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POISSON SUSPENSIONS OF
COMPACTLY REGENERATIVE TRANSFORMATIONS
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ROLAND ZWEIMULLER (Wien)

Abstract. For infinite measure preserving transformations with a compact regenera-
tion property we establish a central limit theorem for visits to good sets of finite measure
by points from Poissonian ensembles. This extends classical results about (noninteracting)
infinite particle systems driven by Markov chains to the realm of systems driven by weakly
dependent processes generated by certain measure preserving transformations.

1. Introduction. On a first encounter with infinite ergodic theory one
is immediately led to ask what an infinite invariant measure can possibly tell
us about the dynamics of a transformation. Consider a conservative ergodic
nonsingular map 7" on some o-finite measure space (X,.4,m).

In the standard situation where T' has an invariant probability measure
i < m, the pointwise ergodic theorem shows that for any A € A,

n—1
1 . l L
(1) ESH(A) '_nzlAOT — u(A)  prae.on X as n — 00,

k=0

meaning that the invariant measure p(A) of the set A asymptotically repre-
sents the frequency of visits of a u-typical single orbit to A. Under additional
assumptions on the (mixing) behaviour of the map 7" and on the set A (sat-
isfied by various nontrivial and interesting examples), it is in fact possible
to establish a central limit theorem (CLT) asserting that

2) Sn(A) —nu(A) < t] 1 for every t € R

2
—— | e 2us
o(A)v/n V2 S
which provides us with detailed information about the convergence in (1) by
clarifying the asymptotic form of the distribution of the T-occupation times

Sp(A).

as n — 00,
— o0
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In contrast, if T' preserves an infinite (yet o-finite) measure p < m, then

n—1
ZleTk—%) p-a.e. on X as n — 00,
k=0

1 1
() S(A)=
for every A € A with pu(A) < oo. While Hopf’s ratio ergodic theorem (e.g.
[AO]|, [H], or [Z3]) shows that the ratios S, (A)/Sn(B) of occupation times
converge a.e. to the ratios p(A)/u(B) of the respective measures, it does not
identify the asymptotic order of magnitude of the S,,(A). In fact, according
to Aaronson’s ergodic theorems (§2.4 of [A0]), no such order exists for a.e.
convergence. Precise information in terms of the distributions of the S, (A) is
available under certain additional assumptions (cf. §3.6 of [A0] and [TZ], [Z4];
some information on the complicated pointwise behaviour of S;,(A) for sets
A of infinite measure can be found in [ATZ]).

In what follows, we take a different point of view, which enables us to
recover the interpretation of p as giving the asymptotic frequency of visits
also in situations with p(X) = oo, which we assume from now on. The trivial
limiting behaviour in (3) means that the orbit of a typical single point which
T attempts to distribute over the infinite space is hardly ever visible in a
reference set of finite measure. Why not replace the randomly chosen single
point, which works well in a probability space, by some randomly chosen
countable ensemble of points, distributed over the space (X,.A, u) (which is
a countable disjoint union of probability spaces) in such a way that we expect
one point per unit measure?

This, in essence, is what the Poisson suspension does: it describes the si-
multaneous action of T on (suitable) countable collections of points. Roughly
speaking, T acts on ensembles x = {z;}i>1 € X via Tx := {T'z;};>0, and
it turns out that there is a natural invariant probability measure p for T,
making precise a natural random choice of x. Under suitable assumptions,
T turns out to be ergodic for p, which immediately yields an ergodic theorem
for the orbits of countable ensembles, ensuring that for any A € A,

n—1
1 1
4 —8u(A) ==Y NyoT" — (A .
(4) ns() n A© u(A)  p-a.e. asn — oo

Here Na(x) = > ;5 1a(x;) denotes the number of points from x in A, and we
will call S,,(A) := Z;é N 4 0 T* the T-occupation time (up to time n) of A.
We thus recover the interpretation of p(A) as the average number of visits
of orbits to A if we start with p-typical countable ensembles x rather than
single points. The present note is devoted to the study of Poisson suspensions
of certain infinite measure preserving transformations, and provides sufficient
conditions for a CLT of the form
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Sn(A4) —nu(A) < t] 1 § o2 g for every t € R

on(A) Vo

as n — 090,
—0o0

to accompany the strong law (4).

