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POISSON SUSPENSIONS OFCOMPACTLY REGENERATIVE TRANSFORMATIONSBYROLAND ZWEIMÜLLER (Wien)Abstrat. For in�nite measure preserving transformations with a ompat regenera-tion property we establish a entral limit theorem for visits to good sets of �nite measureby points from Poissonian ensembles. This extends lassial results about (noninterating)in�nite partile systems driven by Markov hains to the realm of systems driven by weaklydependent proesses generated by ertain measure preserving transformations.1. Introdution. On a �rst enounter with in�nite ergodi theory oneis immediately led to ask what an in�nite invariant measure an possibly tellus about the dynamis of a transformation. Consider a onservative ergodinonsingular map T on some σ-�nite measure spae (X,A, m).In the standard situation where T has an invariant probability measure
µ ≪ m, the pointwise ergodi theorem shows that for any A ∈ A,
(1) 1

n
Sn(A) :=

1

n

n−1∑

k=0

1A ◦ T k → µ(A) µ-a.e. on X as n → ∞,
meaning that the invariant measure µ(A) of the set A asymptotially repre-sents the frequeny of visits of a µ-typial single orbit to A. Under additionalassumptions on the (mixing) behaviour of the map T and on the set A (sat-is�ed by various nontrivial and interesting examples), it is in fat possibleto establish a entral limit theorem (CLT) asserting that
(2) µ

[
Sn(A) − nµ(A)

σ(A)
√

n
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,whih provides us with detailed information about the onvergene in (1) bylarifying the asymptoti form of the distribution of the T -oupation times

Sn(A).
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212 R. ZWEIMÜLLER
In ontrast, if T preserves an in�nite (yet σ-�nite) measure µ ≪ m, then

(3) 1

n
Sn(A) =

1

n

n−1∑

k=0

1A ◦ T k → 0 µ-a.e. on X as n → ∞,
for every A ∈ A with µ(A) < ∞. While Hopf's ratio ergodi theorem (e.g.[A0℄, [H℄, or [Z3℄) shows that the ratios Sn(A)/Sn(B) of oupation timesonverge a.e. to the ratios µ(A)/µ(B) of the respetive measures, it does notidentify the asymptoti order of magnitude of the Sn(A). In fat, aordingto Aaronson's ergodi theorems (�2.4 of [A0℄), no suh order exists for a.e.onvergene. Preise information in terms of the distributions of the Sn(A) isavailable under ertain additional assumptions (f. �3.6 of [A0℄ and [TZ℄, [Z4℄;some information on the ompliated pointwise behaviour of Sn(A) for sets
A of in�nite measure an be found in [ATZ℄).In what follows, we take a di�erent point of view, whih enables us toreover the interpretation of µ as giving the asymptoti frequeny of visitsalso in situations with µ(X) = ∞, whih we assume from now on. The triviallimiting behaviour in (3) means that the orbit of a typial single point whih
T attempts to distribute over the in�nite spae is hardly ever visible in areferene set of �nite measure. Why not replae the randomly hosen singlepoint, whih works well in a probability spae, by some randomly hosenountable ensemble of points, distributed over the spae (X,A, µ) (whih isa ountable disjoint union of probability spaes) in suh a way that we expetone point per unit measure?This, in essene, is what the Poisson suspension does: it desribes the si-multaneous ation of T on (suitable) ountable olletions of points. Roughlyspeaking, T ats on ensembles x = {xi}i≥1 ⊆ X via Tx := {Txi}i≥0, andit turns out that there is a natural invariant probability measure µ for T,making preise a natural random hoie of x. Under suitable assumptions,
T turns out to be ergodi for µ, whih immediately yields an ergodi theoremfor the orbits of ountable ensembles, ensuring that for any A ∈ A,
(4) 1

n
Sn(A) :=

1

n

n−1∑

k=0

NA ◦T
k → µ(A) µ-a.e. as n → ∞.

HereNA(x) =
∑

i≥0 1A(xi) denotes the number of points from x in A, and wewill all Sn(A) :=
∑n−1

k=0 NA ◦T
k the T-oupation time (up to time n) of A.We thus reover the interpretation of µ(A) as the average number of visitsof orbits to A if we start with µ-typial ountable ensembles x rather thansingle points. The present note is devoted to the study of Poisson suspensionsof ertain in�nite measure preserving transformations, and provides su�ientonditions for a CLT of the form
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µ

[
Sn(A) − nµ(A)

σn(A)
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,to aompany the strong law (4).Here is a formal de�nition of the Poisson suspension (X, A, µ,T) of themeasure preserving system (X,A, µ, T ), where (X,A, µ) is σ-�nite and Tneed not be invertible: We let X denote the set of ounting measures on

