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POISSON SUSPENSIONS OFCOMPACTLY REGENERATIVE TRANSFORMATIONSBYROLAND ZWEIMÜLLER (Wien)Abstra
t. For in�nite measure preserving transformations with a 
ompa
t regenera-tion property we establish a 
entral limit theorem for visits to good sets of �nite measureby points from Poissonian ensembles. This extends 
lassi
al results about (nonintera
ting)in�nite parti
le systems driven by Markov 
hains to the realm of systems driven by weaklydependent pro
esses generated by 
ertain measure preserving transformations.1. Introdu
tion. On a �rst en
ounter with in�nite ergodi
 theory oneis immediately led to ask what an in�nite invariant measure 
an possibly tellus about the dynami
s of a transformation. Consider a 
onservative ergodi
nonsingular map T on some σ-�nite measure spa
e (X,A, m).In the standard situation where T has an invariant probability measure
µ ≪ m, the pointwise ergodi
 theorem shows that for any A ∈ A,
(1) 1

n
Sn(A) :=

1

n

n−1∑

k=0

1A ◦ T k → µ(A) µ-a.e. on X as n → ∞,
meaning that the invariant measure µ(A) of the set A asymptoti
ally repre-sents the frequen
y of visits of a µ-typi
al single orbit to A. Under additionalassumptions on the (mixing) behaviour of the map T and on the set A (sat-is�ed by various nontrivial and interesting examples), it is in fa
t possibleto establish a 
entral limit theorem (CLT) asserting that
(2) µ

[
Sn(A) − nµ(A)

σ(A)
√

n
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,whi
h provides us with detailed information about the 
onvergen
e in (1) by
larifying the asymptoti
 form of the distribution of the T -o

upation times

Sn(A).
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In 
ontrast, if T preserves an in�nite (yet σ-�nite) measure µ ≪ m, then

(3) 1

n
Sn(A) =

1

n

n−1∑

k=0

1A ◦ T k → 0 µ-a.e. on X as n → ∞,
for every A ∈ A with µ(A) < ∞. While Hopf's ratio ergodi
 theorem (e.g.[A0℄, [H℄, or [Z3℄) shows that the ratios Sn(A)/Sn(B) of o

upation times
onverge a.e. to the ratios µ(A)/µ(B) of the respe
tive measures, it does notidentify the asymptoti
 order of magnitude of the Sn(A). In fa
t, a

ordingto Aaronson's ergodi
 theorems (�2.4 of [A0℄), no su
h order exists for a.e.
onvergen
e. Pre
ise information in terms of the distributions of the Sn(A) isavailable under 
ertain additional assumptions (
f. �3.6 of [A0℄ and [TZ℄, [Z4℄;some information on the 
ompli
ated pointwise behaviour of Sn(A) for sets
A of in�nite measure 
an be found in [ATZ℄).In what follows, we take a di�erent point of view, whi
h enables us tore
over the interpretation of µ as giving the asymptoti
 frequen
y of visitsalso in situations with µ(X) = ∞, whi
h we assume from now on. The triviallimiting behaviour in (3) means that the orbit of a typi
al single point whi
h
T attempts to distribute over the in�nite spa
e is hardly ever visible in areferen
e set of �nite measure. Why not repla
e the randomly 
hosen singlepoint, whi
h works well in a probability spa
e, by some randomly 
hosen
ountable ensemble of points, distributed over the spa
e (X,A, µ) (whi
h isa 
ountable disjoint union of probability spa
es) in su
h a way that we expe
tone point per unit measure?This, in essen
e, is what the Poisson suspension does: it des
ribes the si-multaneous a
tion of T on (suitable) 
ountable 
olle
tions of points. Roughlyspeaking, T a
ts on ensembles x = {xi}i≥1 ⊆ X via Tx := {Txi}i≥0, andit turns out that there is a natural invariant probability measure µ for T,making pre
ise a natural random 
hoi
e of x. Under suitable assumptions,
T turns out to be ergodi
 for µ, whi
h immediately yields an ergodi
 theoremfor the orbits of 
ountable ensembles, ensuring that for any A ∈ A,
(4) 1

n
Sn(A) :=

1

n

n−1∑

k=0

NA ◦T
k → µ(A) µ-a.e. as n → ∞.

