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Abstract. We deal with the problem

{ —Au = f(z,u) + Ag(z,u) in 02,

(Px)
U\BQ = 07

where 2 C R” is a bounded domain, A € R, and f,g: 2 x R — R are two Carathéodory
functions with f(z,0) = g(x,0) = 0. Under suitable assumptions, we prove that there
exists A* > 0 such that, for each A € |0, \*[, problem (P ) admits a non-zero, non-negative
strong solution uy € (1,59 W?2P(2) such that lim, o+ luxllwzr(o) = 0 for all p > 2.
Moreover, the function A — I (uy) is negative and decreasing in ]0, \*[, where I is the
energy functional related to (Py).

1. Introduction and statement of the result. Throughout the pa-
per, 2 C R™ is an open, connected, bounded set with smooth boundary,
and f,g: {2 x R — R are two Carathéodory functions.

As usual, a weak solution of the problem

—Au = f(z,u) + Ag(x,u) in 2,

(Px) _
upn =0,

where A € R, is any u € W, ?(£2) such that
S Vu(x)Vo(z)der — S flzyu(z))v(z)de — X S g(z,u(z))v(x)de =0
Q Q Q

for all v € Wy 2(2). A strong solution of the problem is any u € W, 2(£2) N
W?22(£2) which satisfies the equation almost everywhere in 2. A classical
solution is any u € C%(£2)NC*(£2), zero on 02, which satisfies the equation
pointwise in 2.
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If u is a strong solution of (Py), we also put

u(w)
JIvu(@Pde—§ (| f(z.€)de) da
Q

9 0

DO | —

I)\(U> =

u(z)
A ( { g(x,g)dg) de.
2 0
Above, of course, it is understood that the integrals which appear are well
defined.
The aim of this paper is to prove the following theorem:

THEOREM 1. Assume that:
(i) there is s > 1 such that
SuszQ ’f($7£)|

lim sup < 00;
£—0+ é‘s
(ii) there is g € ]0,1[ such that
i sup *Peee 9O
-0+ 3

(iii) there are a non-empty open set D C (2 and a set B C D of positive
measure such that
. inf,cn Sg g(x,t)dt _ . infuep Sg g(x,t)dt
lim sup 5 =00, liminf 5
£—0+ £ {0t £
Then, for some \* > 0 and for each X € |0, \*[, problem (Py) admits a
non-zero, non-negative strong solution ux € (>, W2P(£2). Moreover,

> —00.

U %} U ,
[urller @) lim sup luxllw2»(0)

limsup =gy < oo lmsup =G

A—0+
for all p > 2, and the function \ — I(uy) is negative and decreasing in
10, \*[. If, in addition, f,qg are continuous in 2 x [0, 00[ and

inf
lim it 22298
g—o+  &llogg|
then uy s positive in 2.

Before giving the proof of Theorem 1, we make some remarks on it.

First of all, we observe that it is a bifurcation result. In fact, once we
observe that (by (i) and (ii)) 0 is a solution of (Py) for each A, this means,
in particular, that A = 0 is a bifurcation point for problem (P ), in the sense
that, for each p > 2, (0,0) belongs to the closure in W2P(£2) x R of the set

{(u,\) € W?P(£2) x ]0,00[ : u is a strong solution of (Py), u # 0, u > 0}.
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Among the known results, the one which is closest to Theorem 1 is certainly
Theorem 2.1 of [1].

Indeed, the latter, relating to the specific problem
—Au=vu*+ Au? in 2,
u>0 in £,

ujpe =0,

with 0 < ¢ < 1 < s, ensures the existence of A\g > 0 such that for each A €
10, X[, the problem admits a classical minimal solution uy with I(uy) < 0.
Moreover, limy_,o+ supy, |ux| = 0 and the function A — wuy(x) is increasing
for each x € (2. Finally, for A = )¢ there is a weak solution, while for A > A
there is no classical solution. In Remark 2.5 of [1], the authors observe
that the result still holds if one replaces u? with any concave function that
behaves like u? near u = 0, and uv® with any superlinear function that
behaves like u® near u = 0 and near u = co. We wish to stress that this
remark concerns all the qualitative aspects of the result. In particular, in
the approach of [1], concavity plays an essential role also in the proof that
I\(uy) < 0. However, if one restricts oneself only to the solvability of the
problem for each A > 0 small enough, then the method of sub- and super-
solutions as exploited in Lemma 3.1 of [1] can be readily applied under
much more general assumptions which meet those of Theorem 1. Here is the
statement one can obtain in this way:

THEOREM A. Besides conditions (i) and (ii) of Theorem 1, assume that

. inf, Qg(ajvé)
/ 1 SEASIAY;
(iii) . i, ¢

Then, for some \* > 0 and for each \ € |0, \*[, problem (P)) admits a
positive weak solution uy € L>(£2), and limy_g+ ||ux|| g (o) = 0.