Here is a formal definition of the Poisson suspension (X,2(, pu, T) of the
measure preserving system (X, A, pu,T), where (X, A, p) is o-finite and T
need not be invertible: We let X denote the set of counting measures on
(X, A), i.e. of all measures x : A — Ng = {0,1,...,00}, which we interpret
as countable ensembles of points. For any A € A the function N4 : X — Ny
evaluates counting measures at A, that is, N4(x) := x(A), x € X. Naturally,
we want each N4 to be measurable, and hence equip X with the o-field
A :=0(Ny : A € A) generated by them. Next, we define T : X — X by
letting Tx := x0T !, the image of the measure x under 7. Then T is easily
seen to be measurable with respect to 2, since by measurability of T each
NygoT =Ngp-14, A € A, is A-measurable.

There exists a unique probability measure g on (X, 21), called the Pois-
son random measure with intensity p, such that for any finite collection
of pairwise disjoint sets Aq,...,A4; € A the corresponding Ny ,..., Ny,
are independent random variables on (X, %, u), and each N4 has a Pois-
son distribution Py with expectation A = E,[N4] = (¢ Nadp = pu(A).
It is easy to see that g o T7! = p implies o T™! = p: the distribu-
tion of (N4,,...,Ny,) under po T 1is poT 1o (Ny,...,Ny)! =
po(Ny oT,...,NyoT)=po(Np-14,,...,Np-1y,), the p-distribution
of (Np-14,,...,Np-14,), which are independent (since the T~ 4; are pair-
wise disjoint) Poisson variables on (X,2(, p) with respective expectations
W(TVA5) = (4.

In a more probabilistic language, (X, 2, u, T) is a (noninteracting) in-
finite particle system driven by the dynamical system (X, A,u,T). In an
ergodic-theoretical context, [CFS] introduces Poisson suspensions as abstract
versions of ideal gas models. Situations in which the underlying system is
(the shift-space representation of) some Markov process have been studied
earlier: see e.g. [P1], [P2] (discrete time) or §VIIL5 of [D] (continuous time).
In particular, the results of [P2] contain most of Proposition 1 and Theorem
1 below for the special case of null-recurrent Markov shifts on a countable
alphabet. |P2] also covers certain Markov chains with general state space,
but depends on conditions not necessarily satisfied for the dynamical sys-
tems we are interested in. Our aim is to go beyond these processes with a
clear-cut dependence structure by extending a CLT which is known in that
classical setup to the family of transformations considered in [Z4].

2. Main result. Let T be a conservative ergodic measure preserving
transformation (c.e.m.p.t.) on the o-finite space (X, A, p) with pu(X) = oc.
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(We refer to [AO] for a wealth of information on such situations.) In terms
of its transfer operator T : Ly(p) — Li1(u), characterized by

S(goT)-ud,u: Sg-Tud,u

X X
for all w € L1(p) and g € Loo(pt), this means that T1 =1 (f naturally
extends to {u : X — [0, 00) measurable A}), and )", - Tru = 00 a.e. for all
w € Lyi(p) with fudp > 0. Let $ be a collection of probability densities with
respect to p. If there is some K € Ny such that inf, ¢ ¢ infy Zf:o Tru > 0, we
call $ uniformly sweeping (in K steps) for Y. The measure space is standard
if A is the Borel o-field of some complete separable metric on X.