(X,A), i.e. of all measures x : A → N0 = {0, 1, . . . ,∞}, whih we interpretas ountable ensembles of points. For any A ∈ A the funtion NA : X → N0evaluates ounting measures at A, that is, NA(x) := x(A), x ∈ X. Naturally,we want eah NA to be measurable, and hene equip X with the σ-�eld
A := σ(NA : A ∈ A) generated by them. Next, we de�ne T : X → X byletting Tx := x◦T−1, the image of the measure x under T . Then T is easilyseen to be measurable with respet to A, sine by measurability of T eah
NA ◦T = NT−1A, A ∈ A, is A-measurable.There exists a unique probability measure µ on (X, A), alled the Pois-son random measure with intensity µ, suh that for any �nite olletionof pairwise disjoint sets A1, . . . , Al ∈ A the orresponding NA1

, . . . ,NAlare independent random variables on (X, A, µ), and eah NA has a Pois-son distribution Pλ with expetation λ = Eµ[NA] =
T
X

NA dµ = µ(A).It is easy to see that µ ◦ T−1 = µ implies µ ◦ T
−1 = µ: the distribu-tion of (NA1

, . . . ,NAl
) under µ ◦ T

−1 is µ ◦ T
−1 ◦ (NA1

, . . . ,NAl
)−1 =

µ ◦ (NA1
◦T, . . . ,NAl

◦T) = µ ◦ (NT−1A1
, . . . ,NT−1Al

), the µ-distributionof (NT−1A1
, . . . ,NT−1Al

), whih are independent (sine the T−1Ai are pair-wise disjoint) Poisson variables on (X, A, µ) with respetive expetations
µ(T−1Ai) = µ(Ai).In a more probabilisti language, (X, A, µ,T) is a (noninterating) in-�nite partile system driven by the dynamial system (X,A, µ, T ). In anergodi-theoretial ontext, [CFS℄ introdues Poisson suspensions as abstratversions of ideal gas models. Situations in whih the underlying system is(the shift-spae representation of) some Markov proess have been studiedearlier: see e.g. [P1℄, [P2℄ (disrete time) or �VIII.5 of [D℄ (ontinuous time).In partiular, the results of [P2℄ ontain most of Proposition 1 and Theorem1 below for the speial ase of null-reurrent Markov shifts on a ountablealphabet. [P2℄ also overs ertain Markov hains with general state spae,but depends on onditions not neessarily satis�ed for the dynamial sys-tems we are interested in. Our aim is to go beyond these proesses with alear-ut dependene struture by extending a CLT whih is known in thatlassial setup to the family of transformations onsidered in [Z4℄.2. Main result. Let T be a onservative ergodi measure preservingtransformation (.e.m.p.t.) on the σ-�nite spae (X,A, µ) with µ(X) = ∞.
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(We refer to [A0℄ for a wealth of information on suh situations.) In termsof its transfer operator T̂ : L1(µ) → L1(µ), haraterized by\

X

(g ◦ T ) · u dµ =
\
X

g · T̂ u dµ

for all u ∈ L1(µ) and g ∈ L∞(µ), this means that T̂1 = 1 (T̂ naturallyextends to {u : X → [0,∞) measurable A}), and ∑
k≥0 T̂ ku = ∞ a.e. for all

u ∈ L1(µ) with Tu dµ > 0. Let H be a olletion of probability densities withrespet to µ. If there is some K ∈ N0 suh that infu∈H infY
∑K

k=0 T̂ ku > 0, weall H uniformly sweeping (in K steps) for Y . The measure spae is standardif A is the Borel σ-�eld of some omplete separable metri on X.Important quantitative harateristis of T are given in terms of itsreturn-time distributions to suitable �xed referene sets: For Y ∈ A with
µ(Y ) > 0 the �rst return (entrane) time of Y is

ϕ(x) = ϕY (x) := min{n ≥ 1 : Tnx ∈ Y }, x ∈ X,and we let TY x := Tϕ(x)x, x ∈ X. The restrited measure µ|Y ∩A is invariantunder the �rst return map, TY restrited to Y , that is, 1Y =
∑

k≥1 T̂ k1Y ∩{ϕ=k}a.e. If µ(Y ) < ∞, then ϕ is a random variable on the probability spae
(Y, Y ∩ A, µY ), µY (E) := µ(Y )−1µ(Y ∩ E). Under additional assumptionsmaking Y a suitable referene set, the asymptotis of the tail probabilities
qn(Y ) := µY (Y ∩ {ϕY > n}) of its return distribution, or the wanderingrate of Y given by wN (Y ) := µ(Y )