Thus, Theorem 1 ensures not only that the conclusion of Theorem A
holds, but also that the function A — Iy (u)) is negative and decreasing, even
in the presence of condition (iii) which, of course, is much less restrictive
than (iii’).

It is clear that the superiority of Theorem 1 over Theorem A is maximum
in the cases when (iii) holds, while (iii’) is violated. For instance, we have
the following examples of application of Theorem 1:

PROPOSITION 1. Let 0 < ¢ < 1 < s and let «, 3 be two bounded and
locally Hélder continuous functions on §2. Assume that

() 0 <inf 3, 0 < supp.
Q o}
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Then, for some X\* > 0 and for each X € |0, \*[, the problem
{ —Au = a(x)u® + A\B(x)u? in (2,
Ulpn = 0,

admits a positive classical solution ux € (1,59 W2P(£2). Moreover,

. [urllcr @) . luxllw2r02)
limsup =gy~ < oo Hmsup =G
for all p > 2, and the function
1 1
Ao s VIVaa @) dz = — | a@)ua (@) d
2 9]
- q% } () ux (2) T+ da

0
is negative and decreasing in |0, A*|.
Note a remarkable improvement with respect to the version of Proposi-

tion 1 one would get by applying Theorem A. In this case, in fact, condition
(*) should be replaced by infy, 8 > 0.

PROPOSITION 2. Let ¢ € C?([0,00[) be bounded together with ' and
©", and let a,p,s € R with a > 0 and s > 1. Then, for some \* > 0 and
for each X € 10, \*[, the problem

—Au = pu® 4+ \(¢'(Jlogu|?) — a)logu + ¢(|logu|?) — a/2u in £2,
Upn = 07

admits a positive classical solution uy € C?({2). Moreover, for each r > 0
and p > 2,
U :
lim sup 7” Az < 00
A—0+ A"

and the function

Ao % | IVar @) dz = L | fur @)+ da
(9} (9]
- % | [ua(@) 2 (@(log ux(z)[?) — alogux(x)) dz
2

is negative and decreasing in [0, A*|.

The proof of Proposition 2 is given in Section 3. In view of the above
discussion, Proposition 2 is particularly interesting when the set {{ > 0 :
¢’ (&) > a} is unbounded.

On the other hand, from the comparison with Theorem 2.1 of [1], an
open question arises: under the assumptions of Theorem 1, does problem
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(Py) admit a non-zero, non-negative, minimal solution for each A > 0 small
enough? We conjecture that the answer is negative.

Finally, we point out that our proof of Theorem 1 is genuinely variational.
Precisely, it comes from combining, in a careful way, a truncation and boot-
strap argument (inspired by [3]) with the general approach to finding local
minima proposed in [5].

2. Proof of Theorem 1. First of all, observe that, by (i) and (ii), there
are o, L > 0, with < 1, such that
[f (2, ) < LIEI* and |g(z, )] < L|

for every x € 2, £ € [0, a. Of course, if n > 3, it is not restrictive to assume
that s < (n+2)/(n — 2). Next, define fo,go : £2 x R — R as follows:

flz,a) i€ >q, g(z,a) if&>a,
fU(xag): f(x’é-) lfée [0,0é], gU(xag): g(ﬂﬁ,é) lffe [Ova]v
0 if £ <0, 0 if £ <0.
Of course, we have
(1) [ fo(z, &) < Lmin{[¢]*, [£]}
and
(2) |90(2, §)| < LI¢|*

for every x € 2, £ € R. For simplicity, denote by E the space W, 2(02)
equipped with the norm

1/2
Jull = ((§ IVu(@)Pdz) "
2
For each u € E, put
u(z)
Q 0
u(z)
()= | [Vu@)Pdz—=2§ (| folw,€)de)da.
Q Q 0