Important quantitative characteristics of T' are given in terms of its
return-time distributions to suitable fixed reference sets: For Y € A with
u(Y) > 0 the first return (entrance) time of Y is

o) =ypy(z)=min{n>1:T"z €Y}, zecliX,

and we let Ty x := T%®) g, z € X. The restricted measure |y na is invariant
under the first return map, Ty restricted to Y, that is, 1y =) <4 fklyﬂ{cp:k}
a.e. If u(Y) < oo, then ¢ is a random variable on the probability space
(Y, Y N A py), py(E) = u(Y)"tu(Y N E). Under additional assumptions
making Y a suitable reference set, the asymptotics of the tail probabilities
(YY) == py (Y Nn{py > n}) of its return distribution, or the wandering
rate of Y given by wy(Y) == u(Y) N1 gu(Y) = w(YN), where YV :=
Uflvz_ol T7"Y, N > 1, is decisive. We shall follow the convention of |TZ| and
[Z4] to denote Yy :=Y and Y, :=Y°N{p = n}, n > 1 (which are disjoint
and satisfy YV = (JN 1 V,, and p(V,) = u(Y) gu(Y)).

As a warm-up, we point out how to interpret the wandering rate in
terms of the Poisson suspension. Note that for the following probabilistic
laws to hold, no special assumptions on the system or the sets are re-
quired: Poisson suspensions a priori come with a lot of inbuilt indepen-
dence. Note that (as Y™ is the set of points which visit Y within time
{0,...,n—1}), Nyn(x) can be interpreted as the number of distinct points
from the ensemble x € X which visit Y at least once before time n. Similarly,
Ty (x) := min{j > 0: T9x(Y) > 0} represents the first time at which some
point from x € X visits Y.

PROPOSITION 1 (Number of distinct visitors and waiting time for the
first). Let T be a c.e.m.p.t. on the o-finite infinite measure space (X, A, u),
and let (X,2A, u, T) be its Poisson suspension. For every Y € A with
0 < u(Y) < oo, the variables Nyn satisfy a strong law,

NYTL

(5) Eyu[Nyn] =wp(Y) and (V)

—1 p-a.e.,
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and a central limit theorem,

Nyn —w,(Y) } 1 § o—5%/2 for everyt € R

6 - —

©) wp(Y) Vem as n — oo.
Moreover,

(7) plry = n) =™, >,

Proof. This is easy if we observe that Ny» = Ny, +---+ Ny, is a
sum of n independent Poisson variables with expectations E,[Ny, | = u(Y%)
satisfying E,[Ny,] + --- + E4[Ny, ,] = wp(Y) — oo. We can now use
standard facts about Poissonian variables:

For example, (5) is equivalent to saying that the image @ of p under the
map X— (Z?;ol Ny; (x))n>1 gives full measure to the event {s,/w,(Y)— 1}
in the sequence space & := {s = (s;);>1 : 8; € No} (with product o-field).
But @ coincides with the distribution of w +— (N, (vy(w))n>1 € & where
(Nt)t>0 is a Poisson process with E[N;] = 1 on (£2,F, P). Now it is well
known that (Ni):>o satisfies the strong law N;/t — 1 a.s. and a fortiori
Ny, v)/wn(Y) — 1 a.s. We therefore see that indeed Q[sn/wn(Y) — 1] =
PNy, v)/wa(Y) = 1] = L.

Checking the CLT (6) is a routine probability exercise (cf. Problem 27.3
of [B]), using the characteristic function of the Poisson distribution P},

(8) ﬁ,\(t) = exp[-A1—e€")], teR.
Finally, (7) is clear from {Ty > n} = {Ny» =0} and p(Y") = w,(Y). =

Recall that a measurable function a : (L,o0) — (0, 00) is regularly vary-
ing of index o € R at infinity, written a € Ry, if a(ct)/a(t) — c? as t — o0
for all ¢ > 0. We shall tacitly interpret sequences (an)n>0 as functions
on Ry via t = ap. Furthermore, R,(0) is the family of functions r : (0,¢)
— Ry regularly varying of index o at zero (same condition as above, but for
t . 0). For background information we refer to Chapter 1 of [BGT]. We
write a(t) ~ b(t) as t — oo if a(t)/b(t) — 1, and a(t) < b(t) as t — oo to
indicate that the ratio a(t)/b(t) is bounded away from 0 and oo for ¢ > ¢o.

