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CENTRAL LIMIT THEOREMS FORNON-INVERTIBLE MEASURE PRESERVING MAPSBYMICHAEL C. MACKEY (Montréal) and MARTA TYRAN-KAMI�SKA (Katowie)Abstrat. Using the Perron�Frobenius operator we establish a new funtional entrallimit theorem for non-invertible measure preserving maps that are not neessarily ergodi.We apply the result to asymptotially periodi transformations and give a spei� exampleusing the tent map.1. Introdution. This paper is motivated by the question �How an weprodue the harateristis of a Wiener proess (Brownian motion) from asemidynamial system?�. This question is intimately onneted with entrallimit theorems for non-invertible maps and various invariane priniples.Many results on entral limit theorems and invariane priniples for mapshave been proved (see e.g. the surveys by Denker [5℄ and Makey and Tyran-Kami«ska [17℄). These results extend bak over some deades, and inludethe work of Boyarsky and Sarowsky [3℄, Gouëzel [8℄, Jabªo«ski and Malzak[12℄, Rousseau-Egele [25℄, and Wong [32℄ for the speial ase of maps of theunit interval. Martingale approximations, developed by Gordin [7℄, were usedby Keller [13℄, Liverani [16℄, Melbourne and Niol [19℄, Melbourne and Török[20℄, and Tyran-Kami«ska [27℄ to give more general results.Throughout this paper, (Y,B, ν) denotes a probability measure spaeand T : Y → Y a non-invertible measure preserving transformation. Thus
ν is invariant under T , i.e. ν(T−1(A)) = ν(A) for all A ∈ B. The transferoperator PT : L1(Y,B, ν) → L1(Y,B, ν), by de�nition, satis�es\

PT f(y)g(y) ν(dy) =
\
f(y)g(T (y)) ν(dy)for all f ∈ L1(Y,B, ν) and g ∈ L∞(Y,B, ν).Let h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0. De�ne the proess {wn(t) : t ∈

[0, 1]} by2000 Mathematis Subjet Classi�ation: Primary 37A50, 60F17; Seondary 28D05,60F05.Key words and phrases: funtional entral limit theorem, measure preserving trans-formation, Perron�Frobenius operator, maximal inequality, asymptoti periodiity, tentmap. [167℄ © Instytut Matematyzny PAN, 2008
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(1.1) wn(t) =

1√
n

[nt]−1∑

j=0

h ◦ T j for t ∈ [0, 1], n ≥ 1(the sum from 0 to −1 is set equal to 0), where [x] denotes the integer partof x. For eah y, wn(·)(y) is an element of the Skorokhod spae D[0, 1] ofall funtions whih are right ontinuous and have left-hand limits, equippedwith the Skorokhod metri
̺S(ψ, ψ̃) = inf

s∈S
( sup
t∈[0,1]

|ψ(t) − ψ̃(s(t))| + sup
t∈[0,1]

|t− s(t)|), ψ, ψ̃ ∈ D[0, 1],where S is the family of stritly inreasing, ontinuous mappings s of [0, 1]onto itself suh that s(0) = 0 and s(1) = 1 [1, Setion 14℄.Let {w(t) : t ∈ [0, 1]} be a standard Brownian motion. Throughout thepaper the notation
wn →d √

η w,where η is a random variable independent of the Brownian proess w, denotesthe weak onvergene of the sequene wn in the Skorokhod spae D[0, 1].Our main result, whih is proved using tehniques similar to those ofPeligrad and Utev [22℄ and Peligrad et al. [23℄, is the following:Theorem 1. Let T be a non-invertible measure preserving transforma-tion on the probability spae (Y,B, ν) and let I be the σ-algebra of all T -invariant sets. Suppose h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0 is suh that(1.2) ∞∑

n=1

n−3/2
∥∥∥

n−1∑

k=0

Pk
Th

∥∥∥
2
<∞.Then(1.3) wn →d √

η w,where η = Eν(h̃
2 | I) and h̃ ∈ L2(Y,B, ν) is suh that PT h̃ = 0 and

lim
n→∞

∥∥∥∥
1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

= 0.Reall that T is ergodi (with respet to ν) if, for eah A ∈ B with
T−1(A) = A, we have ν(A) ∈ {0, 1}. Thus if T is ergodi then I is atrivial σ-algebra, so η in (1.3) is a onstant random variable. Consequently,Theorem 1 signi�antly generalizes [27, Theorem 4℄, where it was assumedthat T is ergodi and there is α < 1/2 suh that

∥∥∥
n−1∑

k=0

Pk
Th

∥∥∥
2

= O(nα)(we use the notation b(n) = O(a(n)) if lim supn→∞ b(n)/a(n) <∞).



CENTRAL LIMIT THEOREMS 169Usually, in proving entral limit theorems for spei� examples of trans-formations one assumes that the transformation is mixing. For non-invertibleergodi transformations for whih the transfer operator is quasi-ompat onsome subspae F ⊂ L2(ν) with norm | · | ≥ ‖·‖2, the entral limit theoremand its funtional version was given in Melbourne and Niol [19℄. Sine qua-siompatness implies exponential deay of the L2 norm, our result applies,thus extending the results of [19℄ to the non-ergodi ase. For examples oftransformations in whih the deay of the L2 norm is slower than exponentialand our results apply, see [27℄.In the ase of invertible transformations, non-ergodi versions of the en-tral limit theorem and its funtional generalizations were studied by Volný[28�31℄ using martingale approximations. In a reent review by Merlevèdeet al. [21℄, the weak invariane priniple was studied for stationary sequenes
(Xk)k∈Z whih, in partiular, an be desribed as Xk = X0 ◦ T k, where Tis a measure preserving invertible transformation on a probability spae and
X0 is measurable with respet to a σ-algebra F0 suh that F0 ⊂ T−1(F0).Choosing a σ-algebra F0 for a spei� example of invertible transformationis not an easy task and the requirement that X0 is F0-measurable may some-times be too restritive (see [4, 16℄). Sometimes, it is possible to redue aninvertible transformation to a non-invertible one (see [20, 27℄). Our result inthe non-invertible ase extends [22, Theorem 1.1℄, whih is also to be found in[21, Theorem 11℄, where a ondition introdued by Maxwell and Woodroofe[18℄ is assumed. In [27℄ the ondition was transformed to equation (1.2). Inthe proof of our result we use Theorem 4.2 in Billingsley [1℄ and approxima-tion tehniques whih were motivated by [22℄. The orresponding maximalinequality in our non-invertible setting is stated in Proposition 1, and itsproof, based on ideas of [23℄, is provided in Appendix A for ompleteness.As in [22℄, the random variable η in Theorem 1 an also be obtained as alimit in L1, whih we state in Appendix B.The outline of the paper is as follows. After the presentation of somebakground material in Setion 2, we turn to a proof of our main Theorem 1in Setion 3. Setion 4 introdues asymptotially periodi transformationsas a spei� example of a system to whih Theorem 1 applies. We analyzethe spei� example of an asymptotially periodi family of tent maps inSetion 4.4.2. Preliminaries. The de�nition of the Perron�Frobenius (transfer) op-erator for T depends on a given σ-�nite measure µ on the measure spae
(Y,B) with respet to whih T is non-singular, i.e. µ(T−1(A)) = 0 forall A ∈ B with µ(A) = 0. Given suh a measure the transfer operator
P : L1(Y,B, µ) → L1(Y,B, µ) is de�ned as follows. For any f ∈ L1(Y,B, µ),there is a unique element Pf in L1(Y,B, µ) suh that
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(2.1) \