First of all, note that, since fy, go are bounded, the functionals @, ¥ turn out
to be well defined, continuous and Gateaux differentiable in . Moreover, by
the Rellich—Kondrashov theorem, @ is sequentially weakly continuous and
¥ is sequentially weakly lower semicontinuous. By (1) and by the Sobolev
embedding theorem, for some constant ¢ > 1 and for all u € E, we have

(u) > | [Vu(e)] de — 2L | Ju(@) [ dz > [|Jul (1 = c]lul]*7Y).
9] 9]
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From this, since s > 1, we get

(3)

for all r € ]0, (2¢)/(1=3).
We now prove that

inf U(u) > r?/2
rsuuusl(gc)l/“—s) (w) =7/

P(u)
4 liminf —= = —o0
) [[ul| =0+ ¥ (u)
To this end, we use condition (iii). So, fix a sequence {&;} in |0, 1[, converging
to 0, and constants 0 € |0, ] and A in such a way that
inf,cn Sgk g(z,t)dt B

lim =00

and

¢
. > 2
l}g]gég(ﬂf,t) dt > A¢

for all £ € [0, d]. Next, fix a set C' C B of positive measure and a function
v € E such that v(z) € [0,1] for all x € 2, v(x) =1 for all z € C and
v(z) =0 for all x € 2\ D. Finally, fix @ > 0 and M satisfying

M meas(C') + ASD\C |v(z)|? dx

O TP T, i@ d
Then there is v € N such that & < §, ¥(xv) > 0 (recall (3)) and
Ek \
;gg (S) g(x,t)dt > MEj

for all k£ > v. Taking into account (1) and that &, < 1, for each k > v we
have
B(w) _ o 5 gl 1) dt) v+ §, o (55" go(x, ) dt) da
W(Ekv) — Gllvl? + Z56" 5 lo(@)*+ do

M meas(C) + ASD\C lv(z)|? dz

ol + 25 §p v(z)|*+dz

s+1
Since @ could be arbitrarily large, it follows that
: P(Ekv)
lim — = 00

from which (4) clearly follows.
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Now, for each o > 0, we denote by X, the closed ball in E, centred at 0,
of radius ¢. Note that, by (4), one has infx, ® < 0. Put
— ianQ ]

= sup
7 0>0 Qq+1
By (2), it follows that v < co. So, we have

0* 1

(5) Tinfy, & > 5 o' 71
for all o > 0. Next, fix A satisfying
(6) 0< A<,
where
A= 1min {1 (2¢)1-0/0=s) ! }7
8 01 infy, &
the constant ¢ being that in (3). Also, put
(7) on = (8179,
So, in particular, we have
(8) ox < (2¢)/079),

Since E is reflexive, X,, is sequentially weakly compact. Thus, since $+ %!I/
is sequentially weakly lower semicontinuous, there is uy € X,, such that

B(uy) + % W) = inf (@(u) 4 % W(u)).

We claim that
9) VU(uy) < —4X inf &.
*DN

Arguing by contradiction, assume that ¥(uy) > —4Ainfx, @. Then, taking
into account that inf X, @ < 0, we would have

1 1
— 9 — — [ —a); < il
D(uy) 2)1(1;{ & = D(uy) + ) ( 4\ )1(125 @) < P(uy) + o W (uy)

1
< 1 0 o < P
< &(0)+ ) v (0) O<)1(IZ£ o 2)1(125 & < D(uy) 2)1(2{ o,

which is absurd.
Now, observe that, due to (4), there is a sequence {v;} in X,, \ {0} such
that limy_,oc @(v)/¥(vk) = —o0. Hence, for k large enough, we have
& (vg) 1
U (v) 2\
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and so (by (3) and (8))
1 1
b(vg) + o\ U(v,) < 0=o(0)+ B3\ ¥ (0).
This means that

) 1
(10) )1{12{ ((ﬁ + o W) < 0.

Hence, uy # 0. Next, from (5) and (7), we get

1
2 . 1— .
05 > - ;{r;f Do, = —8\ inf .

A XQ)\
Consequently,
(—SA)i(nf )2 < gy,

ex

From (3) and (8), we infer that for each u € X, satisfying
(=8X inf &)1/2 < |u
X,

one has
U(u) > —4\ inf &.