HereNA(x) =
∑

i≥0 1A(xi) denotes the number of points from x in A, and wewill 
all Sn(A) :=
∑n−1

k=0 NA ◦T
k the T-o

upation time (up to time n) of A.We thus re
over the interpretation of µ(A) as the average number of visitsof orbits to A if we start with µ-typi
al 
ountable ensembles x rather thansingle points. The present note is devoted to the study of Poisson suspensionsof 
ertain in�nite measure preserving transformations, and provides su�
ient
onditions for a CLT of the form
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µ

[
Sn(A) − nµ(A)

σn(A)
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,to a

ompany the strong law (4).Here is a formal de�nition of the Poisson suspension (X, A, µ,T) of themeasure preserving system (X,A, µ, T ), where (X,A, µ) is σ-�nite and Tneed not be invertible: We let X denote the set of 
ounting measures on

(X,A), i.e. of all measures x : A → N0 = {0, 1, . . . ,∞}, whi
h we interpretas 
ountable ensembles of points. For any A ∈ A the fun
tion NA : X → N0evaluates 
ounting measures at A, that is, NA(x) := x(A), x ∈ X. Naturally,we want ea
h NA to be measurable, and hen
e equip X with the σ-�eld
A := σ(NA : A ∈ A) generated by them. Next, we de�ne T : X → X byletting Tx := x◦T−1, the image of the measure x under T . Then T is easilyseen to be measurable with respe
t to A, sin
e by measurability of T ea
h
NA ◦T = NT−1A, A ∈ A, is A-measurable.There exists a unique probability measure µ on (X, A), 
alled the Pois-son random measure with intensity µ, su
h that for any �nite 
olle
tionof pairwise disjoint sets A1, . . . , Al ∈ A the 
orresponding NA1

, . . . ,NAlare independent random variables on (X, A, µ), and ea
h NA has a Pois-son distribution Pλ with expe
tation λ = Eµ[NA] =
T
X

NA dµ = µ(A).It is easy to see that µ ◦ T−1 = µ implies µ ◦ T
−1 = µ: the distribu-tion of (NA1

, . . . ,NAl
) under µ ◦ T

−1 is µ ◦ T
−1 ◦ (NA1

, . . . ,NAl
)−1 =

µ ◦ (NA1
◦T, . . . ,NAl

◦T) = µ ◦ (NT−1A1
, . . . ,NT−1Al

), the µ-distributionof (NT−1A1
, . . . ,NT−1Al

), whi
h are independent (sin
e the T−1Ai are pair-wise disjoint) Poisson variables on (X, A, µ) with respe
tive expe
tations
µ(T−1Ai) = µ(Ai).In a more probabilisti
 language, (X, A, µ,T) is a (nonintera
ting) in-�nite parti
le system driven by the dynami
al system (X,A, µ, T ). In anergodi
-theoreti
al 
ontext, [CFS℄ introdu
es Poisson suspensions as abstra
tversions of ideal gas models. Situations in whi
h the underlying system is(the shift-spa
e representation of) some Markov pro
ess have been studiedearlier: see e.g. [P1℄, [P2℄ (dis
rete time) or �VIII.5 of [D℄ (
ontinuous time).In parti
ular, the results of [P2℄ 
ontain most of Proposition 1 and Theorem1 below for the spe
ial 
ase of null-re
urrent Markov shifts on a 
ountablealphabet. [P2℄ also 
overs 
ertain Markov 
hains with general state spa
e,but depends on 
onditions not ne
essarily satis�ed for the dynami
al sys-tems we are interested in. Our aim is to go beyond these pro
esses with a
lear-
ut dependen
e stru
ture by extending a CLT whi
h is known in that
lassi
al setup to the family of transformations 
onsidered in [Z4℄.2. Main result. Let T be a 
onservative ergodi
 measure preservingtransformation (
.e.m.p.t.) on the σ-�nite spa
e (X,A, µ) with µ(X) = ∞.
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(We refer to [A0℄ for a wealth of information on su
h situations.) In termsof its transfer operator T̂ : L1(µ) → L1(µ), 
hara
terized by\

X

(g ◦ T ) · u dµ =
\
X

g · T̂ u dµ

for all u ∈ L1(µ) and g ∈ L∞(µ), this means that T̂1 = 1 (T̂ naturallyextends to {u : X → [0,∞) measurable A}), and ∑
k≥0 T̂ ku = ∞ a.e. for all

u ∈ L1(µ) with Tu dµ > 0. Let H be a 
olle
tion of probability densities withrespe
t to µ. If there is some K ∈ N0 su
h that infu∈H infY
∑K

k=0 T̂ ku > 0, we
all H uniformly sweeping (in K steps) for Y . The measure spa
e is standardif A is the Borel σ-�eld of some 
omplete separable metri
 on X.Important quantitative 
hara
teristi
s of T are given in terms of itsreturn-time distributions to suitable �xed referen
e sets: For Y ∈ A with
µ(Y ) > 0 the �rst return (entran
e) time of Y is

ϕ(x) = ϕY (x) := min{n ≥ 1 : Tnx ∈ Y }, x ∈ X,and we let TY x := Tϕ(x)x, x ∈ X. The restri
ted measure µ|Y ∩A is invariantunder the �rst return map, TY restri
ted to Y , that is, 1Y =
∑

k≥1 T̂ k1Y ∩{ϕ=k}a.e. If µ(Y ) < ∞, then ϕ is a random variable on the probability spa
e
(Y, Y ∩ A, µY ), µY (E) := µ(Y )−1µ(Y ∩ E). Under additional assumptionsmaking Y a suitable referen
e set, the asymptoti
s of the tail probabilities
qn(Y ) := µY (Y ∩ {ϕY > n}) of its return distribution, or the wanderingrate of Y given by wN (Y ) := µ(Y )