A

Pf(y)µ(dy) =
\

T−1(A)

f(y)µ(dy) for all A ∈ B.

This in turn gives rise to di�erent operators for di�erent underlying measureson B. Thus if ν is invariant for T , then T is non-singular and the transferoperator PT : L1(Y,B, ν) → L1(Y,B, ν) is well de�ned. Here we write PT toemphasize that the underlying measure ν is invariant under T .The Koopman operator is de�ned by
UT f = f ◦ Tfor every measurable f : Y → R. In partiular, UT is also well de�nedfor f ∈ L1(Y,B, ν) and is an isometry of L1(Y,B, ν) into L1(Y,B, ν), i.e.

‖UT f‖1 = ‖f‖1 for all f ∈ L1(Y,B, ν). Sine the measure ν is �nite, wehave Lp(Y,B, ν) ⊂ L1(Y,B, ν) for p ≥ 1. The operator UT : Lp(Y,B, ν) →
Lp(Y,B, ν) is also an isometry on Lp(Y,B, ν).The following relations hold between the operators UT ,PT : L1(Y,B, ν)
→ L1(Y,B, ν):(2.2) PTUT f = f and UTPT f = Eν(f |T−1(B))for f ∈ L1(Y,B, ν), where Eν(· |T−1(B)) : L1(Y,B, ν) → L1(Y, T−1(B), ν) isthe operator of onditional expetation. Note that if the transformation Tis invertible then UTPT f = f for f ∈ L1(Y,B, ν).Theorem 2. Let T be a non-invertible measure preserving transforma-tion on the probability spae (Y,B, ν) and let I be the σ-algebra of all T -invariant sets. Suppose that h ∈ L2(Y,B, ν) is suh that PTh = 0. Then

wn →d √
η w,where η = Eν(h2 | I) is a random variable independent of the Brownian mo-tion {w(t) : t ∈ [0, 1]}.Proof. When T is ergodi, a diret proof based on the fat that the family

{
T−n+j(B),

1√
n
h ◦ Tn−j : 1 ≤ j ≤ n, n ≥ 1

}

is a martingale di�erene array is given in [17, Appendix A℄ and uses themartingale entral limit theorem (f. [2, Theorem 35.12℄) together with theBirkho� ergodi theorem. This an be extended to the ase of non-ergodi Tby using a version of the martingale entral limit theorem due to Eagleson[6, Corollary p. 561℄.Example 1. We illustrate Theorem 2 with an example. Let T : [0, 1] →
[0, 1] be de�ned by
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T (y) =





2y, y ∈ [0, 1/4),

2y − 1/2, y ∈ [1/4, 3/4),

2y − 1, y ∈ [3/4, 1].Observe that the Lebesgue measure on ([0, 1],B([0, 1])) is invariant for Tand that T is not ergodi sine T−1([0, 1/2]) = [0, 1/2] and T−1([1/2, 1]) =
[1/2, 1]. The transfer operator is given by
PT f(y) =

1

2
f

(
1

2
y

)
1[0,1/2)(y) +

1

2
f

(
1

2
y +

1

4

)
+

1

2
f

(
1

2
y +

1

2

)
1[1/2,1](y).Consider the funtion

h(y) =





1, y ∈ [0, 1/4),
−1, y ∈ [1/4, 1/2),

−2, y ∈ [1/2, 3/4),

2, y ∈ [3/4, 1].A straightforward alulation shows that PTh = 0 and Eν(h2 | I) = 1[0,1/2]+
4 · 1[1/2,1]. Thus Theorem 2 shows that

wn →d
√
Eν(h2 | I)w.In partiular, the one-dimensional distribution of the proess √

Eν(h2 | I)whas a density equal to
1

2

1√
2πt

exp

(
−x

2

2t

)
+

1

2

1√
8πt

exp

(
−x

2

8t

)
, x ∈ R.In general, for a given h the equation PTh = 0 may not be satis�ed.Then the idea is to write h as a sum of two funtions, one of whih satis�esthe assumptions of Theorem 2 while the other is irrelevant for the onver-gene to hold. At least a part of the onlusions of Theorem 1 is given in thefollowingTheorem 3 (Tyran-Kami«ska [27, Theorem 3℄). Let T be a non-invert-ible measure preserving transformation on the probability spae (Y,B, ν).Suppose h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0 is suh that (1.2) holds. Thenthere exists h̃ ∈ L2(Y,B, ν) suh that PT h̃ = 0 and

1√
n

n−1∑

j=0

(h− h̃) ◦ T j → 0

in L2(Y,B, ν) as n→ ∞.We will use the following two results for subadditive sequenes.



172 M. C. MACKEY AND M. TYRAN-KAMI�SKALemma 1 (Peligrad and Utev [22, Lemma 2.8℄). Let Vn be a subadditivesequene of non-negative numbers. Suppose that ∑∞
n=1 n

−3/2Vn <∞. Then
lim

m→∞

1√
m

∞∑

j=0

Vm2j

2j/2
= 0.

Lemma 2. Let Vn be a subadditive sequene of non-negative numbers.Then for every integer r ≥ 2 there exist two positive onstants C1, C2 (de-pending on r) suh that
C1

∞∑

j=0

Vrj

rj/2
≤

∞∑

n=1

Vn

n3/2
≤ C2

∞∑

j=0

Vrj

rj/2
.