∑N−1
n=0 qn(Y ) = µ(Y N ), where Y N :=⋃N−1

n=0 T−nY , N ≥ 1, is deisive. We shall follow the onvention of [TZ℄ and[Z4℄ to denote Y0 := Y and Yn := Y c ∩ {ϕ = n}, n ≥ 1 (whih are disjointand satisfy Y N =
⋃N−1

n=0 Yn and µ(Yn) = µ(Y ) qn(Y )).As a warm-up, we point out how to interpret the wandering rate interms of the Poisson suspension. Note that for the following probabilistilaws to hold, no speial assumptions on the system or the sets are re-quired: Poisson suspensions a priori ome with a lot of inbuilt indepen-dene. Note that (as Y n is the set of points whih visit Y within time
{0, . . . , n− 1}), NY n(x) an be interpreted as the number of distint pointsfrom the ensemble x ∈ X whih visit Y at least one before time n. Similarly,
τY (x) := min{j ≥ 0 : T

j
x(Y ) > 0} represents the �rst time at whih somepoint from x ∈ X visits Y .Proposition 1 (Number of distint visitors and waiting time for the�rst). Let T be a .e.m.p.t. on the σ-�nite in�nite measure spae (X,A, µ),and let (X, A, µ,T) be its Poisson suspension. For every Y ∈ A with

0 < µ(Y ) < ∞, the variables NY n satisfy a strong law ,(5) Eµ[NY n ] = wn(Y ) and NY n

wn(Y )
→ 1 µ-a.e.,
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and a entral limit theorem,(6) µ

[
NY n − wn(Y )√

wn(Y )
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2ds
for every t ∈ Ras n → ∞.Moreover ,(7) µ[τY ≥ n] = e−wn(Y ), n ≥ 1.Proof. This is easy if we observe that NY n = NY0

+ · · · + NYn−1
is asum of n independent Poisson variables with expetations Eµ[NYk

] = µ(Yk)satisfying Eµ[NY0
] + · · · + Eµ[NYn−1

] = wn(Y ) → ∞. We an now usestandard fats about Poissonian variables:For example, (5) is equivalent to saying that the image Q of µ under themap x 7→(
∑n−1

j=0 NYj
(x))n≥1 gives full measure to the event {sn/wn(Y )→ 1}in the sequene spae S := {s = (sj)j≥1 : sj ∈ N0} (with produt σ-�eld).But Q oinides with the distribution of ω 7→ (Nwn(Y )(ω))n≥1 ∈ S where

(Nt)t≥0 is a Poisson proess with E[N1] = 1 on (Ω,F , P ). Now it is wellknown that (Nt)t≥0 satis�es the strong law Nt/t → 1 a.s. and a fortiori
Nwn(Y )/wn(Y ) → 1 a.s. We therefore see that indeed Q[sn/wn(Y ) → 1] =
P [Nwn(Y )/wn(Y ) → 1] = 1.Cheking the CLT (6) is a routine probability exerise (f. Problem 27.3of [B℄), using the harateristi funtion of the Poisson distribution Pλ,(8) P̂λ(t) = exp[−λ(1 − eit)], t ∈ R.Finally, (7) is lear from {τ Y ≥ n} = {NY n = 0} and µ(Y n) = wn(Y ).Reall that a measurable funtion a : (L,∞) → (0,∞) is regularly vary-ing of index ̺ ∈ R at in�nity, written a ∈ R̺, if a(ct)/a(t) → c̺ as t → ∞for all c > 0. We shall taitly interpret sequenes (an)n≥0 as funtionson R+ via t 7→ a[t]. Furthermore, R̺(0) is the family of funtions r : (0, ε)
→ R+ regularly varying of index ̺ at zero (same ondition as above, but for
t ց 0). For bakground information we refer to Chapter 1 of [BGT℄. Wewrite a(t) ∼ b(t) as t → ∞ if a(t)/b(t) → 1, and a(t) ≍ b(t) as t → ∞ toindiate that the ratio a(t)/b(t) is bounded away from 0 and ∞ for t ≥ t0.Remark 1 (Minimal wandering rates). The asymptotis of the wander-ing rate (wN (Y )) does depend on the set Y , and there never are sets maxi-mizing this rate for a given system (f. Proposition 3.8.2 in [A0℄). Still, sometransformations do have distinguished sets Y with minimal wandering rate,meaning that limN→∞wN (Z)/wN (Y ) ≥ 1 for all Z ∈ A, 0 < µ(Z) < ∞.Equivalently, wN (Y ) ∼ wN (Z) provided µ(Z) > 0 and Z ⊆ Y . This ommonrate is then an asymptoti harateristi of the measure preserving system,the wandering rate of T , (wN (T )).
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We are now ready to state the main result of the present paper. It pro-vides us with a CLT for T-oupation times of a large family of sets�thoseontained in some distinguished referene set Y having a ompat regener-ation property (and hene minimal wandering rate, f. Proposition 3.2 andRemark 3.6 of [TZ℄). We refer to [TZ℄, [Z4℄ for further information on thistype of ondition, whih (in a slightly stronger form) was �rst used in [T3℄.The assumption (10) on the set Y in the result below is exatly the stru-tural ondition of Theorem 2.1 in [Z4℄ (whih in addition requires regularvariation of (wN (Y ))).Theorem 1 (T-oupation times inside ompatly regenerative sets).Let T be a .e.m.p.t. on the σ-�nite in�nite standard measure spae (X,A, µ),and let (X, A, µ,T) be its Poisson suspension. Then T is ergodi, and for any