Xoy

Hence, in view of (9), since uy € X,,, one has

(11) |uall < (=8 inf @)1/2.
XQA

From this, in particular, it follows that uy is a local minimum in E of the
functional @ + %lf/, and hence
1
g — v’ =0.
(ua) + 55 #'(ur) =0
This means that
(12) | Vux(2)Vo(z) do
0
- S fo(z,ux(z))v(z)dz — A S go(@, ur(z))v(z) dz = 0
[0 12
for all v € E.

We claim that u) is non-negative in §2. Assume the contrary. Then, by
the continuity of uy (see below), the set A = {x € 2 : uy(z) < 0} is
non-empty and open. Of course, uxj4 € Wy2(A), and (by (12)), for each
v € C3°(A), one has

S Vuy(z)Vou(z)dr = 0.
A
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By density, this equality actually holds for each v € VVO1 ’Q(A), and so, in
particular, § , [Vu,(2)|? dz = 0, which is absurd.

Next, since fo, go are bounded, from standard regularity results (|2, The-
orems 8.8 and 8.12 and Lemmas 9.16 and 9.17]), it follows that, for each
p > 1, uy belongs to W2P(£2), one has

(13) —Auy(z) = fo(z,ux(x)) + Ago(x, ur(z))

for almost every x € {2, and there exists some constant ¢, independent of A
such that

1/p
Julhwes ey < ep( § Lol ua(e)) + Aol ur(@))? dz) "
2
Then, in view of (1), (2) and (6), taking into account that ¢ < 1, by the
Holder inequality, we have

(14) lurllwzr (o) < cp(luallLe2) + luallzs )

where

c; = ¢, L max{1, X(meas(_()))(I*Q)/p}'

We now claim that there is a constant ¢’ independent of X\ such that
(15) lurller @y < ¢ (lluall + lluall®)-

The basic fact is that W2!(§2) is continuously embedded in C!(2) for each
t > n. So, if n = 1, then (15) follows directly from (14) for p = 2. If
n = 2, the same happens by taking p = 3 and observing that W12(2) is
continuously embedded in L3(£2). If n > 2, since W2P(£2) (resp. W™/2(02))
is continuously embedded in L™/(»=2P)((2) for p < n/2 (resp. in L"(£2) for
each r > 1), we use (14) iteratively starting from p = 3/2. We thus get (15)
after a finite number of steps.

Now, putting together (5), (7), (11) and (15), and recalling that [juy| < 1
(by (6)), we get

(16) luxllon @) < 2¢" luall? < 2¢” (8y(8yA) @t/ (=a) y)a/2
< 26//(8,)/)11/(1—4))\Q/(1—Q).

Therefore, if A < A* with A* < X small enough, then [urllcr@) < o, and

hence fo(x,ur(x)) = f(z,ur(z)), go(z,ur(z)) = g(z,ux(z)) for all z € (2.
So, in view of (13), uy is a non-zero, non-negative strong solution of problem
(Py), and, by (14) and (16), one has

Ux 7 u ,
lim sup | Hcl(g) lim sup [uallw ?(82)

WS /(g SO0 MW TR,y <0
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for all p > 1. Now, let 0 < X < X’ < A*. Then, since gy < o) and
WU(uy) > 0, we have

L wun).

(p(uk” ) + 2\

lP(qu) < SP(U,)\/) W(”U,)\/) < @(u,\/) +

1 1
o t o

For each A € ]0, A*[, we have
1
I)\(’LL)\) = )\<¢(’LL)\) + ﬁ W(uﬂ) .

Then, recalling (10), we conclude that the function A — I(uy) is negative
and decreasing in 0, \*[.

Finally, assume the additional hypotheses to prove that u) is positive.
Of course, we can assume that o < 1/e and that

g(x,&) > —L¢[log €|

for all z € 2 and £ € )0, a]. Put

L(1+ A)eflogé i € €0, a),

h(§)=10 if¢£€=0,

L1+ X)allogal?* if € > a.