REMARK 1 (Minimal wandering rates). The asymptotics of the wander-
ing rate (wy(Y)) does depend on the set Y, and there never are sets maxi-
mizing this rate for a given system (cf. Proposition 3.8.2 in [A0]). Still, some
transformations do have distinguished sets Y with minimal wandering rate,
meaning that limy_cown(Z)/wn(Y) > 1forall Z € A, 0 < u(Z) < oo.
Equivalently, wy (Y) ~ wy(Z) provided u(Z) > 0 and Z C Y. This common
rate is then an asymptotic characteristic of the measure preserving system,
the wandering rate of T, (wn(T)).
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We are now ready to state the main result of the present paper. It pro-
vides us with a CLT for T-occupation times of a large family of sets—those
contained in some distinguished reference set Y having a compact regener-
ation property (and hence minimal wandering rate, cf. Proposition 3.2 and
Remark 3.6 of [TZ]). We refer to [TZ], [Z4] for further information on this
type of condition, which (in a slightly stronger form) was first used in [T3].
The assumption (10) on the set Y in the result below is exactly the struc-
tural condition of Theorem 2.1 in [Z4] (which in addition requires regular
variation of (wy(Y))).

THEOREM 1 (T-occupation times inside compactly regenerative sets).
Let T be a c.e.m.p.t. on the o-finite infinite standard measure space (X, A, 1),
and let (X, 2, p, T) be its Poisson suspension. Then T is ergodic, and for any
YeA 0<ulY)<oo,

() %Sn(Y) SuY)  peae asn— oo.

Suppose, in addition, that Y is such that

1 = A is precompact in Loo(p)
(10) Ny = { > T”lyn} o
n=0

wn(Y) N>1  and uniformly sweeping.

Then, for every E € Y N A with u(E) > 0, and every probability measure
V<,

t

Sn(E) —nu(E) S =212 g for everyt € R

1
11 v <t —
w20 _}Hm_w a5 — o0,
where
2
(12) o’ (E) := Var,[S,(E)] < r as n — oo.

" wn(Y)
If, moreover, (wn(Y)) € Ri—q for some o € [0, 1], then
2u(E)? o
'2—a)l'2+a) wy(Y)
We briefly indicate a few situations in which the conditions of [Z4], and

hence our present results, apply. In each case we identify a large family £(T)
of good sets E, i.e. each E € £(T) is contained in some Y satisfying (10).

(13) o2(E) ~

as n — oQ.

EXAMPLE 1 (Random walks driven by Gibbs—Markov maps). Assume
that (M, B,v, R,§) is an ergodic probability preserving fibred system given
by a Gibbs—Markov map (cf. [AO], [AD]) with finite image partition, # R¢
< 0. Let ¢ : M — Z be a {-measurable function and assume (see [AD] for
definitions) that ¢ is aperiodic, and either that ¢ € Ly(u) with {, ¢pdu =0,
or that the p-distribution of ¢ is in the strict domain of attraction of a
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nondegenerate stable distribution of order p € (1,2). Then the Z-extension
T = Ry of R, that is, the map on the o-finite infinite measure space
(X, A p) := (M xZ,BRP(Z),v @vyz), with vz denoting counting measure
on Z, given by T'(x, g) := (Rz,g + ¢(x)), is a c.e.m.p.t. Any set of the form
Y := M x D with D C Z finite satisfies (10), and we have (wn(Y)) € Ri_q
with a:=1/20r a:=1-1/p € (0,1/2), respectively (cf. §7.3 of [Z4]). The-
orem 1 therefore applies to any positive measure set from £(7T') := {E : n(F)
bounded}, where 7 (z,g) := g.

EXAMPLE 2 (Interval maps with indifferent fixed points). A large class of
infinite measure preserving piecewise monotonic interval maps (X, A, u, T, €),
called AFN-maps, has been studied in [Z1], generalizing earlier results from
[AO], [A3], [T1]. We refer to [Z1] or [TZ] for definitions and notation. Their
ergodic behaviour is determined by a finite set { C £ of cylinders Z having an
indifferent fized point xz at the boundary. The considerations of §8 of |TZ]
show that any set E from (T) := {F € A : there is some £ > 0 such that
Fn(xz—e,xz4+e)NZ = Qforall Z € (}iscontained in some Y satisfying (10).
Regular variation of (wy(Y')) depends on details of the local behaviour of T’
at the xz (see e.g. §4 of [T2]).