Proof. When r = 2, the result follows from Lemma 2.7 of [22℄, the proofof whih an be easily extended to the ase of arbitrary r > 2.3. Maximal inequality and the proof of Theorem 1. We start by�rst stating our key maximal inequality whih is analogous to Proposition 2.3in [22℄.Proposition 1. Let n, q be integers suh that 2q−1 ≤ n < 2q. If T isa non-invertible measure preserving transformation on the probability spae
(Y,B, ν) and f ∈ L2(Y,B, ν), then
(3.1) ∥∥∥∥ max

1≤k≤n

∣∣∣
k−1∑

j=0

f ◦ T j
∣∣∣
∥∥∥∥

2

≤
√
n (3‖f − UTPT f‖2 + 4

√
2∆q(f)),

where(3.2) ∆q(f) =

q−1∑

j=0

2−j/2
∥∥∥

2j∑

k=1

Pk
T f

∥∥∥
2
.

In what follows we assume that T is a non-invertible measure preservingtransformation on the probability spae (Y,B, ν).Proposition 2. Let h ∈ L2(Y,B, ν). De�ne
(3.3) hm =

1√
m

m−1∑

j=0

h ◦ T j and wk,m(t) =
1√
k

[kt]−1∑

j=0

hm ◦ Tmj

for m, k ∈ N and t ∈ [0, 1]. Let us take an m suh that the sequene
‖max1≤l≤k |wk,m(l/k)| ‖2 is bounded. Then

lim
n→∞

‖ sup
0≤t≤1

|wn,1(t) − w[n/m],m(t)| ‖2 = 0.



CENTRAL LIMIT THEOREMS 173Proof. Let kn = [n/m]. We have
|wn,1(t)−wkn,m(t)| ≤ 1√

n

∣∣∣
[nt]−1∑

j=m[knt]

h◦T j
∣∣∣+

(
1√
kn

−
√
m√
n

)∣∣∣
[knt]−1∑

j=0

hm◦Tmj
∣∣∣,whih leads to the estimate

(3.4) ‖ sup
0≤t≤1

|wn,1(t) − wkn,m(t)| ‖2

≤ 3m√
n
‖ max
1≤l≤n

|h ◦ T l|‖2 +

(
1 −

√
knm

n

)
‖ max
1≤l≤kn

|wkn,m(l/kn)| ‖2.Sine h ∈ L2(Y,B, ν) we have
lim

n→∞

1√
n
‖ max
1≤l≤n

|h ◦ T l| ‖2 = 0.Furthermore, sine the sequene ‖max1≤l≤k |wk,m(l/k)| ‖2 is bounded by as-sumption, and limn→∞(1−
√
knm/n) = 0, the seond term on the right-handside of (3.4) also tends to zero.Proof of Theorem 1. From Theorem 3 it follows that there exists h̃ ∈

L2(Y,B, ν) suh that PT h̃ = 0 and(3.5) lim
n→∞

∥∥∥∥
1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

= 0.For eah m ∈ N, de�ne
h̃m =

1√
m

m−1∑

j=1

h̃ ◦ T j and w̃k,m(t) =
1√
k

[kt]−1∑

j=0

h̃m ◦ Tmj

for k ∈ N and t ∈ [0, 1]. We have PT m h̃m = 0 for all m. Thus Theorem 2implies(3.6) w̃k,m →d
√
Eν(h̃2

m | Im)was k → ∞, where Im is the σ-algebra of Tm-invariant sets. Proposition 1,applied to Tm and h̃m, gives
‖max
1≤l≤k

|w̃k,m(l/k)| ‖2 ≤ 3‖h̃m‖2.Therefore, by Proposition 2, we obtain
lim

n→∞
‖ sup
0≤t≤1

|w̃n,1(t) − w̃[n/m],m(t)| ‖2 = 0for all m ∈ N, whih implies, by Theorem 4.1 of [1℄, that the limit in (3.6)does not depend on m and is thus equal to √
Eν(h̃2 | I)w.



174 M. C. MACKEY AND M. TYRAN-KAMI�SKATo prove (1.3), using Theorem 4.2 of [1℄ we have to show that(3.7) lim
m→∞

lim sup
n→∞

‖ sup
0≤t≤1

|wn(t) − w̃[n/m],m(t)| ‖2 = 0.Let hm and wk,m be de�ned as in (3.3). We have
(3.8) ‖ sup

0≤t≤1
|wn(t) − w̃[n/m],m(t)| ‖2

≤ ‖ sup
0≤t≤1

|wn(t) − w[n/m],m(t)| ‖2

+ ‖ sup
0≤t≤1

|w[n/m],m(t) − w̃[n/m],m(t)| ‖2.Making use of Proposition 1 with Tm and hm we obtain
‖max
1≤l≤k

|wk,m(l/k)|‖2 ≤ 3‖hm−UT mPT mhm‖2+4
√

2
∞∑

j=0

2−j/2
∥∥∥

2j∑

i=1

P i
T mhm

∥∥∥
2
.

However,
PT mhm =

1√
m

m−1∑

j=0

PT mUT jh =
1√
m

m∑

j=1

Pj
Thby (2.2), and thus

(3.9) ∞∑

j=0

2−j/2
∥∥∥

2j∑

i=1

P i
T mhm

∥∥∥
2

=
1√
m

∞∑

j=0

2−j/2
∥∥∥

m2j∑

i=1

P i
Th

∥∥∥
2
,

and the series is onvergent by Lemma 1, whih implies that the sequene
‖max1≤l≤k|wk,m(l/k)| ‖2 is bounded for all m. From Proposition 2 it followsthat

lim
n→∞

‖ sup
0≤t≤1

|wn(t) − w[n/m],m(t)| ‖2 = 0.

We next turn to estimating the seond term in (3.8). We have
‖ sup
0≤t≤1

|wk,m(t) − w̃k,m(t)| ‖2 ≤ 1√
k

∥∥∥ max
1≤l≤k

∣∣∣
l−1∑

j=0

(hm − h̃m) ◦ Tmj
∣∣∣
∥∥∥

2

≤ 3‖hm − h̃m − UT mPT m(hm − h̃m)‖2

+ 4
√

2
∞∑

j=0

2−j/2
∥∥∥

2j∑

i=1

P i
T m(hm − h̃m)

∥∥∥
2by Proposition 1. Combining this with (3.9) and the fat that PT m h̃m = 0
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‖ sup
0≤t≤1

|wk,m(t)−w̃k,m(t)| ‖2 ≤ 3
1√
m

∥∥∥
m−1∑

j=0

(h−h̃) ◦ T j
∥∥∥

2
+

1√
m

∥∥∥
m∑

j=1

PT jh
∥∥∥

2

+
4
√

2√
m

∞∑

j=0

2−j/2
∥∥∥

m2j∑

i=1

P i
Th

∥∥∥
2
,

whih ompletes the proof of (3.7), beause all terms on the right-hand sidetend to zero as m→ ∞, by (3.5) and Lemma 1.4. Asymptotially periodi transformations. The dynamial prop-erties of what are now known as asymptotially periodi transformationsseem to have �rst been studied by Ionesu Tulea and Marinesu [10℄. Thesetransformations form a perfet example of the entral limit theorem resultswe have disussed in earlier setions, and here we onsider them in detail.Let (X,A, µ) be a σ-�nite measure spae. Write L1(µ) = L1(X,A, µ).The elements of the set
D(µ) =