∑N−1
n=0 qn(Y ) = µ(Y N ), where Y N :=⋃N−1

n=0 T−nY , N ≥ 1, is de
isive. We shall follow the 
onvention of [TZ℄ and[Z4℄ to denote Y0 := Y and Yn := Y c ∩ {ϕ = n}, n ≥ 1 (whi
h are disjointand satisfy Y N =
⋃N−1

n=0 Yn and µ(Yn) = µ(Y ) qn(Y )).As a warm-up, we point out how to interpret the wandering rate interms of the Poisson suspension. Note that for the following probabilisti
laws to hold, no spe
ial assumptions on the system or the sets are re-quired: Poisson suspensions a priori 
ome with a lot of inbuilt indepen-den
e. Note that (as Y n is the set of points whi
h visit Y within time
{0, . . . , n− 1}), NY n(x) 
an be interpreted as the number of distin
t pointsfrom the ensemble x ∈ X whi
h visit Y at least on
e before time n. Similarly,
τY (x) := min{j ≥ 0 : T

j
x(Y ) > 0} represents the �rst time at whi
h somepoint from x ∈ X visits Y .Proposition 1 (Number of distin
t visitors and waiting time for the�rst). Let T be a 
.e.m.p.t. on the σ-�nite in�nite measure spa
e (X,A, µ),and let (X, A, µ,T) be its Poisson suspension. For every Y ∈ A with

0 < µ(Y ) < ∞, the variables NY n satisfy a strong law ,(5) Eµ[NY n ] = wn(Y ) and NY n

wn(Y )
→ 1 µ-a.e.,
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and a 
entral limit theorem,(6) µ

[
NY n − wn(Y )√

wn(Y )
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2ds
for every t ∈ Ras n → ∞.Moreover ,(7) µ[τY ≥ n] = e−wn(Y ), n ≥ 1.Proof. This is easy if we observe that NY n = NY0

+ · · · + NYn−1
is asum of n independent Poisson variables with expe
tations Eµ[NYk

] = µ(Yk)satisfying Eµ[NY0
] + · · · + Eµ[NYn−1

] = wn(Y ) → ∞. We 
an now usestandard fa
ts about Poissonian variables:For example, (5) is equivalent to saying that the image Q of µ under themap x 7→(
∑n−1

j=0 NYj
(x))n≥1 gives full measure to the event {sn/wn(Y )→ 1}in the sequen
e spa
e S := {s = (sj)j≥1 : sj ∈ N0} (with produ
t σ-�eld).But Q 
oin
ides with the distribution of ω 7→ (Nwn(Y )(ω))n≥1 ∈ S where

(Nt)t≥0 is a Poisson pro
ess with E[N1] = 1 on (Ω,F , P ). Now it is wellknown that (Nt)t≥0 satis�es the strong law Nt/t → 1 a.s. and a fortiori
Nwn(Y )/wn(Y ) → 1 a.s. We therefore see that indeed Q[sn/wn(Y ) → 1] =
P [Nwn(Y )/wn(Y ) → 1] = 1.Che
king the CLT (6) is a routine probability exer
ise (
f. Problem 27.3of [B℄), using the 
hara
teristi
 fun
tion of the Poisson distribution Pλ,(8) P̂λ(t) = exp[−λ(1 − eit)], t ∈ R.Finally, (7) is 
lear from {τ Y ≥ n} = {NY n = 0} and µ(Y n) = wn(Y ).Re
all that a measurable fun
tion a : (L,∞) → (0,∞) is regularly vary-ing of index ̺ ∈ R at in�nity, written a ∈ R̺, if a(ct)/a(t) → c̺ as t → ∞for all c > 0. We shall ta
itly interpret sequen
es (an)n≥0 as fun
tionson R+ via t 7→ a[t]. Furthermore, R̺(0) is the family of fun
tions r : (0, ε)
→ R+ regularly varying of index ̺ at zero (same 
ondition as above, but for
t ց 0). For ba
kground information we refer to Chapter 1 of [BGT℄. Wewrite a(t) ∼ b(t) as t → ∞ if a(t)/b(t) → 1, and a(t) ≍ b(t) as t → ∞ toindi
ate that the ratio a(t)/b(t) is bounded away from 0 and ∞ for t ≥ t0.Remark 1 (Minimal wandering rates). The asymptoti
s of the wander-ing rate (wN (Y )) does depend on the set Y , and there never are sets maxi-mizing this rate for a given system (
f. Proposition 3.8.2 in [A0℄). Still, sometransformations do have distinguished sets Y with minimal wandering rate,meaning that limN→∞wN (Z)/wN (Y ) ≥ 1 for all Z ∈ A, 0 < µ(Z) < ∞.Equivalently, wN (Y ) ∼ wN (Z) provided µ(Z) > 0 and Z ⊆ Y . This 
ommonrate is then an asymptoti
 