EXAMPLE 3 (S-unimodal Misiurewicz maps with flat tops). Further ex-
amples with dynamics governed by some distinct indifferent orbits are maps
T on the interval with flat critical points, i.e. points ¢ at which all deriva-
tives of T" vanish. [Z2] was devoted to flat S-unimodal maps 7 on an interval
X := [a, b] satisfying the Misiurewicz condition, meaning that there is some
open subinterval Y around ¢ (without loss of generality, a union of two cylin-
ders) to which the orbit of ¢ does not return, ¢, :==T"c ¢ Y for n > 1. As
pointed out in §7.2 of [Z4], this set Y satisfies (10), and we take £(T") con-
taining all measurable sets inside a sufficiently small neighbourhood of c.
Such a map T always has an absolutely continuous conservative ergodic in-
variant measure p which is infinite iff {log |7"z| dz = —oo. Regular variation
of (wy(Y')) depends on the local behaviour of T" at ¢ and on the existence
of the postcritical Lyapunov exponent of T' (cf. Theorem 5 of [Z2]).

3. Proof of Theorem 1. We follow the strategy used in [P2|, adapt-
ing it to our setup. The specific difficulties are dealt with in the following
auxiliary proposition, which exploits information obtained in the proof of
Theorem 2.1 of |[Z4]|. The latter result states that under the assumptions on
(X, A, u,T) and Y in Theorem 1 above, plus (wy(Y)) € Ri_o for some
a € [0,1], one has, for every f € Li(u) with p(f) # 0, distributional conver-
gence

(14) L 500 % u(H)Ma,

an
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with respect to any probability measure v < u, where M, is a random vari-
able distributed according to the mnormalized Mittag-Leffler law of
order «, which is uniquely characterized by its moments E[M]] =
r'(I'1+ )" /I'(1+ra), r>1, and

(15) Sn(Y) dpy

= — |
o))
1 n
T T+ (2=a) wa(Y)
This is established by proving that the moments of S, (Y") with respect to
[ty converge, i.e.

as n — OQ.

SH(Y) " ~ ' . aT as n — 00
(16) Q( 20)) e ~ 0] .

Here we obtain further information in this direction:

PROPOSITION 2 (The p-moments of T-occupation times). Let T be a
c.e.m.p.t. on the o-finite infinite measure space (X, A, p), and suppose that
YeA 0<uY)< oo, is such that

(17) &y — { 1 Nz_:lfml } is precompact in Loo(p)
Yo wy(Y) =~ Y N>1 and uniformly sweeping.

Then, for every E € Y N A with u(E) > 0, and every integer r > 1,

(18)  { S(E)du = wa(Y) | S5(E) du = w,(Y) (ﬁ) as n — oo.
X Y "
If, moreover, (wny(Y)) € Ri—q for some a € [0, 1], then
Sn(E)\" (02— )" no\"
) §<< w5 ) Tt O ()

as n — 0.

Before applying this to the Poisson suspension, we record a straightfor-
ward consequence: Recall (cf. [Al] or §3.3 of [A0O]) that a c.em.p.t. T on
(X, A, ) is called rationally ergodic if there exists some Y € A, 0 < u(Y)
< o0, satisfying a Rényi inequality, i.e. there is some M € (0, 00) such that

S S2(Y)du < M - (S Sn(Y) d,u)2 for all n > 1.
Y Y

COROLLARY 1 (Rational ergodicity). LetT be a c.e.m.p.t. on the o-finite
infinite measure space (X, A, ) andY € A, 0 < u(Y) < oo, with (17). Then
Y satisfies a Rényi inequality.