{
f ∈ L1(µ) : f ≥ 0 and \f(x)µ(dx) = 1

}

are alled densities. Let T : X → X be a non-singular transformation and
P : L1(µ) → L1(µ) be the orresponding Perron�Frobenius operator. Then(Lasota and Makey [15℄) (T, µ) is alled asymptotially periodi if thereexists a sequene of densities g1, . . . , gr and a sequene of bounded linearfuntionals λ1, . . . , λr suh that(4.1) lim

n→∞

∥∥∥Pn
(
f −

r∑

j=1

λj(f)gj

)∥∥∥
L1(µ)

= 0

for all f ∈ D(µ). The densities gj have disjoint supports (gigj = 0 for i 6= j)and Pgj = gα(j), where α is a permutation of {1, . . . , r}.If (T, µ) is asymptotially periodi and r = 1 in (4.1) then (T, µ) is alledasymptotially stable or exat by Lasota and Makey [15℄.Observe that if (T, µ) is asymptotially periodi then
g∗ =

1

r

r∑

j=1

gjis an invariant density for P , i.e. Pg∗ = g∗. The ergodi struture of asymp-totially periodi transformations was studied by Inoue and Ishitani [9℄.Remark 1. Let µ(X) < ∞. Reall that P is a onstritive Perron�Frobenius operator if there exist δ > 0 and κ < 1 suh that for every density
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f we have

lim sup
n→∞

\
A

Pnf(x)µ(dx) < κfor all A ∈ A with µ(A) ≤ δ. It is known that if P is a onstritive op-erator then (T, µ) is asymptotially periodi ([15, Theorem 5.3.1℄, see alsoKomorník and Lasota [14℄), and (T, µ) is ergodi if and only if the permu-tation {α(1), . . . , α(r)} of the sequene {1, . . . , r} is ylial ([15, Theorem5.5.1℄). In this ase we all r the period of T .Let (T, µ) be asymptotially periodi and let g∗ be an invariant densityfor P . Let Y = supp(g∗) = {x ∈ X : g∗(x) > 0}, B = {A ∩ Y : A ∈ A}, and
ν(A) =

\
A

g∗(x)µ(dx), A ∈ A.The measure ν is a probability measure invariant under T . In what follows wewrite Lp(ν) = Lp(Y,B, ν) for p = 1, 2. The transfer operator PT : L1(ν) →
L1(ν) is given by(4.2) g∗PT (f) = P (fg∗) for f ∈ L1(ν).We now turn to the study of weak onvergene of the sequene of proesses

wn(t) =
1√
n

[nt]−1∑

j=0

h ◦ T j ,

where h ∈ L2(ν) with Th(y) ν(dy) = 0, by onsidering �rst the ergodi andthen the non-ergodi ase.4.1. (T, µ) ergodi and asymptotially periodi. Let the transformation
(T, µ) be ergodi and asymptotially periodi with period r. The uniqueinvariant density of P is given by

g∗ =
1

r

r∑

j=1

gjand (T r, gj) is exat for every j = 1, . . . , r. Let Yj = supp(gj) for j =
1, . . . , r. Note that the set Bj =

⋃∞
n=0 T

−nr(Yj) is (almost) T r-invariant and
ν(Bj \ Yj) = 0 for j = 1, . . . , r. Sine the Yj are pairwise disjoint, we have

Eν(f | Ir) =
r∑

k=1

1

ν(Yk)

\
Yk

f(y) ν(dy) 1Yk
for f ∈ L1(ν),where Ir is the σ-algebra of T r-invariant sets. But ν(Yk) = 1/r, and thus(4.3) Eν(f | Ir) = r

r∑

k=1

\
Yk

f(y) ν(dy) 1Yk
=

r∑

k=1

\
Yk

f(y)gk(y)µ(dy) 1Yk
.



CENTRAL LIMIT THEOREMS 177Theorem 4. Suppose that h ∈ L2(ν) with Th(y) ν(dy) = 0 is suh that(4.4) ∞∑

n=1

n−3/2
∥∥∥

n−1∑

k=0

Prk
T hr

∥∥∥
2
<∞, where hr =

1√
r

r−1∑

k=0

h ◦ T k.Then
wn →d σw,where w is a standard Brownian motion and σ ≥ 0 is a onstant. Moreover ,if ∑∞

j=1

T
|hr(y)hr(T

rj(y))| ν(dy) <∞ then σ is given by(4.5) σ2 = r
( \

Y1

h2
r(y) ν(dy) + 2

∞∑

j=1

\
Y1

hr(y)hr(T
rj(y)) ν(dy)

)
.

Proof. We have hr ∈ L2(ν) and TY hr(y) ν(dy) = 0. Let
wk,r(t) =

1√
k

[kt]−1∑

j=0

hr ◦ T rj for k ∈ N, t ∈ [0, 1].We an apply Theorem 1 to dedue that
wk,r →d

√
Eν(h̃2

r | Ir)w as k → ∞,where Ir is the σ-algebra of all T r-invariant sets and(4.6) Eν(h̃2
r | Ir) = lim

n→∞

1

n
Eν

(( n−1∑

j=0

hr ◦ T rj
)2 ∣∣∣ Ir

)
.On the other hand, we also have

∞∑

j=0

r−j/2
∥∥∥

rj∑

k=1

Prkhr

∥∥∥
2

=

∞∑

j=0

r−j/2 1√
r

∥∥∥
rj+1∑

k=1

Pkh
∥∥∥

2
=

∞∑

j=1

r−j/2
∥∥∥

rj∑

k=1

Pkh
∥∥∥

2
.Thus the series

∞∑

n=1

n−3/2
∥∥∥

n−1∑

k=0

Pkh
∥∥∥

2is onvergent by Lemma 2. From Theorem 1 we onlude that there exists
h̃ ∈ L2(ν) suh that

wn →d ‖h̃‖2wsine T is ergodi. But
‖h̃‖2 =

√
Eν(h̃

2
r | Ir),by Proposition 2. Hene Eν(h̃2

r | Ir) is a onstant and from (4.3) it followsthat for eah k = 1, . . . , r the integral TYk
h̃2

r(y) ν(dy) does not depend on k.
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σ2 = ‖h̃‖2

2 = r
\

Y1

h̃2
r(y) ν(dy).Sine ν is T r-invariant, we have

1

n

\
Yk

(n−1∑

j=0

hr(T
rj(y))

)2
ν(dy) =

\
Yk

h2
r(y) ν(dy)

+ 2
1

n

n−1∑

l=1

l∑

j=1

\
Yk

hr(y)hr(T
rj(y)) ν(dy).