hara
teristi
 of the measure preserving system,the wandering rate of T , (wN (T )).
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We are now ready to state the main result of the present paper. It pro-vides us with a CLT for T-o

upation times of a large family of sets�those
ontained in some distinguished referen
e set Y having a 
ompa
t regener-ation property (and hen
e minimal wandering rate, 
f. Proposition 3.2 andRemark 3.6 of [TZ℄). We refer to [TZ℄, [Z4℄ for further information on thistype of 
ondition, whi
h (in a slightly stronger form) was �rst used in [T3℄.The assumption (10) on the set Y in the result below is exa
tly the stru
-tural 
ondition of Theorem 2.1 in [Z4℄ (whi
h in addition requires regularvariation of (wN (Y ))).Theorem 1 (T-o

upation times inside 
ompa
tly regenerative sets).Let T be a 
.e.m.p.t. on the σ-�nite in�nite standard measure spa
e (X,A, µ),and let (X, A, µ,T) be its Poisson suspension. Then T is ergodi
, and for any

Y ∈ A, 0 < µ(Y ) < ∞,(9) 1

n
Sn(Y ) → µ(Y ) µ-a.e. as n → ∞.Suppose, in addition, that Y is su
h that(10) HY :=

{
1

wN (Y )

N−1∑

n=0

T̂n1Yn

}

N≥1

is pre
ompa
t in L∞(µ)and uniformly sweeping.Then, for every E ∈ Y ∩ A with µ(E) > 0, and every probability measure
ν ≪ µ,(11) ν

[
Sn(E) − nµ(E)

σn(E)
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,where(12) σ

2
n(E) := Varµ[Sn(E)] ≍ n2

wn(Y )
as n → ∞.If , moreover , (wN (Y )) ∈ R1−α for some α ∈ [0, 1], then(13) σ

2
n(E) ∼ 2µ(E)2

Γ (2 − α)Γ (2 + α)
· n2

wn(Y )
as n → ∞.We brie�y indi
ate a few situations in whi
h the 
onditions of [Z4℄, andhen
e our present results, apply. In ea
h 
ase we identify a large family E(T )of good sets E, i.e. ea
h E ∈ E(T ) is 
ontained in some Y satisfying (10).Example 1 (Random walks driven by Gibbs�Markov maps). Assumethat (M,B, ν, R, ξ) is an ergodi
 probability preserving �bred system givenby a Gibbs�Markov map (
f. [A0℄, [AD℄) with �nite image partition, #Rξ

< ∞. Let φ : M → Z be a ξ-measurable fun
tion and assume (see [AD℄ forde�nitions) that φ is aperiodi
, and either that φ ∈ L2(µ) with TX φdµ = 0,or that the µ-distribution of φ is in the stri
t domain of attra
tion of a
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nondegenerate stable distribution of order p ∈ (1, 2). Then the Z-extension
T = Rφ of R, that is, the map on the σ-�nite in�nite measure spa
e
(X,A, µ) := (M ×Z,B ⊗P(Z), ν ⊗ νZ), with νZ denoting 
ounting measureon Z, given by T (x, g) := (Rx, g + φ(x)), is a 
.e.m.p.t. Any set of the form
Y := M ×D with D ⊆ Z �nite satis�es (10), and we have (wN (Y )) ∈ R1−αwith α := 1/2 or α := 1− 1/p ∈ (0, 1/2), respe
tively (
f. �7.3 of [Z4℄). The-orem 1 therefore applies to any positive measure set from E(T ) := {E : π(E)bounded}, where π(x, g) := g.Example 2 (Interval maps with indi�erent �xed points). A large 
lass ofin�nite measure preserving pie
ewise monotoni
 interval maps (X,A, µ, T, ξ),
alled AFN-maps , has been studied in [Z1℄, generalizing earlier results from[A0℄, [A3℄, [T1℄. We refer to [Z1℄ or [TZ℄ for de�nitions and notation. Theirergodi
 behaviour is determined by a �nite set ζ ⊆ ξ of 
ylinders Z having anindi�erent �xed point xZ at the boundary. The 
onsiderations of �8 of [TZ℄show that any set E from E(T ) := {F ∈ A : there is some ε > 0 su
h that
F∩(xZ−ε, xZ +ε)∩Z = ∅ for allZ ∈ ζ} is 
ontained in someY satisfying (10).Regular variation of (wN (Y )) depends on details of the lo
al behaviour of Tat the xZ (see e.g. �4 of [T2℄).Example 3 (S-unimodal Misiurewi
z maps with �at tops). Further ex-amples with dynami
s governed by some distin
t indi�erent orbits are maps
T on the interval with �at 
riti
al points, i.e. points c at whi
h all deriva-tives of T vanish. [Z2℄ was devoted to �at S-unimodal maps T on an interval
X := [a, b] satisfying the Misiurewi
z 
ondition, meaning that there is someopen subinterval Y around c (without loss of generality, a union of two 
ylin-ders) to whi
h the orbit of c does not return, cn := Tnc /∈ Y for n ≥ 1. Aspointed out in �7.2 of [Z4℄, this set Y satis�es (10), and we take E(T ) 
on-taining all measurable sets inside a su�
iently small neighbourhood of c.Su
h a map T always has an absolutely 
ontinuous 
onservative ergodi
 in-variant measure µ whi
h is in�nite i� Tlog |T ′x| dx = −∞. Regular variationof (wN (Y )) depends on the lo
al behaviour of T at c and on the existen
eof the post
riti
al Lyapunov exponent of T (
f. Theorem 5 of [Z2℄).3. Proof of Theorem 1. We follow the strategy used in [P2℄, adapt-ing it to our setup. The spe
i�
 di�
ulties are dealt with in the followingauxiliary proposition, whi
h exploits information obtained in the proof ofTheorem 2.1 of [Z4℄. The latter result states that under the assumptions on
(X,A, µ, T ) and Y in Theorem 1 above, plus (wN (Y )) ∈ R1−α for some
α ∈ [0, 1], one has, for every f ∈ L1(µ) with µ(f) 6= 0, distributional 
onver-gen
e(14) 1