Y ∈ A, 0 < µ(Y ) < ∞,(9) 1

n
Sn(Y ) → µ(Y ) µ-a.e. as n → ∞.Suppose, in addition, that Y is suh that(10) HY :=

{
1

wN (Y )

N−1∑

n=0

T̂n1Yn

}

N≥1

is preompat in L∞(µ)and uniformly sweeping.Then, for every E ∈ Y ∩ A with µ(E) > 0, and every probability measure
ν ≪ µ,(11) ν

[
Sn(E) − nµ(E)

σn(E)
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,where(12) σ

2
n(E) := Varµ[Sn(E)] ≍ n2

wn(Y )
as n → ∞.If , moreover , (wN (Y )) ∈ R1−α for some α ∈ [0, 1], then(13) σ

2
n(E) ∼ 2µ(E)2

Γ (2 − α)Γ (2 + α)
· n2

wn(Y )
as n → ∞.We brie�y indiate a few situations in whih the onditions of [Z4℄, andhene our present results, apply. In eah ase we identify a large family E(T )of good sets E, i.e. eah E ∈ E(T ) is ontained in some Y satisfying (10).Example 1 (Random walks driven by Gibbs�Markov maps). Assumethat (M,B, ν, R, ξ) is an ergodi probability preserving �bred system givenby a Gibbs�Markov map (f. [A0℄, [AD℄) with �nite image partition, #Rξ

< ∞. Let φ : M → Z be a ξ-measurable funtion and assume (see [AD℄ forde�nitions) that φ is aperiodi, and either that φ ∈ L2(µ) with TX φdµ = 0,or that the µ-distribution of φ is in the strit domain of attration of a
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nondegenerate stable distribution of order p ∈ (1, 2). Then the Z-extension
T = Rφ of R, that is, the map on the σ-�nite in�nite measure spae
(X,A, µ) := (M ×Z,B ⊗P(Z), ν ⊗ νZ), with νZ denoting ounting measureon Z, given by T (x, g) := (Rx, g + φ(x)), is a .e.m.p.t. Any set of the form
Y := M ×D with D ⊆ Z �nite satis�es (10), and we have (wN (Y )) ∈ R1−αwith α := 1/2 or α := 1− 1/p ∈ (0, 1/2), respetively (f. �7.3 of [Z4℄). The-orem 1 therefore applies to any positive measure set from E(T ) := {E : π(E)bounded}, where π(x, g) := g.Example 2 (Interval maps with indi�erent �xed points). A large lass ofin�nite measure preserving pieewise monotoni interval maps (X,A, µ, T, ξ),alled AFN-maps , has been studied in [Z1℄, generalizing earlier results from[A0℄, [A3℄, [T1℄. We refer to [Z1℄ or [TZ℄ for de�nitions and notation. Theirergodi behaviour is determined by a �nite set ζ ⊆ ξ of ylinders Z having anindi�erent �xed point xZ at the boundary. The onsiderations of �8 of [TZ℄show that any set E from E(T ) := {F ∈ A : there is some ε > 0 suh that
F∩(xZ−ε, xZ +ε)∩Z = ∅ for allZ ∈ ζ} is ontained in someY satisfying (10).Regular variation of (wN (Y )) depends on details of the loal behaviour of Tat the xZ (see e.g. �4 of [T2℄).Example 3 (S-unimodal Misiurewiz maps with �at tops). Further ex-amples with dynamis governed by some distint indi�erent orbits are maps
T on the interval with �at ritial points, i.e. points c at whih all deriva-tives of T vanish. [Z2℄ was devoted to �at S-unimodal maps T on an interval
X := [a, b] satisfying the Misiurewiz ondition, meaning that there is someopen subinterval Y around c (without loss of generality, a union of two ylin-ders) to whih the orbit of c does not return, cn := Tnc /∈ Y for n ≥ 1. Aspointed out in �7.2 of [Z4℄, this set Y satis�es (10), and we take E(T ) on-taining all measurable sets inside a su�iently small neighbourhood of c.Suh a map T always has an absolutely ontinuous onservative ergodi in-variant measure µ whih is in�nite i� Tlog |T ′x| dx = −∞. Regular variationof (wN (Y )) depends on the loal behaviour of T at c and on the existeneof the postritial Lyapunov exponent of T (f. Theorem 5 of [Z2℄).3. Proof of Theorem 1. We follow the strategy used in [P2℄, adapt-ing it to our setup. The spei� di�ulties are dealt with in the followingauxiliary proposition, whih exploits information obtained in the proof ofTheorem 2.1 of [Z4℄. The latter result states that under the assumptions on
(X,A, µ, T ) and Y in Theorem 1 above, plus (wN (Y )) ∈ R1−α for some
α ∈ [0, 1], one has, for every f ∈ L1(µ) with µ(f) 6= 0, distributional onver-gene(14) 1

an
Sn(f)