By assumption the sequene (
∑n

j=1

T
Yk
hr(y)hr(T

rj(y)) ν(dy))n≥1 is onver-gent to ∑∞
j=1

T
Yk
hr(y)hr(T

rj(y)) ν(dy), whih ompletes the proof whenombined with (4.6) and (4.3).4.2. (T, µ) asymptotially periodi but not neessarily ergodi. Now let usonsider (T, µ) asymptotially periodi but not ergodi, so that the permu-tation α is not ylial and we an represent it as a produt of permutationyles. Thus we an rephrase the de�nition of asymptoti periodiity as fol-lows.Let there exist a sequene of densities(4.7) g1,1, . . . , g1,r1
, . . . , gl,1, . . . , gl,rland a sequene of bounded linear funtionals λ1,1, . . . , λ1,r1

, . . . , λl,1, . . . , λl,rlsuh that(4.8) lim
n→∞

∥∥∥Pn
(
f −

l∑

i=1

ri∑

j=1

λi,j(f)gi,j

)∥∥∥
L1(µ)

= 0 for all f ∈ L1(µ),

where the densities gi,j have mutually disjoint supports and, for eah i,
Pgi,j = gi,j+1 for 1 ≤ j ≤ ri − 1, and Pgi,ri

= gi,1. Then
g∗i =

1

ri

ri∑

j=1

gi,j

is an invariant density for P and (T, g∗i ) is ergodi for every i = 1, . . . , l. Let
g∗ be a onvex ombination of g∗i , i.e.

g∗ =

l∑

i=1

αig
∗
i

where αi ≥ 0 and ∑l
i=1 αi = 1. For simpliity, assume that αi > 0.



CENTRAL LIMIT THEOREMS 179Let Yi = supp(g∗i ) and Yi,j = supp(gi,j), j = 1, . . . , ri, i = 1, . . . , l. If I isthe σ-algebra of all T -invariant sets, then
Eν(f | I) =

l∑

i=1

1

ν(Yi)

\
Yi

f(y) ν(dy) 1Yi
=

l∑

i=1

\
Yi

f(y)g∗i (y)µ(dy) 1Yi
.

Now, if Ir is the σ-algebra of all T r-invariant sets with r =
∏l

i=1 ri, then
Eν(f | Ir) =

l∑

i=1

ri
ν(Yi)

ri∑

j=1

\
Yi,j

f(y) ν(dy) 1Yi,j

for f ∈ L1(ν), whih leads to
Eν(f | Ir) =

l∑

i=1

ri∑

j=1

\
Yi,j

f(y)gi,j(y)µ(dy) 1Yi,j
.

Using similar arguments to those in the proof of Theorem 4 we obtainTheorem 5. Suppose that h ∈ L2(ν) with Th(y) ν(dy) = 0 is suh thatondition (4.4) holds. Then
wn →d ηw,where w is a standard Brownian motion and η ≥ 0 is a random variableindependent of w. Moreover , if ∑∞

j=1

T
|hr(y)hr(T

rj(y))| ν(dy) < ∞ then ηis given by
η =

l∑

i=1

ri
ν(Yi)

( \
Yi,1

h2
r(y) ν(dy) + 2

∞∑

j=1

\
Yi,1

hr(y)hr(T
rj(y)) ν(dy)

)
1Yi
.

Remark 2. Observe that ondition (4.4) holds if
∞∑

n=1

‖Prn
T hr‖2√
n

<∞.The operator PT is a ontration on L∞(ν). Therefore
‖Pn

T f‖2 ≤ ‖f‖1/2
∞ ‖Pn

T f‖
1/2
1 for f ∈ L∞(ν), n ≥ 1,whih allows us to easily hek ondition (4.4) for spei� examples of trans-formations T . It should also be noted that, by (4.2), we have

‖Pn
T f‖1 = ‖Pn(fg∗)‖L1(µ) for f ∈ L1(ν), n ≥ 1.4.3. Pieewise monotoni transformations. Let X be a totally ordered,order omplete set (usually X is a ompat interval in R). Let B be the

σ-algebra of Borel subsets of X and let µ be a probability measure on X.



180 M. C. MACKEY AND M. TYRAN-KAMI�SKAReall that a funtion f : X → R is said to be of bounded variation if
var(f) = sup

n∑

i=1

|f(xi−1) − f(xi)| <∞,where the supremum is taken over all �nite ordered sequenes (xj) with
xj ∈ X. The bounded variation norm is given by

‖f‖BV = ‖f‖L1(µ) + var(f)and it makes BV = {f : X → R : var(f) <∞} into a Banah spae.Let T : V → X be a ontinuous map, V ⊂ X be open and dense with
µ(V ) = 1. We all (T, µ) a pieewise uniformly expanding map if:(1) There exists a ountable family Z of losed intervals with disjointinteriors suh that V ⊂ ⋃

Z∈Z Z and for any Z ∈ Z the set Z∩(X\V )onsists exatly of the endpoints of Z.(2) For any Z ∈ Z, T|Z∩V admits an extension to a homeomorphismfrom Z to some interval.(3) There exists a funtion g : X → [0,∞), with bounded variation,
g|X\V = 0 suh that the Perron�Frobenius operator P : L1(µ) →
L1(µ) is of the form

Pf(x) =
∑

z∈T−1(x)

g(z)f(z).