Proof. Immediate from (18) in Proposition 2. =
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Assuming Proposition 2, we can now argue as follows:

Proof of Theorem 1. (i) Ergodicity of Poisson suspensions of infinite
measure preserving conservative ergodic autormorphisms is established in [R,
Proposition 2.6.2]. According to Theorems 3.1.5 and 3.1.7 of [A0], our sys-
tem (X,.A, p,T) has an (invertible) conservative ergodic natural extension
(X', A" /', T"), i.e. there is a measurable factor map = : X’ — X with
moT =Tomand ' om ! = pu. The Poisson suspension (X', 2, ', T')
of the latter is ergodic by Roy’s result. Therefore, ergodicity of (X, %, p, T')
follows if we check that (parallel to Theorem 2.4.4 of [R| for automorphisms)
generally

(20)  the suspension of an extension is an extension of the suspension.

To see this, consider any extension (X', A’,u/,T") (not necessarily in-
vertible, with factor map m) of (X, A, u,T), and define # : X’ — X by
x’ := x' o w1, As the o-fields 2, " are generated by the evaluations Ny,
A€ A, and Ny, A" € A, respectively, measurability of 7 follows from that
of the compositions N 407, A € A, which is clear since N gom(x') = N';,(x')
where A’ := 7714 € A’. Next, observe that T o 7w = 7 o T’ since

(Torm(xX)(A) =X or toT ' A=x'o(T") tor A
= (o T'(x))(4)

for A € A. Analogous manipulations show that g’ o w=! is the Poisson
random measure with intensity u, and hence equals u: for any A € A, the
distribution g/ om0 N ! of N4 equals p/ o (N’),) ™! with A" := 7714 € A,
and hence P4y = P,4). The independence condition follows since a1
preserves disjointness. This completes the proof of (20).

Statement (9) is just the ergodic theorem for the suspension.

(ii) For the proof of the CLT (11) we let S;, := S, (E), n > 1. For n € N
and r € Ny the number of points from an ensemble x which visit F exactly
7 times by time n is Ny¢g _,1(x), and therefore

n—1 n—1
Sn(E) =Y NpoT'=> rNg, .
k=0 r=1

Observe that for fixed n the sets {S, =r}, r € {1,...,n — 1}, are pairwise
disjoint, so that Nyg, .y, 7 € {1,...,n—1}, are independent Poisson random
variables on (X, 2, p) with E,[N¢g ] = u({Sn = r}). Consequently,

n—1
(21) Varu[Sn(E)] =Y r’u({Sy =r}) = | SZdp,
r=1 X

so that (13) immediately follows from (19). For the same reason the charac-
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teristic function of S, (E) is

n—1

(22) Eplexp(i6S,(E))] = [ | Eulexp(i6rNys,—y)]

r=1

n—1

— exp (e~ DS = ]

ﬁ
Il

= exp| [ (75 — 1) du,

X

where 6 € R. Abbreviating o, := /Var,[S,(EF)], n € N, we find that

Sy (E) — nu(E 6>
logE,, [exp(zﬁ (E) = nul )>] = —— + R,(0),
o 2
where
R, (0) :== S [exp(iﬁs—) - <1 —}-iHS— - —(9 S—) )] dp, 6eR.

(o %) On 2 On

X
Therefore the CLT with respect to wu,

{Sn(E) —nu(E) < t} . S =512 g for every t € R
on(E) V2 as n — 00,
follows once we verify that

lim R,(0) =0 for all 6 € R.

t

But by an easy standard estimate, we have
0 3 53
Ra0)] < P8 Bngy,
X n
and the integral on the right-hand side tends to zero, since the r = 2 and
r = 3 cases of (18) in Proposition 2 ensure that

2 3

(g S3(E) du) - o(g S2(E) d,u) 85 71 — 00,
X X

Finally, the extension to other measures v < p is immediate from Eagleson’s

theorem (cf. |E| or Corollary 1 of |Z5]). =

4. Proof of Proposition 2. The proof of this crucial proposition ex-
ploits a number of facts established in the proof of Theorem 2.1 of [Z4].
Hardly surprising, the argument for the regularly varying case will depend on
Karamata’s Tauberian theorem (KTT) and the Monotone Density theorem
for regularly varying functions (see [BGT| or Proposition 4.2 and Lemma 4.1

of [TZ]), that is,
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LeEMMA 1 (Karamata’s Tauberian theorem, Monotone Density theorem).
Let (bn) be a sequence in [0,00) such that B(s) := ), ~obne™™ < 0o for all
s > 0. Suppose that £ € Ry and ¢ € [0,00). Then B

(1) B(s) ~ (1/s)20(1/s) as s \, 0 if and only if

(i) 274 be ~n%(n)/T(o+1) as n — oco.