an
Sn(f)

ν⇒ µ(f)Mα,
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with respe
t to any probability measure ν ≪ µ, where Mα is a random vari-able distributed a

ording to the normalized Mittag-Le�er law oforder α, whi
h is uniquely 
hara
terized by its moments E[Mr

α] =
r! (Γ (1 + α))r/Γ (1 + rα), r ≥ 1, and

an :=
1

µ(Y )

\
Y

Sn(Y ) dµY(15)
∼ 1

Γ (1 + α)Γ (2 − α)
· n

wn(Y )
as n → ∞.This is established by proving that the moments of Sn(Y ) with respe
t to

µY 
onverge, i.e.(16) \
Y

(
Sn(Y )

µ(Y )

)r

dµY ∼ E[Mr
α] · ar

n as n → ∞.Here we obtain further information in this dire
tion:Proposition 2 (The µ-moments of T -o

upation times). Let T be a
.e.m.p.t. on the σ-�nite in�nite measure spa
e (X,A, µ), and suppose that
Y ∈ A, 0 < µ(Y ) < ∞, is su
h that(17) HY =

{
1

wN (Y )

N−1∑

n=0

T̂n1Yn

}

N≥1

is pre
ompa
t in L∞(µ)and uniformly sweeping.Then, for every E ∈ Y ∩ A with µ(E) > 0, and every integer r ≥ 1,
(18)

\
X

Sr
n(E) dµ ≍ wn(Y )

\
Y

Sr
n(E) dµ ≍ wn(Y )

(
n

wn(Y )

)r as n → ∞.If , moreover , (wN (Y )) ∈ R1−α for some α ∈ [0, 1], then
(19)

\
X

(
Sn(E)

µ(E)

)r

dµ ∼ r! (Γ (2 − α))1−r

Γ (2 + (r − 1)α)
· µ(Y )wn(Y )

(
n

wn(Y )

)r

as n → ∞.Before applying this to the Poisson suspension, we re
ord a straightfor-ward 
onsequen
e: Re
all (
f. [A1℄ or �3.3 of [A0℄) that a 
.e.m.p.t. T on
(X,A, µ) is 
alled rationally ergodi
 if there exists some Y ∈ A, 0 < µ(Y )
< ∞, satisfying a Rényi inequality, i.e. there is some M ∈ (0,∞) su
h that\

Y

S2
n(Y ) dµ ≤ M ·

(\
Y

Sn(Y ) dµ
)2 for all n ≥ 1.Corollary 1 (Rational ergodi
ity). Let T be a 
.e.m.p.t. on the σ-�nitein�nite measure spa
e (X,A, µ) and Y ∈ A, 0 < µ(Y ) < ∞, with (17). Then

Y satis�es a Rényi inequality.Proof. Immediate from (18) in Proposition 2.



POISSON SUSPENSIONS 219

Assuming Proposition 2, we 
an now argue as follows:Proof of Theorem 1. (i) Ergodi
ity of Poisson suspensions of in�nitemeasure preserving 
onservative ergodi
 automorphisms is established in [R,Proposition 2.6.2℄. A

ording to Theorems 3.1.5 and 3.1.7 of [A0℄, our sys-tem (X,A, µ, T ) has an (invertible) 
onservative ergodi
 natural extension
(X ′,A′, µ′, T ′), i.e. there is a measurable fa
tor map π : X ′ → X with
π ◦ T ′ = T ◦ π and µ′ ◦ π−1 = µ. The Poisson suspension (X′, A′, µ′,T′)of the latter is ergodi
 by Roy's result. Therefore, ergodi
ity of (X, A, µ,T)follows if we 
he
k that (parallel to Theorem 2.4.4 of [R℄ for automorphisms)generally(20) the suspension of an extension is an extension of the suspension.To see this, 
onsider any extension (X ′,A′, µ′, T ′) (not ne
essarily in-vertible, with fa
tor map π) of (X,A, µ, T ), and de�ne π : X