Recalling (1), for A € ]0, \*[, we have
fo(w,€) + Ago(,€) > —LE — ALE[log € > —L(1 + )¢ |log¢[?

for all x € 2 and £ € ]0, a]. Consequently,

(17) fo(z,8) + Ago(z, &) = —h(§)
for all z € {2 and £ > 0. Clearly,
1 1
EN"Y2 de = (L A*))—1/2 1 de —
(18) §<£ (€))71/?dg = (L(1+ X)) §]€“Og§, £ =00

Now, in view of (12), (17) and (18), the positivity of uy in {2 is ensured by
Theorem 3 of [4] (see also [6]). The proof is complete. m

3. Remarks. With obvious changes in the above proof, we also obtain
THEOREM 2. Assume that:

(i1) there is s > 1 such that
sup,cg | f(2,8)]

lim sup < o0;
£—0— |£’s
(iiy) there is g € ]0,1[ such that
limsup SUPgze ’g(xag)‘ < 00;

£—0— |£|q
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(iiiy) there are a non-empty open set D C §2 and a set B C D of positive

measure such that
_ inf,cp Sg g(z,t)dt ~ infgep Sg g(z,t)dt
lim sup 5 =00, liminf 5 > —00.
£—0— § £§—0~ 3
Then, for some \* > 0 and for each X € |0, \*[, problem (Py) admits a
non-zero, non-positive strong solution uy € ﬂp>2 W2P(£2). Moreover,

”UAHWM(Q)
M2 /(1=q)

HUAHm(ﬁ)

W < 00, lim sup

A—0Tt

lim sup
A—0T

for all p > 2, and the function A — Ix(uy) is negative and decreasing in
10, A*].

So, putting together Theorems 1 and 2, we get
THEOREM 3. Assume that:

(iz) there is s > 1 such that
sup,eq | f (2, 6|

lim sup < 00;
£—0 |§’S
(i) there is q € ]0, 1[ such that
limsup SUPzen ’g(l‘,é)‘ < 00;

£—0 14K

(iiiy) there are a non-empty open set D C §2 and a set B C D of positive
measure such that

inf,cp Sg g(z,t)dt inf,cp Sg g(z,t)dt

lim sup = lim sup =00
£—0— 52 £—0t 52 ’
. 3
inf x,t)dt
lim inf — P SO 9z, 1) > —00.
£—0 52

Then, for some X* > 0 and for each X € ]0, \*[, problem (Py) admits a
non-zero, non-negative strong solution ux € (1,5, W2P($2) and a non-zero,

non-positive strong solution vx € [, W2P(£2). Moreover,

max{|[urller @), [oaller @)}

fim sup N/(1=a) o0

, max{|[ullwz»(2), [vAllw2r(2) )

lim sup )\q25(1)—q) DI o
A—0+F

for all p > 2, and the functions X — I\(uy), A — Ix(vy) are negative and
decreasing in 10, A\*[.
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REMARK 1. Assume that the assumptions of Theorem 1 are satisfied. In
addition, suppose that there exists n > 0 such that the functions f,g are
locally Hélder continuous in §2 x [0,7]. Then each u) is a classical solution
of problem (Py). If f, g are Holder continuous in 2 x [0, 7], we even have
uy € C 2((_2)

To see this, we can assume sup, uy < 7. Since u) is Lipschitzian in {2
and {2 is bounded, the composite function = — f(z,ux(z)) + Ag(z, ux(z))
is then locally Holder continuous in {2 (it turns out to be Holder continuous
in {2 when so f,g are in £2 x [0,7]). Now, our claim follows directly from
Theorem 9.19 of [2].

REMARK 2. Clearly, Remark 1 applies to Proposition 1.

Proof of Proposition 2. Apply Theorem 1 taking f(&) = u&® for all £ > 0
and

{ [(¢'(llog&]?) — a)log & + p(log&]?) — a/2)¢ if € >0,
9(&) = .
0 if £ =0.

So, f, g are continuous, and (i), (ii) (with any ¢ € ]0, 1[) are clearly satisfied.
For £ > 0, we have

3
o) dt = 3 € (o(llogel?) — aloge).
0

Hence, since a > 0 and ¢ is bounded, (iii) also holds. Furthermore, since ¢’
is bounded, we have

and hence, a fortiori,

o 9(6)
lim inf
e—0+ Elogél?

Finally, since ¢’ is bounded, for each « € 0, 1[, we have
li l a—1y _ li / . a—1y _ _ .
Jm (g'(€) + o) = oo, lim (g'(§) — g™ = —oo

Hence, in a (right, bounded) neighbourhood of 0, the function & — g(§)+£*
is increasing and the function £ — g(&) — £ is decreasing. Of course, this
implies that the function g (as well as f, of course) is Holder continuous, with
exponent «, in that neighbourhood. Now, the conclusion follows directly
from Theorem 1 jointly with Remark 1. m
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