If (by) is eventually monotone and o > 0, then both are equivalent to

(iii) by, ~ on® (n)/I'(0+1) as n — oco.

In order to deal with non-regularly varying situations, we need to supply
a few less familiar tools from Karamata theory: A measurable function a :
(L,00) — (0,00) is O-regularly varying at infinity, written a € OR, if for all

c>0,
0 < lim alct) < lim a(ct) < 00
t—oc a(t) T t—oo alt)

OR(0) will denote the class of functions O-regular varying at zero (same con-
dition, but for ¢ \, 0). This is just one of several useful concepts generalizing
regular variation which still enable a meaningful asymptotic theory. For the
reader’s convenience we explicitly state a few facts which we are going to use
below. The first observation is due to Feller (cf. Corollary 2.0.6 of [BGT]).

LEMMA 2 (O-regular variation of monotone sequences). If (wn)n>o is
a nondecreasing sequence in (0,00) with imy_,ccWe,N/WN < 00 for some
co > 1, then w € OR.

The argument to follow hinges on two Tauberian results for O-regular
variation. For the first, see Theorem 2.10.2 of [BGT|, or |[dHS].

LEMMA 3 (de Haan-Stadtmiiller O-Tauberian theorem). If (u,)n>0 @s a
sequence in (0,00), then the following are equivalent:

(i) (vn)N>0:= (ZnNz_Ol Up)N>1 15 O-reqularly varying at infinity,

(ii) U(s) =2 ,5oune ", s >0, is O-regularly varying at zero,

(iii) U(1/N) < v(N) as N — oo.

LEMMA 4 (O-Monotone Density theorem). If (up)n>0 is a non decreasing
sequence in (0,00) with (vN)N>0 = (ZnNz_Ol Up)N>1 O-reqularly varying at
infinity, then U(s) := 3, 5o une™ ", s > 0, satisfies

(iv) U(1/N) < Nu(N) as N — oco.

Proof. This is a variant of Exercise 2.12.26 of [BGT]. Simply observe
that vy < Nuy < ZiZN Uy < von < const - vy and apply the preceding

lemma. =

We are now ready for



222 R. ZWEIMULLER

Proof of Proposition 2. (i) Since wy(Y) = p(Y') Efj:_ol qn(Y') with ¢, (Y)
N 0, we have wan(Y) < 2wy (Y) for all N > 0, which by Lemma 2 im-
plies (wn(Y)) € OR. According to Lemma 3 this entails O-regular varia-
tion at zero of Qy(s) := >, ~oa(Y)e ™™, s > 0, and hence also of s —
(sQy (s))~"/s for any r > 1. Moreover,

(23) wn(Y) = Qy (%) as N = oo,

The proof of Theorem 2.1 of |Z4| shows, without using regular variation,
that for any r > 1,

1 1 "
00 Avs(s):= 32 (]850 ) dpy ) = —( ) as 5\ 0,
=N s\ sQy(s)
As the right-hand side belongs to OR(0), we conclude that for any r > 1,
the same is true for Ay,. Using Lemma 3 again, we thus see that

N r
1 N
24 S;S(YV)du<Ay,| = | <X N| =——= as N — o0,
2 D)) du= Ay (¥)=¥a@am)

with all three sequences O-regularly varying. In particular, as the leftmost

sum is in OR and §,. S} (Y)dp is nondecreasing in n, we can appeal to
Lemma 4 to obtain