′ → X by
πx

′ := x
′ ◦ π

−1. As the σ-�elds A, A′ are generated by the evaluations NA,
A ∈ A, and N

′
A′ , A′ ∈ A′, respe
tively, measurability of π follows from thatof the 
ompositions NA◦π, A ∈ A, whi
h is 
lear sin
e NA◦π(x′) = N

′
A′(x′)where A′ := π−1A ∈ A′. Next, observe that T ◦ π = π ◦ T

′ sin
e
(T ◦ π(x′))(A) = x

′ ◦ π−1 ◦ T−1A = x
′ ◦ (T ′)−1 ◦ π−1A

= (π ◦T
′(x′))(A)for A ∈ A. Analogous manipulations show that µ

′ ◦ π
−1 is the Poissonrandom measure with intensity µ, and hen
e equals µ: for any A ∈ A, thedistribution µ

′ ◦π
−1◦N

−1
A of NA equals µ

′◦(N′
A′)−1 with A′ := π−1A ∈ A′,and hen
e Pµ′(A′) = Pµ(A). The independen
e 
ondition follows sin
e π−1preserves disjointness. This 
ompletes the proof of (20).Statement (9) is just the ergodi
 theorem for the suspension.(ii) For the proof of the CLT (11) we let Sn := Sn(E), n ≥ 1. For n ∈ Nand r ∈ N0 the number of points from an ensemble x whi
h visit E exa
tly

r times by time n is N{Sn=r}(x), and therefore
Sn(E) :=

n−1∑

k=0

NE ◦ T
k =

n−1∑

r=1

r N{Sn=r}.Observe that for �xed n the sets {Sn = r}, r ∈ {1, . . . , n − 1}, are pairwisedisjoint, so that N{Sn=r}, r ∈ {1, . . . , n−1}, are independent Poisson randomvariables on (X, A, µ) with Eµ[N{Sn=r}] = µ({Sn = r}). Consequently,
(21) Varµ[Sn(E)] =

n−1∑

r=1

r2µ({Sn = r}) =
\
X

S2
n dµ,so that (13) immediately follows from (19). For the same reason the 
hara
-
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teristi
 fun
tion of Sn(E) is

Eµ[exp(iθSn(E))] =

n−1∏

r=1

Eµ[exp(iθrN{Sn=r})](22)
= exp

[n−1∑

r=1

(eiθr − 1)µ({Sn = r})
]

= exp
[\
X

(eiθSn − 1) dµ
],where θ ∈ R. Abbreviating σn :=

√
Varµ[Sn(E)], n ∈ N, we �nd that

log Eµ

[
exp

(
iθ

Sn(E) − nµ(E)

σn

)]
= −θ2

2
+ Rn(θ),where

Rn(θ) :=
\
X

[
exp

(
iθ

Sn

σn

)
−

(
1 + iθ

Sn

σn
− 1

2

(
θ

Sn

σn

)2)]
dµ, θ ∈ R.Therefore the CLT with respe
t to µ,

µ

[
Sn(E) − nµ(E)

σn(E)
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,follows on
e we verify that

lim
n→∞

Rn(θ) = 0 for all θ ∈ R.But by an easy standard estimate, we have
|Rn(θ)| ≤ |θ|3

6
·
\
X

S3
n

σ3
n

dµ,and the integral on the right-hand side tends to zero, sin
e the r = 2 and
r = 3 
ases of (18) in Proposition 2 ensure that

(\
X

S3
n(E) dµ

)2
= o

(\
X

S2
n(E) dµ

)3 as n → ∞.Finally, the extension to other measures ν ≪ µ is immediate from Eagleson'stheorem (
f. [E℄ or Corollary 1 of [Z5℄).4. Proof of Proposition 2. The proof of this 
ru
ial proposition ex-ploits a number of fa
ts established in the proof of Theorem 2.1 of [Z4℄.Hardly surprising, the argument for the regularly varying 
ase will depend onKaramata's Tauberian theorem (KTT) and the Monotone Density theoremfor regularly varying fun
tions (see [BGT℄ or Proposition 4.2 and Lemma 4.1of [TZ℄), that is,
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Lemma 1 (Karamata's Tauberian theorem, Monotone Density theorem).Let (bn) be a sequen
e in [0,∞) su
h that B(s) :=
∑

n≥0 bn e−ns < ∞ for all
s > 0. Suppose that ℓ ∈ R0 and ̺ ∈ [0,∞). Then(i) B(s) ∼ (1/s)̺ℓ(1/s) as s ց 0 if and only if(ii) ∑n−1

k=0 bk ∼ n̺ℓ(n)/Γ (̺ + 1) as n → ∞.If (bn) is eventually monotone and ̺ > 0, then both are equivalent to(iii) bn ∼ ̺n̺−1ℓ(n)/Γ (̺ + 1) as n → ∞.In order to deal with non-regularly varying situations, we need to supplya few less familiar tools from Karamata theory: A measurable fun
tion a :
(L,∞) → (0,∞) is O-regularly varying at in�nity, written a ∈ OR, if for all
c > 0,

0 < lim
t→∞

a(ct)

a(t)
≤ lim

t→∞

a(ct)

a(t)
< ∞.