ν⇒ µ(f)Mα,
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with respet to any probability measure ν ≪ µ, where Mα is a random vari-able distributed aording to the normalized Mittag-Le�er law oforder α, whih is uniquely haraterized by its moments E[Mr

α] =
r! (Γ (1 + α))r/Γ (1 + rα), r ≥ 1, and

an :=
1

µ(Y )

\
Y

Sn(Y ) dµY(15)
∼ 1

Γ (1 + α)Γ (2 − α)
· n

wn(Y )
as n → ∞.This is established by proving that the moments of Sn(Y ) with respet to

µY onverge, i.e.(16) \
Y

(
Sn(Y )

µ(Y )

)r

dµY ∼ E[Mr
α] · ar

n as n → ∞.Here we obtain further information in this diretion:Proposition 2 (The µ-moments of T -oupation times). Let T be a.e.m.p.t. on the σ-�nite in�nite measure spae (X,A, µ), and suppose that
Y ∈ A, 0 < µ(Y ) < ∞, is suh that(17) HY =

{
1

wN (Y )

N−1∑

n=0

T̂n1Yn

}

N≥1

is preompat in L∞(µ)and uniformly sweeping.Then, for every E ∈ Y ∩ A with µ(E) > 0, and every integer r ≥ 1,
(18)

\
X

Sr
n(E) dµ ≍ wn(Y )

\
Y

Sr
n(E) dµ ≍ wn(Y )

(
n

wn(Y )

)r as n → ∞.If , moreover , (wN (Y )) ∈ R1−α for some α ∈ [0, 1], then
(19)

\
X

(
Sn(E)

µ(E)

)r

dµ ∼ r! (Γ (2 − α))1−r

Γ (2 + (r − 1)α)
· µ(Y )wn(Y )

(
n

wn(Y )

)r

as n → ∞.Before applying this to the Poisson suspension, we reord a straightfor-ward onsequene: Reall (f. [A1℄ or �3.3 of [A0℄) that a .e.m.p.t. T on
(X,A, µ) is alled rationally ergodi if there exists some Y ∈ A, 0 < µ(Y )
< ∞, satisfying a Rényi inequality, i.e. there is some M ∈ (0,∞) suh that\

Y

S2
n(Y ) dµ ≤ M ·

(\
Y

Sn(Y ) dµ
)2 for all n ≥ 1.Corollary 1 (Rational ergodiity). Let T be a .e.m.p.t. on the σ-�nitein�nite measure spae (X,A, µ) and Y ∈ A, 0 < µ(Y ) < ∞, with (17). Then

Y satis�es a Rényi inequality.Proof. Immediate from (18) in Proposition 2.
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Assuming Proposition 2, we an now argue as follows:Proof of Theorem 1. (i) Ergodiity of Poisson suspensions of in�nitemeasure preserving onservative ergodi automorphisms is established in [R,Proposition 2.6.2℄. Aording to Theorems 3.1.5 and 3.1.7 of [A0℄, our sys-tem (X,A, µ, T ) has an (invertible) onservative ergodi natural extension
(X ′,A′, µ′, T ′), i.e. there is a measurable fator map π : X ′ → X with
π ◦ T ′ = T ◦ π and µ′ ◦ π−1 = µ. The Poisson suspension (X′, A′, µ′,T′)of the latter is ergodi by Roy's result. Therefore, ergodiity of (X, A, µ,T)follows if we hek that (parallel to Theorem 2.4.4 of [R℄ for automorphisms)generally(20) the suspension of an extension is an extension of the suspension.To see this, onsider any extension (X ′,A′, µ′, T ′) (not neessarily in-vertible, with fator map π) of (X,A, µ, T ), and de�ne π : X

′ → X by
πx

′ := x
′ ◦ π

−1. As the σ-�elds A, A′ are generated by the evaluations NA,
A ∈ A, and N

′
A′ , A′ ∈ A′, respetively, measurability of π follows from thatof the ompositions NA◦π, A ∈ A, whih is lear sine NA◦π(x′) = N

