as n → −∞. Because I0 is
not attracted to a periodic orbit, we call I0 a wandering arc.

Let D be the decomposition of T2 whose elements are the (pairwise
disjoint) compact intervals In, n ≥ 0, and the individual points from T2 \⋃∞
n=0 In. Consider the quotient space T2/D. We can say that we squeeze

the intervals In, n ≥ 0, to points. Then by the Moore theorem the quotient
space T2/D is homeomorphic to T2 (see [KST] for more details).

Since S maps an element of the decomposition D into an element of
D, there is a unique map Ψ : T2/D → T2/D with Ψ ◦ p = p ◦ S, where the
semiconjugacy p is the natural projection p : T2 → T2/D and Ψ is continuous
(see [KST] or an analogous argument below, in the proof of Theorem A).
Then Ψ is also minimal, being a factor of a minimal map. Obviously, it is
an almost one-to-one factor of S. The map Ψ is noninvertible at the point
p(I0). In fact, if we denote by I−1 the subset of T2 with S(I−1) = I0, then
Ψ(p(I−1)) = p(I0). Note that the restriction of the natural projection p to
the vertical interval I−1 is injective and so p(I−1) is a homeomorphic image
of I−1. Hence it is an arc.

Taking into account that T2/D is homeomorphic to T2, we conclude
that there is a minimal noninvertible map Φ : T2 → T2 which is an almost
one-to-one factor of S and maps an arc on the torus T2 to a point.

Finally we are ready to prove the main result of this paper:
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Theorem A. Any minimal skew product homeomorphism of the 2-torus
T2 having an asymptotic pair of points has a factor which is a noninvert-
ible minimal map of a 2-dimensional nonhomogeneous metric continuum X,
such that any homeomorphism of X has a fixed point.

Proof. Let Φ : T2 → T2 be the map described before the statement of
the theorem and let I ⊂ T2 be an arc such that Φ(I) is a point xI ∈ T2.

Let κ : [0, 1]→ I be a parametrization of I. Let DI be the decomposition
of T2 whose elements are the set κ({0, 1}) and all the individual points of
T2 \ κ({0, 1}). We say that the interval I is pinched. Consider the quotient
space X := T2/DI . Since DI is obviously a u.s.c. decomposition of T2, the
space X is a metric continuum (see Theorem 3.10 of [Na]).

Any element of the decomposition DI is mapped into an element of DI
by Φ. Hence there is a unique map F : X → X with F ◦ p = p ◦ Φ, where
the semiconjugacy is the natural projection p : T2 → X. We prove that F is
continuous. Since the map h = p ◦Φ : T2 → X is continuous and h = F ◦ p,
for each open set U ⊆ X, h−1(U) = p−1(F−1(U)) is open in T2. Then, since
p is a quotient map, the set F−1(U) is open in X. Thus F is continuous
and, being a factor of a minimal map, also minimal.

The space X is the union of the open set V = p(T2 \ {κ(0),κ(1)}) and
the closed set W = p({κ(0),κ(1)}). Clearly, V is the set of points with
Euclidean neighborhoods, and W the set of points without. Hence, both V
and W are invariant under homeomorphisms and X is a nonhomogeneous
space. But W is a single point. Thus any homeomorphism of X has at least
one fixed point at W .

Remark. The idea of the pinched torus in the previous proof can be
generalized. If f is a noninvertible minimal map on a compact manifold
M , then taking two points with the same f -image and collapsing them
to one point, we get a factor which is a minimal noninvertible map on a
nonhomogeneous “pinched manifold” which has the fixed point property for
homeomorphisms.

Corollary B. There is a 2-dimensional nonhomogeneous metric con-
tinuum, in fact a quotient space of the torus, which has the fixed point prop-
erty for homeomorphisms but does not have the fixed point property for con-
tinuous selfmaps.

Similar constructions can be made on a 1-dimensional space as well.
Following [No], we say that a homeomorphism f of the torus T2 is of Denjoy
type if it is semiconjugate (but not conjugate) to some irrational rotation of
that torus by a map h such that {x ∈ T2 : h−1(x) is not a singleton} is at
most a countable set. A homeomorphism f of Denjoy type is said to be of
Sierpiński type if it has a wandering domain, i.e. an open set D such that
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fn(D) ∩ fm(D) = ∅ for all n 6= m ∈ Z, and fn(U) does not converge to a
periodic orbit as n → ±∞. The simplest topological way of constructing a
Sierpiński homeomorphism is by “blowing up” the points of one (dense) full
orbit of an irrational torus rotation to round disks whose diameters tend to
zero. This fact is a folklore (see [No, p. 132]). It seems that the construction
has not been described explicitly and with full details in the literature (3).
Nevertheless, using other methods it was shown in [Ak], [NV], [McS] that
even Sierpiński type diffeomorphisms exist. McSwiggen has constructed, for
any α < 1, a C2+α diffeomorphism f of Sierpiński type (the diameters of
the mentioned disks tend to zero).