OR(0) will denote the 
lass of fun
tions O-regular varying at zero (same 
on-dition, but for t ց 0). This is just one of several useful 
on
epts generalizingregular variation whi
h still enable a meaningful asymptoti
 theory. For thereader's 
onvenien
e we expli
itly state a few fa
ts whi
h we are going to usebelow. The �rst observation is due to Feller (
f. Corollary 2.0.6 of [BGT℄).Lemma 2 (O-regular variation of monotone sequen
es). If (wN )N≥0 isa nonde
reasing sequen
e in (0,∞) with limN→∞wc0N/wN < ∞ for some
c0 > 1, then w ∈ OR.The argument to follow hinges on two Tauberian results for O-regularvariation. For the �rst, see Theorem 2.10.2 of [BGT℄, or [dHS℄.Lemma 3 (de Haan�Stadtmüller O-Tauberian theorem). If (un)n≥0 is asequen
e in (0,∞), then the following are equivalent :(i) (vN )N≥0 := (

∑N−1
n=0 un)N≥1 is O-regularly varying at in�nity ,(ii) U(s) :=

∑
n≥0 une−ns, s > 0, is O-regularly varying at zero,(iii) U(1/N) ≍ v(N) as N → ∞.Lemma 4 (O-Monotone Density theorem). If (un)n≥0 is a non de
reasingsequen
e in (0,∞) with (vN )N≥0 := (

∑N−1
n=0 un)N≥1 O-regularly varying atin�nity , then U(s) :=

∑
n≥0 une−ns, s > 0, satis�es(iv) U (1/N) ≍ Nu(N) as N → ∞.Proof. This is a variant of Exer
ise 2.12.26 of [BGT℄. Simply observethat vN ≤ NuN ≤ ∑2N

n=N un ≤ v2N ≤ const · vN and apply the pre
edinglemma.We are now ready for
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Proof of Proposition 2. (i) Sin
e wN (Y ) = µ(Y )

∑N−1
n=0 qn(Y ) with qn(Y )

ց 0, we have w2N (Y ) ≤ 2wN (Y ) for all N ≥ 0, whi
h by Lemma 2 im-plies (wN (Y )) ∈ OR. A

ording to Lemma 3 this entails O-regular varia-tion at zero of QY (s) :=
∑

n≥0 qn(Y )e−ns, s > 0, and hen
e also of s 7→
(sQY (s))−r/s for any r ≥ 1. Moreover,(23) wN (Y ) ≍ QY

(
1

N

) as N → ∞.The proof of Theorem 2.1 of [Z4℄ shows, without using regular variation,that for any r ≥ 1,(♦r) AY,r(s) :=
∑

n≥0

(\
Y

Sr
n(Y ) dµY

)
e−ns ≍ 1

s

(
1

sQY (s)

)r as s ց 0.
As the right-hand side belongs to OR(0), we 
on
lude that for any r ≥ 1,the same is true for AY,r. Using Lemma 3 again, we thus see that
(24) N∑

n=0

\
Y

Sr
n(Y ) dµ ≍ AY,r

(
1

N

)
≍ N

(
N

QY (1/N)

)r as N → ∞,with all three sequen
es O-regularly varying. In parti
ular, as the leftmostsum is in OR and TY Sr
n(Y ) dµ is nonde
reasing in n, we 
an appeal toLemma 4 to obtain(25) \

Y

Sr
n(Y ) dµ ≍

(
n

QY (1/n)

)r

≍
(

n

wn(Y )

)r

≍ ar
n as n → ∞,

with an := µ(Y )−1
T
Y Sn(Y ) dµY . We thus have, for ea
h r ≥ 1, bound-edness of the moment sequen
e (

T
Y (Sn(Y )/an)r dµ)n≥1, and hen
e also of

(
T
Y (Sn(E)/an)r dµ)n≥1 for any �xed E ∈ Y ∩ A. Moreover, we also seethat limn→∞

T
Y (Sn(Y )/an)r dµ > 0. Combining these two fa
ts with Hopf'sratio ergodi
 theorem we 
on
lude (using uniform integrability of the se-quen
e ((Sn(E)/an)r)n≥1) that for any r ≥ 1 and E ∈ Y ∩A,(26) \

Y

Sr
n(E) dµ ∼

(
µ(E)

µ(Y )