′
A′(x′)where A′ := π−1A ∈ A′. Next, observe that T ◦ π = π ◦ T

′ sine
(T ◦ π(x′))(A) = x

′ ◦ π−1 ◦ T−1A = x
′ ◦ (T ′)−1 ◦ π−1A

= (π ◦T
′(x′))(A)for A ∈ A. Analogous manipulations show that µ

′ ◦ π
−1 is the Poissonrandom measure with intensity µ, and hene equals µ: for any A ∈ A, thedistribution µ

′ ◦π
−1◦N

−1
A of NA equals µ

′◦(N′
A′)−1 with A′ := π−1A ∈ A′,and hene Pµ′(A′) = Pµ(A). The independene ondition follows sine π−1preserves disjointness. This ompletes the proof of (20).Statement (9) is just the ergodi theorem for the suspension.(ii) For the proof of the CLT (11) we let Sn := Sn(E), n ≥ 1. For n ∈ Nand r ∈ N0 the number of points from an ensemble x whih visit E exatly

r times by time n is N{Sn=r}(x), and therefore
Sn(E) :=

n−1∑

k=0

NE ◦ T
k =

n−1∑

r=1

r N{Sn=r}.Observe that for �xed n the sets {Sn = r}, r ∈ {1, . . . , n − 1}, are pairwisedisjoint, so that N{Sn=r}, r ∈ {1, . . . , n−1}, are independent Poisson randomvariables on (X, A, µ) with Eµ[N{Sn=r}] = µ({Sn = r}). Consequently,
(21) Varµ[Sn(E)] =

n−1∑

r=1

r2µ({Sn = r}) =
\
X

S2
n dµ,so that (13) immediately follows from (19). For the same reason the hara-
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teristi funtion of Sn(E) is

Eµ[exp(iθSn(E))] =

n−1∏

r=1

Eµ[exp(iθrN{Sn=r})](22)
= exp

[n−1∑

r=1

(eiθr − 1)µ({Sn = r})
]

= exp
[\
X

(eiθSn − 1) dµ
],where θ ∈ R. Abbreviating σn :=

√
Varµ[Sn(E)], n ∈ N, we �nd that

log Eµ

[
exp

(
iθ

Sn(E) − nµ(E)

σn

)]
= −θ2

2
+ Rn(θ),where

Rn(θ) :=
\
X

[
exp

(
iθ

Sn

σn

)
−

(
1 + iθ

Sn

σn
− 1

2

(
θ

Sn

σn

)2)]
dµ, θ ∈ R.Therefore the CLT with respet to µ,

µ

[
Sn(E) − nµ(E)

σn(E)
≤ t

]
→ 1√

2π

t\
−∞

e−s2/2 ds
for every t ∈ Ras n → ∞,follows one we verify that

lim
n→∞

Rn(θ) = 0 for all θ ∈ R.But by an easy standard estimate, we have
|Rn(θ)| ≤ |θ|3

6
·
\
X

S3
n

σ3
n

dµ,and the integral on the right-hand side tends to zero, sine the r = 2 and
r = 3 ases of (18) in Proposition 2 ensure that

(\
X

S3
n(E) dµ

)2
= o

(\
X

S2
n(E) dµ

)3 as n → ∞.Finally, the extension to other measures ν ≪ µ is immediate from Eagleson'stheorem (f. [E℄ or Corollary 1 of [Z5℄).4. Proof of Proposition 2. The proof of this ruial proposition ex-ploits a number of fats established in the proof of Theorem 2.1 of [Z4℄.Hardly surprising, the argument for the regularly varying ase will depend onKaramata's Tauberian theorem (KTT) and the Monotone Density theoremfor regularly varying funtions (see [BGT℄ or Proposition 4.2 and Lemma 4.1of [TZ℄), that is,
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Lemma 1 (Karamata's Tauberian theorem, Monotone Density theorem).Let (bn) be a sequene in [0,∞) suh that B(s) :=
∑

n≥0 bn e−ns < ∞ for all
s > 0. Suppose that ℓ ∈ R0 and ̺ ∈ [0,∞). Then(i) B(s) ∼ (1/s)̺ℓ(1/s) as s ց 0 if and only if(ii) ∑n−1

k=0 bk ∼ n̺ℓ(n)/Γ (̺ + 1) as n → ∞.If (bn) is eventually monotone and ̺ > 0, then both are equivalent to(iii) bn ∼ ̺n̺−1ℓ(n)/Γ (̺ + 1) as n → ∞.In order to deal with non-regularly varying situations, we need to supplya few less familiar tools from Karamata theory: A measurable funtion a :
(L,∞) → (0,∞) is O-regularly varying at in�nity, written a ∈ OR, if for all
c > 0,

0 < lim
t→∞

a(ct)

a(t)
≤ lim

t→∞

a(ct)

a(t)
< ∞.