(4) T is expanding: supx∈V g(x) < 1.The following result is due to Ryhlik [26℄:Theorem 6. If (T, µ) is a pieewise uniformly expanding map then itsatis�es (4.8) with gi,j ∈ BV. Moreover , there exist onstants C > 0 and
θ ∈ (0, 1) suh that , for every funtion f of bounded variation and all n ≥ 1,

‖P rnf −Q(f)‖L1(µ) ≤ Cθn‖f‖BV,where r =
∏l

i=1 ri and
Q(f) =

l∑

i=1

ri∑

j=1

\
Yi,j

f(x)µ(dx) gi,j.This result and Remark 2 implyCorollary 1. Let (T, µ) be a pieewise uniformly expanding map and
ν an invariant measure whih is absolutely ontinuous with respet to µ. If
h is a funtion of bounded variation with Eν(h | I) = 0 then (4.4) holds.Remark 3. AFU-maps (uniformly expanding maps satisfying Adler'sondition with a finite image ondition, whih are interval maps with a



CENTRAL LIMIT THEOREMS 181�nite number of indi�erent �xed points), studied by Zweimüller [35℄, areasymptotially periodi when they have an absolutely ontinuous invariantprobability measure. However, the deay of the L1 norm may not be ex-ponential. For Hölder ontinuous funtions h one might use the results ofYoung [34℄ to obtain bounds on this norm and then apply our results.4.4. Calulation of variane for the family of tent maps using Theorem 4.Let T be the generalized tent map on [−1, 1] de�ned by(4.9) Ta(x) = a− 1 − a|x| for x ∈ [−1, 1],where a ∈ (1, 2]. The Perron�Frobenius operator P : L1(µ) → L1(µ) is givenby(4.10) Pf(x) =
1

a
(f(ψ−

a (x)) + f(ψ+
a (x)))1[−1,a−1](x),where ψ−

a and ψ+
a are the inverse branhes of Ta:(4.11) ψ−
a (x) =

x+ 1 − a

a
, ψ+

a (x) = −x+ 1 − a

a
,and µ is the normalized Lebesgue measure on [−1, 1].Ito et al. [11℄ have shown that the tent map (4.9) is ergodi, thus havinga unique invariant density ga. Provatas and Makey [24℄ have proved theasymptoti periodiity of (4.9) with period r = 2m for

21/2m+1

< a ≤ 21/2m for m = 0, 1, . . . .Thus, for example, (T, µ) has period 1 for 21/2 < a ≤ 2, period 2 for 21/4 <
a ≤ 21/2, period 4 for 21/8 < a ≤ 21/4, et.Let Y = supp(ga) and νa(dy) = ga(y)µ(dy). For all 1 < a ≤ 2 we have
Ta(A) = A with A = [T 2

a (0), Ta(0)] and ga(x) = 0 for x ∈ [−1, 1] \ A. If√
2 < a ≤ 2 then ga is stritly positive in A, thus Y = A in this ase. For

a ≤
√

2 we have Y ⊂ A. The transfer operator Pa : L1(νa) → L1(νa) is givenby
Paf =

P (fga)

ga
for f ∈ L1(νa),where P is the Perron�Frobenius operator (4.10).If h is a funtion of bounded variation on [−1, 1] with T1−1 h(y) νa(dy) = 0and

wn(t) =
1√
n

[nt]−1∑

j=0

h ◦ T j
a ,then there exists a onstant σ(h) ≥ 0 suh that

wn →d σ(h)w,



182 M. C. MACKEY AND M. TYRAN-KAMI�SKAwhere w is a standard Brownian motion. In partiular, we are going to study
σ(h) for the spei� example of h = ha for a ∈ (1, 2], where

ha(y) = y − ma, y ∈ [−1, 1], and ma =
\

[−1,1]

yga(y) dy.

Proposition 3. Let m ≥ 1 and 21/2m+1

< a ≤ 21/2m. Then(4.12) σ(ha) =
σ(ha2m )a(a− 1)√
2m a2m(a2m − 1)

m−1∏

k=0

(a2k − 1)2,where
σ(ha2m )2 = 2

\
ha2m (y)fa2m (y) νa2m (dy) −

\
h2

a2m (y) νa2m (dy),(4.13)
fa2m =

∞∑

n=0

Pn
a2mha2m .In general, an expliit representation for (4.13) is not known. Hene,before turning to a proof of Proposition 3, we �rst give the simplest examplein whih σ(ha2m )2 an be alulated exatly.Example 2. For a = 2 the invariant density for the transformation Tais g2 = 1

2 · 1[−1,1] and the transfer operator P2 : L1(ν2) → L1(ν2) has thesame form as P in (4.10):
P2f =

1

2
(f ◦ ψ−

2 + f ◦ ψ+
2 ).Sine T1−1 y dy = 0, we have h2(y) = y. We also have P2h2 = 0. Thus

σ(h2)
2 =

1

2

1\
−1

y2 dy = 1/3

and Proposition 3 gives σ(ha) for a = 21/2m , m ≥ 1.We now summarize some properties of the tent map [33℄, whih willallow us to prove Proposition 3. Let I0 = [x∗(a), x∗(a)(1 + 2/a)] and I1 =
[−x∗(a), x∗(a)], where x∗(a) is the �xed point of Ta other than −1, i.e.

x∗(a) =
a− 1

a+ 1
.De�ne transformations φia : Ii → [−1, 1] by

φ1a(x) = − 1

x∗(a)
x and φ0a(x) =

a

x∗(a)
x− a− 1.We have(4.14) φ−1

1a (x) = −x∗(a)x and φ−1
0a (x) =

x∗(a)

a
(x+ a+ 1).
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√

2 the map T 2
a : Ii → Ii is onjugate to Ta2 : [−1, 1] →

[−1, 1]:(4.15) Ta2 = φia ◦ T 2
a ◦ φ−1

ia ,and the invariant density of Ta is given by(4.16) ga(y) =
1

2x∗(a)
(aga2(φ0a(y))1I0(y) + ga2(φ1a(y))1I1(y)).Lemma 3. If a ∈ (1,

√
2] then(4.17) ma =
a− 1

2a
− (a− 1)x∗(a)

2a
ma2and(4.18) (ha + ha ◦ Ta) ◦ φ−1

0a =
(1 − a)x∗(a)

a
ha2 .Proof. Equation (4.17) follows from (4.16) and (4.14), while (4.18) is adiret onsequene of the de�nition of φ−1

0a , the fat that I0 ⊂ [0, 1], and(4.17).Let m ≥ 1. For 21/2m+1

< a ≤ 21/2m there exist 2m disjoint intervals inwhih ga is stritly positive and they are de�ned by
Y m

j = Φ−1
jm([T 2

a2m (0), Ta2m (0)]),where
Φjm = φ

ima2m−1 ◦ φ
im−1a2m−2 ◦ · · · ◦ φi2a2 ◦ φi1aand j = 1 + i1 + 2i2 + · · · + 2m−1im, ik = 0, 1, k = 1, . . . ,m. We have

Ta(Y
m
j ) = Y m

j+1 for 1 ≤ j ≤ 2m − 1 and Ta(Y
m
2m) = Y m

1 . In partiular,(4.19) Y m+1
1 = φ−1

0a (Y m
1 ) for m ≥ 0,where Y 0

1 = [T 2
a2(0), Ta2(0)].Lemma 4. De�ne(4.20) hr,a =

1√
r

r−1∑

k=0

ha ◦ T k
a for r ≥ 1, a ∈ (1, 2].