@) {smd= (o) = () =a wn—

Y

with a, = p(Y) ™', Sn(Y)dpuy. We thus have, for each r > 1, bound-
edness of the moment sequence ({y(Sn(Y)/an)" dp)n>1, and hence also of
(§y (Sn(E)/an)" dp)n>1 for any fixed E € Y N A. Moreover, we also see
that lim,, . §, (S,(Y)/an)" dp > 0. Combining these two facts with Hopf’s
ratio ergodic theorem we conclude (using uniform integrability of the se-
quence ((Sp(E)/an)" )n>1) that for any r > 1 and E € Y N A,

E T
(26) | So(E) dpu~ <M> [ sm(v)du=a, asn—co.
¥ nY)) 3
Together with (25) this gives the second part of (18).
Define R,, := Sp(E)/an, n > 1. It is also shown in [Z4] that for any
r>1,and E=Y,

(27)  (R;,(E))n>1 satisfies the assumptions of Proposition 3.2 of [Z4],

which implies that for £ =Y we have

(28) S Sy(E)-hdu~ S Sy(E)duy  as n — oo, uniformly in h € Hy.
Y Y
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We claim that (27), and hence also (28) hold for every fixed E € Y N.A with
w(E) > 0: Note that

(29) Su(E)=Sp_x(E)oT* onYy, ke{0,...,n},

and the previously observed boundedness of all moment sequences gives weak
precompactness of (1y R} (E))p>1. Finally, we need to verify that

|(R"(E)oT R (E))-ull1 — 0 for all u € Loy (1) supported on some Y™,

But, precisely as in the case E = Y considered in [Z4] (cf. equation (4.9)
there), this follows from (26) via the mean-value theorem.
(ii) Now fix some E € YNA with p(E) > 0, and observe that due to (29),

[ By di =" | Sp_p(B) o T Ly du =3 | S (E) - T¥1y, dp.
X k=0 X k=0Y
As an immediate consequence, we see that
N
> s an+1 JESIRRAE
n=0X

where hy = wy41(Y)7! Zgonnlyn € 9Hy. Since { Sp(E)dp — oo as
n — 00, (28) enables us to conclude that

ix dﬂ“’zwnﬂ SSN W(E)du as N — oo,
n=0X Y
and
(30) ([ sn(Bydu) e
n>0 X N
— (1 _6—5) Z(Z S Sr( )du) —Ns
N>0 n=0X
~(1—e Z(an+1 | Sk (B) )™
N>0 n=0 Y
= n(V)Qr(s)- Y (§ Sn(E)dp)e™
n>0 Y
p(y)? (%) Qv (s) - n%%(é ST(Y) d,uy>e_”5

as s \, 0, where the last step uses (26). We know that each factor in the right-
most expression is O-regularly varying, and so the same is true for the left-
most expression. Hence, by Lemma 3, the sequence (22]:0 §x Sn(E) dp) >0
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belongs to OR, and by the obvious monotonicity of the individual terms in
these sums we can appeal to Lemma 4 to obtain, for any r > 1,

) 5B @ () av, (1) =) ) e — o

X

where the second relation comes from (23) and (24).
(iii) Finally, assume that (wy(Y)) € Ri_q for some « € [0,1]. By KTT
this means that there is some function /¢, slowly varying at infinity, such that
N\ /1 1-ay
Qy(s) = (;) £<g> for s >0, wy(Y)~ u(Y)T}(T_(Z; as n — oo.
In the proof of Theorem 2.1 of [Z4], it is shown that in this case, for any
r>1,

7! 1 "
32 Sp(Y)dpy Je™ ~ —| ——— as s \, 0.
EDY (LT o) o
Therefore, (30) becomes
E\" /1 24+(r—1)a 1 —(r-1)

Z(S SH(E) du)e_”s ~ 7l p(Y)? <M> <—> E(—)

5o’k u(Y) s s
as s \, 0. Applying KTT once again (and monotonicity of (§ Sy, (E) djt)n>1),

we thus obtain

T ~ 2 /L(E) " 7’!
§ Su(B)dis o () (59) rero=mm

as n — oo, and hence (19). =

. nH_(T_l)O‘K(n)_(r_l)
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