OR(0) will denote the lass of funtions O-regular varying at zero (same on-dition, but for t ց 0). This is just one of several useful onepts generalizingregular variation whih still enable a meaningful asymptoti theory. For thereader's onveniene we expliitly state a few fats whih we are going to usebelow. The �rst observation is due to Feller (f. Corollary 2.0.6 of [BGT℄).Lemma 2 (O-regular variation of monotone sequenes). If (wN )N≥0 isa nondereasing sequene in (0,∞) with limN→∞wc0N/wN < ∞ for some
c0 > 1, then w ∈ OR.The argument to follow hinges on two Tauberian results for O-regularvariation. For the �rst, see Theorem 2.10.2 of [BGT℄, or [dHS℄.Lemma 3 (de Haan�Stadtmüller O-Tauberian theorem). If (un)n≥0 is asequene in (0,∞), then the following are equivalent :(i) (vN )N≥0 := (

∑N−1
n=0 un)N≥1 is O-regularly varying at in�nity ,(ii) U(s) :=

∑
n≥0 une−ns, s > 0, is O-regularly varying at zero,(iii) U(1/N) ≍ v(N) as N → ∞.Lemma 4 (O-Monotone Density theorem). If (un)n≥0 is a non dereasingsequene in (0,∞) with (vN )N≥0 := (

∑N−1
n=0 un)N≥1 O-regularly varying atin�nity , then U(s) :=

∑
n≥0 une−ns, s > 0, satis�es(iv) U (1/N) ≍ Nu(N) as N → ∞.Proof. This is a variant of Exerise 2.12.26 of [BGT℄. Simply observethat vN ≤ NuN ≤ ∑2N

n=N un ≤ v2N ≤ const · vN and apply the preedinglemma.We are now ready for
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Proof of Proposition 2. (i) Sine wN (Y ) = µ(Y )

∑N−1
n=0 qn(Y ) with qn(Y )

ց 0, we have w2N (Y ) ≤ 2wN (Y ) for all N ≥ 0, whih by Lemma 2 im-plies (wN (Y )) ∈ OR. Aording to Lemma 3 this entails O-regular varia-tion at zero of QY (s) :=
∑

n≥0 qn(Y )e−ns, s > 0, and hene also of s 7→
(sQY (s))−r/s for any r ≥ 1. Moreover,(23) wN (Y ) ≍ QY

(
1

N

) as N → ∞.The proof of Theorem 2.1 of [Z4℄ shows, without using regular variation,that for any r ≥ 1,(♦r) AY,r(s) :=
∑

n≥0

(\
Y

Sr
n(Y ) dµY

)
e−ns ≍ 1

s

(
1

sQY (s)

)r as s ց 0.
As the right-hand side belongs to OR(0), we onlude that for any r ≥ 1,the same is true for AY,r. Using Lemma 3 again, we thus see that
(24) N∑

n=0

\
Y

Sr
n(Y ) dµ ≍ AY,r

(
1

N

)
≍ N

(
N

QY (1/N)

)r as N → ∞,with all three sequenes O-regularly varying. In partiular, as the leftmostsum is in OR and TY Sr
n(Y ) dµ is nondereasing in n, we an appeal toLemma 4 to obtain(25) \

Y

Sr
n(Y ) dµ ≍

(
n

QY (1/n)

)r

≍
(

n

wn(Y )

)r

≍ ar
n as n → ∞,

with an := µ(Y )−1
T
Y Sn(Y ) dµY . We thus have, for eah r ≥ 1, bound-edness of the moment sequene (

T
Y (Sn(Y )/an)r dµ)n≥1, and hene also of

(
T
Y (Sn(E)/an)r dµ)n≥1 for any �xed E ∈ Y ∩ A. Moreover, we also seethat limn→∞

T
Y (Sn(Y )/an)r dµ > 0. Combining these two fats with Hopf'sratio ergodi theorem we onlude (using uniform integrability of the se-quene ((Sn(E)/an)r)n≥1) that for any r ≥ 1 and E ∈ Y ∩A,(26) \

Y

Sr
n(E) dµ ∼

(
µ(E)

µ(Y )

)r \
Y

Sr
n(Y ) dµ ≍ ar

n as n → ∞.Together with (25) this gives the seond part of (18).De�ne Rn := Sn(E)/an, n ≥ 1. It is also shown in [Z4℄ that for any
r ≥ 1, and E = Y ,(27) (Rr

n(E))n≥1 satis�es the assumptions of Proposition 3.2 of [Z4℄,whih implies that for E = Y we have(28) \
Y