Let m ≥ 0 and r = 2m. If 21/4r < a ≤ 21/2r then(4.21) \
Y m+1

1

h2r,a(y)h2r,a(T
2rn
a (y)) νa(dy)

=
(1 − a)2x∗(a)2

22a2

\
Y m
1

hr,a2(y)hr,a2(T rn
a2 (y)) νa2(dy)

for all n ≥ 0.



184 M. C. MACKEY AND M. TYRAN-KAMI�SKAProof. First observe that(4.22) h2r,a =
1√
r

r−1∑

k=0

h2,a ◦ T 2k
a .

Let n ≥ 0. Sine φ−1
0a (φ0a(y)) = y for y ∈ [−1, 1], a hange of variables using(4.19) and (4.16) gives(4.23) \

Y m+1

1

h2r,a(y)h2r,a(T
2rn
a (y)) νa(dy)

=
1

2

\
Y m
1

h2r,a(φ
−1
0a (y))h2r,a(T

2rn
a (φ−1

0a (y))) νa2(dy).

We have T 2k
a ◦φ−1

0a = φ−1
0a ◦T k

a2 for all k ≥ 0 by (4.15). Thus T 2rn
a ◦φ−1

0a =

φ−1
0a ◦ T rn

a2 and from (4.22) it follows that
h2r,a ◦ φ−1

0a =
1√
r

r−1∑

k=0

h2,a ◦ φ−1
0a ◦ T k

a2 .By Lemma 3 we obtain
h2,a ◦ φ−1

0a =
(1 − a)x∗(a)√

2a
ha2 .Hene

h2r,a ◦ φ−1
0a =

(1 − a)x∗(a)√
2a

hr,a2 ,whih, when substituted into equation (4.23), ompletes the proof.Proof of Proposition 3. First, we show that if m ≥ 1 and 21/2m+1

< a ≤
21/2m then(4.24) σ(ha) =

σ(ha2m )√
2m a2m−1

m−1∏

k=0

x∗(a2k

)(a2k − 1).

Let m ≥ 1 and 21/2m+1

< a ≤ 21/2m . Sine the transformation Ta is asymp-totially periodi with period 2m, Theorem 4 gives
σ(ha)

2 = 2m
( \

Y m
1

h2
2m,a(y) νa(dy)+2

∞∑

j=1

\
Y m
1

h2m,a(y)h2m,a(T
2mj
a (y)) νa(dy)

)
.

We have a2 ∈ (21/2m

, 21/2m−1

] and the transformation Ta2 is asymptotiallyperiodi with period r = 2m−1. From (4.21) with r = 2m−1 and Theorem 4it follows that
σ(ha)

2 =
(a− 1)2x∗(a)2

2a2
σ(ha2)2.



CENTRAL LIMIT THEOREMS 185Thus equation (4.24) follows immediately by an indution argument on m.Finally, for eah k = 0, . . . ,m− 1 we have
x∗(a2k

)(a2k − 1) =
a2k − 1

a2k
+ 1

(a2k − 1) =
(a2k − 1)3

a2k+1 − 1and equation (4.12) holds. Sine a2m

>
√

2 the funtion fa2m is well de�nedand \
ha2m (y)fa2m (y) νa2m (dy) =

∞∑

n=0

\
ha2m (y)ha2m (Tn

a2m (y)) νa2m (dy),whih ompletes the proof.Appendix A. Proof of the maximal inequalityProof of Proposition 1. We will prove (3.1) indutively. If n = 1 and
q = 1 then we have

‖f‖2 ≤ ‖f − UTPT f‖2 + ‖UTPT f‖2 = ‖f − UTPT f‖2 +∆1(f)by the invariane of ν under T . Now assume that (3.1) holds for all n < 2q−1.Fix n, 2q−1 ≤ n < 2q. By the triangle inequality
max

1≤k≤n

∣∣∣
k−1∑

j=0

f ◦ T j
∣∣∣ ≤ max

1≤k≤n

∣∣∣
k−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣(A.1)

+ max
1≤k≤n

∣∣∣
k−1∑

j=0

UTPT f ◦ T j
∣∣∣.We �rst show that(A.2) ∥∥∥ max

1≤k≤n

∣∣∣
k−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣
∥∥∥

2
≤ 3

√
n ‖f − UTPT f‖2.Observe that

max
1≤k≤n

∣∣∣
k−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣ ≤

∣∣∣
n−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣

+ max
1≤k≤n

∣∣∣
k∑

j=1

(f − UTPT f) ◦ Tn−j
∣∣∣.

Sine PT (f − UTPT f) = 0, we see that
∥∥∥

n−1∑

j=0

(f − UTPT f) ◦ T j
∥∥∥

2
=

√
n ‖f − UTPT f‖2.
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For every n the family {

∑k
j=1(f−UTPT f)◦Tn−j : 1 ≤ k ≤ n} is a martingalewith respet to {T−n+k(B) : 1 ≤ k ≤ n}. Thus by the Doob maximalinequality

∥∥∥ max
1≤k≤n

∣∣∣
k∑

j=1

(f − UTPT f) ◦ Tn−j
∣∣∣
∥∥∥

2
≤ 2

∥∥∥
n∑

j=1

(f − UTPT f) ◦ Tn−j
∥∥∥

2

= 2
√
n ‖f − UTPT f‖2,whih ompletes the proof of (A.2).Now onsider the seond term on the right-hand side of (A.1). Writing

n = 2m or n = 2m+ 1 yields(A.3) max
1≤k≤n

∣∣∣
k−1∑

j=0

UTPT f ◦T j
∣∣∣ ≤ max

1≤l≤m

∣∣∣
l−1∑

j=0

f1 ◦ T 2j
∣∣∣+ max

0≤l≤m

∣∣∣UTPT f ◦T 2l
∣∣∣,where f1 = UT 2PT f + UTPT f . To estimate the norm of the seond term onthe right-hand side of (A.3), observe that

max
0≤l≤m

|UTPT f ◦ T 2l|2 ≤
m∑

l=0

|UTPT f ◦ T 2l|2,whih leads to(A.4) ‖ max
0≤l≤m

|UTPT f ◦ T 2l| ‖2 ≤
√
m+ 1 ‖PT f‖2,sine ν is invariant under T . Further, sine m < 2q−1, the measure ν is in-variant under T 2, and f1 ∈ L2(Y,B, ν), we an use the indution hypothesis.We thus obtain