)r \
Y

Sr
n(Y ) dµ ≍ ar

n as n → ∞.Together with (25) this gives the se
ond part of (18).De�ne Rn := Sn(E)/an, n ≥ 1. It is also shown in [Z4℄ that for any
r ≥ 1, and E = Y ,(27) (Rr

n(E))n≥1 satis�es the assumptions of Proposition 3.2 of [Z4℄,whi
h implies that for E = Y we have(28) \
Y

Sr
n(E) · h dµ ∼

\
Y

Sr
n(E) dµY as n → ∞, uniformly in h ∈ HY .
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We 
laim that (27), and hen
e also (28) hold for every �xed E ∈ Y ∩A with
µ(E) > 0: Note that(29) Sn(E) = Sn−k(E) ◦ T k on Yk, k ∈ {0, . . . , n},and the previously observed boundedness of all moment sequen
es gives weakpre
ompa
tness of (1Y Rr

n(E))n≥1. Finally, we need to verify that
‖(Rr

n(E)◦T−Rr
n(E))·u‖1 → 0 for all u ∈ L∞(µ) supported on some Y M .But, pre
isely as in the 
ase E = Y 
onsidered in [Z4℄ (
f. equation (4.9)there), this follows from (26) via the mean-value theorem.(ii) Now �x some E ∈ Y ∩A with µ(E) > 0, and observe that due to (29),\

X

Sr
n(E) dµ =

n∑

k=0

\
X

Sr
n−k(E) ◦ T k · 1Yk

dµ =
n∑

k=0

\
Y

Sr
n−k(E) · T̂ k1Yk

dµ.As an immediate 
onsequen
e, we see that
N∑

n=0

\
X

Sr
n(E) dµ =

N∑

n=0

wn+1(Y ) ·
\
Y

Sr
N−n(E) · hn dµ,

where hN := wN+1(Y )−1
∑N

n=0 T̂n1Yn
∈ HY . Sin
e TX Sr

n(E) dµ → ∞ as
n → ∞, (28) enables us to 
on
lude that

N∑

n=0

\
X

Sr
n(E) dµ ∼

N∑

n=0

wn+1(Y ) ·
\
Y

Sr
N−n(E) dµ as N → ∞,and

(30)
∑

n≥0

(\
X

Sr
n(E) dµ

)
e−ns

= (1 − e−s)
∑

N≥0

( N∑

n=0

\
X

Sr
n(E) dµ

)
e−Ns

∼ (1 − e−s)
∑

N≥0

( N∑

n=0

wn+1(Y ) ·
\
Y

Sr
N−n(E) dµ

)
e−Ns

= µ(Y )QY (s) ·
∑

n≥0

(\
Y

Sr
n(E) dµ

)
e−ns

∼ µ(Y )2
(

µ(E)

µ(Y )

)r

QY (s) ·
∑

n≥0

(\
Y

Sr
n(Y ) dµY

)
e−ns

as s ց 0, where the last step uses (26). We know that ea
h fa
tor in the right-most expression is O-regularly varying, and so the same is true for the left-most expression. Hen
e, by Lemma 3, the sequen
e (
∑N

n=0

T
X Sr

n(E) dµ)N≥0
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belongs to OR, and by the obvious monotoni
ity of the individual terms inthese sums we 
an appeal to Lemma 4 to obtain, for any r ≥ 1,
(31)

\
X

Sr
n(E) dµ ≍ 1

n
QY

(
1

n

)
AY,r

(
1

n

)
≍ wn(Y )

(
n

wn(Y )

)r as n → ∞,where the se
ond relation 
omes from (23) and (24).(iii) Finally, assume that (wN (Y )) ∈ R1−α for some α ∈ [0, 1]. By KTTthis means that there is some fun
tion ℓ, slowly varying at in�nity, su
h that
QY (s) =

(
1

s

)1−α

ℓ

(
1

s

) for s > 0, wn(Y ) ∼ µ(Y )
n1−αℓ(n)

Γ (2 − α)
as n → ∞.In the proof of Theorem 2.1 of [Z4℄, it is shown that in this 
ase, for any

r ≥ 1,(32) ∑

n≥0

(\
Y

Sr
n(Y ) dµY

)
e−ns ∼ r!

s

(
1

sQY (s)

)r as s ց 0.Therefore, (30) be
omes
∑

n≥0

(\
X

Sr
n(E) dµ

)
e−ns ∼ r! µ(Y )2

(
µ(E)

µ(Y )

)r(1

s

)2+(r−1)α

ℓ

(
1

s

)−(r−1)

as s ց 0. Applying KTT on
e again (and monotoni
ity of (TX Sr
n(E) dµ)n≥1),we thus obtain\

X

Sr
n(E) dµ ∼ µ(Y )2

(
µ(E)

µ(Y )

)r r!

Γ (2 + (r − 1)α)
· n1+(r−1)αℓ(n)−(r−1)

as n → ∞, and hen
e (19).A
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