Let M be a surface and A ⊂ M a curve, i.e., a one-dimensional contin-
uum. Then A is said to be an S-curve in M (cf. [W]) if it is locally connected
and there exists a sequence {Di} of mutually disjoint closed disks in M such
that A = M \ ⋃∞i=1 intDi. (As A is one-dimensional,

⋃∞
i=1 intDi is neces-

sarily dense in M . If M is compact then, due to the local connectivity of A,
diamDi → 0.)

For simplicity, let f be a Sierpiński type homeomorphism obtained from
an irrational rotation by blowing up one orbit to disks. These disks are
obviously wandering. The map f has a minimal set S̃ ( T2 which is an S-
curve. (It is similar (4) to the Sierpiński curve on the sphere, but in contrast
to the case of the torus, the Sierpiński curve on the sphere does not admit
any minimal homeomorphism [G2], [AO].) The set S̃ emerges from removing
the full orbit of wandering disks from T2. More precisely, we remove the
interiors of these closed disks from the torus, i.e., S̃ can be written in the
form S̃ = T2 \ orb(intD). It is one-dimensional, because every p ∈ S̃ has
arbitrarily small neighborhoods U such that ∂U ∩ S̃ is contained in a Cantor
set. Secondly, S̃ is nonhomogeneous, because points in

⋃
i f

i(∂D) are not
enclosed by topological circles in S̃ of arbitrarily small diameter, whereas
points in S̃ \⋃i f i(∂D) are. Finally, S̃ is connected and locally connected.

Theorem C. There exists a 1-dimensional nonhomogeneous continuum
on the 2-torus that admits both a minimal homeomorphism and a minimal
noninvertible map.

Proof. Start with a Sierpiński type homeomorphism f obtained from an
irrational rotation of the torus by blowing up one orbit to disks. Take the
above-mentioned set S̃ ( T2. The restriction of f to this set is a minimal
homeomorphism. We are going to show that this set admits also a minimal

(3) A similar construction on the 2-sphere can be found in [AO]. It should be noted
that the underlying surface is of importance, because the example in the 2-sphere allows
no minimal homeomorphism, while examples on the torus do.

(4) Note that two S-curves AM on a surface M and A′M on a surface M ′ are homeo-
morphic if and only if the surfaces M and M ′ are homeomorphic [Bo].
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noninvertible map. To this end take an arc I0 in the boundary of a wandering
disk D0. Then I0 has asymptotic endpoints, and the diameters of In :=
fn(I0) tend to 0 for n→ ±∞. Write also Dn = fn(D0), n ∈ Z.

Repeat the construction of a quotient space described at the beginning
of this section. Let D be the decomposition of T2 whose elements are the
(pairwise disjoint) compact intervals In, n ≥ 0, and the individual points
from T2 \ ⋃∞n=0 In. Then by the Moore theorem the quotient space T2/D
is homeomorphic to T2 (see [KST] for more details). Recall that any two
S-curves in a given surface are homeomorphic [Bo]. Since all intervals In
are contained in S̃ and S̃ = T2 \⋃n∈Z intDn, the quotient space S̃/D is an
S-curve and therefore is also homeomorphic to S̃.

Since f maps an element of the decomposition D into an element of D,
there is a unique map f̃ : S̃/D → S̃/D with f̃◦p = p◦f |S̃, where the semicon-
jugacy p is the natural projection p : S̃ → S̃/D and f̃ is continuous. The map
f̃ is minimal, being a factor of the minimal map f |S̃ . Obviously, it is an al-
most one-to-one factor of f |S̃ . The map f̃ is noninvertible at the point p(I0).

Taking into account that S̃/D is homeomorphic to S̃, we deduce that
there is a minimal noninvertible map Φ : S̃ → S̃ which is an almost one-to-
one factor of f |S̃ and maps an arc on S̃ to a point.

This example on S̃ can easily be adapted (cf. the proof of Theorem A)
to yield the following

Corollary D. There are 1-dimensional nonhomogeneous continua on
the 2-torus that admit minimal noninvertible maps but have the fixed point
property for homeomorphisms.

Proof. Let Φ : S̃ → S̃ be the minimal noninvertible map constructed in
the proof of Theorem C. Recall that on the boundary of the open disk D−1

which is complementary to S̃ there is an arc which is mapped by Φ to a
point. Take two points a, b from that arc. Collapse a and b to one point and
denote this point by z. We are going to prove that what we get is (up to
homeomorphism) the required continuum X with a minimal noninvertible
selfmap.

First note that X is homeomorphic to a subset of the torus. To see this,
imagine an arc through the interior of D−1 connecting a and b, and collapse
this arc to a point. The resulting space contains X, and is homeomorphic
to a torus (use the Moore theorem).

Clearly Φ induces a minimal noninvertible map on X. On the other
hand, X has the fixed point property for homeomorphisms, because z is the
only point in X that has a neighborhood U in X such that U \ {z} is not
connected.
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