∥∥∥ max
1≤l≤m

∣∣∣
l−1∑

j=0

f1 ◦ T 2j
∣∣∣
∥∥∥

2
≤

√
m (3‖f1 − UT 2PT 2f1‖2 + 4

√
2∆q−1(f1)).We have f1 − UT 2PT 2f1 = UTPT f − UT 2PT 2f , by (2.2), whih implies

‖f1 − UT 2PT 2f1‖2 ≤ ‖PT f‖2 + ‖PT 2f‖2 ≤ 2‖PT f‖2,sine PT is a ontration. We also have
∆q−1(f1) =

q−2∑

j=0

2−j/2
∥∥∥

2j∑

k=1

Pk
T 2f1

∥∥∥
2

=

q−2∑

j=0

2−j/2
∥∥∥

2j∑

k=1

P2k
T f1

∥∥∥
2

=

q−2∑

j=0

2−j/2
∥∥∥

2j∑

k=1

P2k
T (UT 2PT f + UTPT f)

∥∥∥
2

=

q−2∑

j=0

2−j/2
∥∥∥

2j+1∑

k=1

Pk
T f

∥∥∥
2

=
√

2 (∆q(f) − ‖PT f‖2).
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∥∥∥ max

1≤l≤m

∣∣∣
l−1∑

j=0

f1 ◦ T 2j
∣∣∣
∥∥∥

2
≤

√
m (8∆q(f) − 2‖PT f‖2),whih ombined with (A.1) through (A.4) and the fat that √

m+ 1 ≤√
2m ≤ √

n leads to
∥∥∥ max

1≤k≤n

∣∣∣
k∑

j=1

f ◦ Tn−j
∣∣∣
∥∥∥

2
≤ 3

√
n ‖f − UTPT f‖2 +

√
m+ 1 ‖PT f‖2

+
√

2m (4
√

2∆q(f) −
√

2‖PT f‖2)

≤
√
n (3‖f − UTPT f‖2 + 4

√
2∆q(f)).

Appendix B. The limiting random variable η. Finally, we give aseries expansion of Eν(h̃
2 | I) in Theorem 1 in terms of h and iterates of T .Proposition 4. Suppose h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0 is suhthat(B.1) ∞∑

j=0

2−j/2
∥∥∥

2j∑

k=1

Pk
Th

∥∥∥
2
<∞.

Then the following limit exists in L1:(B.2) lim
n→∞

Eν(S
2
n | I)

n
= Eν(h2 | I) +

∞∑

j=0

Eν(S2jS2j ◦ T 2j | I)

2j
,

where I is the σ-algebra of all T -invariant sets and Sn =
∑n−1

j=0 h◦T j , n ∈ N.Moreover , if h̃ ∈ L2(Y,B, ν) is suh that PT h̃ = 0 and
∥∥∥∥

1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

→ 0 as n→ ∞then(B.3) Eν(h̃2 | I) = lim
n→∞

Eν(S2
n | I)

n
.Proof. We �rst prove that the series on the right-hand side of (B.2) isonvergent in L1(Y,B, ν). Sine I ⊂ T−2j

(B) for all j, we see that
Eν(S2jS2j ◦ T 2j | I) = Eν(Eν(S2jS2j ◦ T 2j |T−2j

(B)) | I).As S2j ◦ T 2j is T−2j

(B)-measurable and integrable we have
Eν(S2jS2j ◦ T 2j |T−2j

(B)) = S2j ◦ T 2j

Eν(S2j |T−2j

(B)).
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However, Eν(S2j |T−2j

(B)) = U2j

T P2j

T S2j from (2.2). Consequently,
(B.4) Eν(S2jS2j ◦ T 2j | I) = Eν

(
S2j

2j∑

k=1

Pk
Th

∣∣∣ I
)
.

Sine the onditional expetation operator is a ontration in L1, we have
‖Eν(S2jS2j ◦ T 2j | I)‖1 ≤

∥∥∥S2j

2j∑

k=1

Pk
Th

∥∥∥
1
,whih, by the Cauhy�Shwarz inequality, leads to

‖Eν(S2jS2j ◦ T 2j | I)‖1 ≤ ‖S2j‖2

∥∥∥
2j∑

k=1

Pk
Th

∥∥∥
2
.

Sine ‖S2j‖2 ≤ ‖max1≤l≤2j |Sl| ‖2, the sequene ‖S2j‖2/2
j/2 is bounded,by (B.1), Lemma 2, and Proposition 1. Hene

∞∑

j=0

‖S2j‖2‖
∑2j

k=1 Pk
Th‖2

2j
≤ C

∞∑

j=0

‖
∑2j

k=1 Pk
Th‖2

2j/2
<∞,

whih proves the onvergene in L1 of the series in (B.2).We now prove the equality in (B.2). Sine
S2

2m = (S2m−1 + S2m−1 ◦ T 2m−1

)2

= S2
2m−1 + S2

2m−1 ◦ T 2m−1

+ 2S2m−1S2m−1 ◦ T 2m−1

,we obtain
Eν(S

2
2m | I) = 2Eν(S2

2m−1 | I) + 2Eν(S2m−1S2m−1 ◦ T 2m−1 | I),whih leads to
Eν(S

2
2m | I)

2m
= Eν(h2 | I) +

m−1∑

j=0

Eν(S2jS2j ◦ T 2j | I)

2j
.

Thus the limit on the left-hand side of (B.2) exists for the subsequene
n = 2m and the equality holds. An analysis similar to that in the proof ofProposition 2.1 of [22℄ shows that the whole sequene is onvergent, whihompletes the proof of (B.2).We now turn to the proof of (B.3). Let h̃ be suh that PT h̃ = 0. De�ne
S̃n =

∑n−1
j=0 h̃ ◦ T j . Substituting h̃ into (B.1) and (B.4) gives

Eν(h̃2 | I) = lim
n→∞

Eν(S̃2
n | I)

n
.
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∥∥∥∥
Eν(S̃2

n | I)

n
− Eν(S2

n | I)

n

∥∥∥∥
1

≤
∥∥∥∥
S̃2

n

n
− S2

n

n

∥∥∥∥
1

≤
∥∥∥∥
S̃n√
n
− Sn√

n

∥∥∥∥
2

∥∥∥∥
S̃n√
n

+
Sn√
n

∥∥∥∥
2by the Hölder inequality, whih implies (B.3) when ombined with the equal-ity

∥∥∥
n−1∑

j=0

h̃ ◦ T j
∥∥∥

2
=

√
n ‖h̃‖2,and the assumption

∥∥∥∥
1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

→ 0 as n→ ∞.
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