Sr
n(E) · h dµ ∼

\
Y

Sr
n(E) dµY as n → ∞, uniformly in h ∈ HY .
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We laim that (27), and hene also (28) hold for every �xed E ∈ Y ∩A with
µ(E) > 0: Note that(29) Sn(E) = Sn−k(E) ◦ T k on Yk, k ∈ {0, . . . , n},and the previously observed boundedness of all moment sequenes gives weakpreompatness of (1Y Rr

n(E))n≥1. Finally, we need to verify that
‖(Rr

n(E)◦T−Rr
n(E))·u‖1 → 0 for all u ∈ L∞(µ) supported on some Y M .But, preisely as in the ase E = Y onsidered in [Z4℄ (f. equation (4.9)there), this follows from (26) via the mean-value theorem.(ii) Now �x some E ∈ Y ∩A with µ(E) > 0, and observe that due to (29),\

X

Sr
n(E) dµ =

n∑

k=0

\
X

Sr
n−k(E) ◦ T k · 1Yk

dµ =
n∑

k=0

\
Y

Sr
n−k(E) · T̂ k1Yk

dµ.As an immediate onsequene, we see that
N∑

n=0

\
X

Sr
n(E) dµ =

N∑

n=0

wn+1(Y ) ·
\
Y

Sr
N−n(E) · hn dµ,

where hN := wN+1(Y )−1
∑N

n=0 T̂n1Yn
∈ HY . Sine TX Sr

n(E) dµ → ∞ as
n → ∞, (28) enables us to onlude that

N∑

n=0

\
X

Sr
n(E) dµ ∼

N∑

n=0

wn+1(Y ) ·
\
Y

Sr
N−n(E) dµ as N → ∞,and

(30)
∑

n≥0

(\
X

Sr
n(E) dµ

)
e−ns

= (1 − e−s)
∑

N≥0

( N∑

n=0

\
X

Sr
n(E) dµ

)
e−Ns

∼ (1 − e−s)
∑

N≥0

( N∑

n=0

wn+1(Y ) ·
\
Y

Sr
N−n(E) dµ

)
e−Ns

= µ(Y )QY (s) ·
∑

n≥0

(\
Y

Sr
n(E) dµ

)
e−ns

∼ µ(Y )2
(

µ(E)

µ(Y )

)r

QY (s) ·
∑

n≥0

(\
Y

Sr
n(Y ) dµY

)
e−ns

as s ց 0, where the last step uses (26). We know that eah fator in the right-most expression is O-regularly varying, and so the same is true for the left-most expression. Hene, by Lemma 3, the sequene (
∑N

n=0

T
X Sr

n(E) dµ)N≥0
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belongs to OR, and by the obvious monotoniity of the individual terms inthese sums we an appeal to Lemma 4 to obtain, for any r ≥ 1,
(31)

\
X

Sr
n(E) dµ ≍ 1

n
QY

(
1

n

)
AY,r

(
1

n

)
≍ wn(Y )

(
n

wn(Y )

)r as n → ∞,where the seond relation omes from (23) and (24).(iii) Finally, assume that (wN (Y )) ∈ R1−α for some α ∈ [0, 1]. By KTTthis means that there is some funtion ℓ, slowly varying at in�nity, suh that
QY (s) =

(
1

s

)1−α

ℓ

(
1

s

) for s > 0, wn(Y ) ∼ µ(Y )
n1−αℓ(n)

Γ (2 − α)
as n → ∞.In the proof of Theorem 2.1 of [Z4℄, it is shown that in this ase, for any

r ≥ 1,(32) ∑

n≥0

(\
Y

Sr
n(Y ) dµY

)
e−ns ∼ r!

s

(
1

sQY (s)

)r as s ց 0.Therefore, (30) beomes
∑

n≥0

(\
X

Sr
n(E) dµ

)
e−ns ∼ r! µ(Y )2

(
µ(E)

µ(Y )

)r(1

s

)2+(r−1)α

ℓ

(
1

s

)−(r−1)

as s ց 0. Applying KTT one again (and monotoniity of (TX Sr
n(E) dµ)n≥1),we thus obtain\

X

Sr
n(E) dµ ∼ µ(Y )2

(
µ(E)

µ(Y )

)r r!

Γ (2 + (r − 1)α)
· n1+(r−1)αℓ(n)−(r−1)

as n → ∞, and hene (19).Aknowledgements. This work was motivated by a hat with E. Royduring the Szklarska Por�ba 2006 workshop. I am also grateful to the arefulreferee.
REFERENCES[A0℄ J. Aaronson, An Introdution to In�nite Ergodi Theory, Amer. Math. So., 1997.[A1℄ �, Rational ergodiity and a metri invariant for Markov shifts, Israel J. Math.27 (1977), 93�123.[A2℄ �, The asymptoti distributional behaviour of transformations preserving in�nitemeasures, J. Anal. Math. 39 (1981), 203�234.[A3℄ �, Random f-expansions, Ann. Probab. 14 (1986), 1037�1057.[AD℄ J. Aaronson and M. Denker, Loal limit theorems for partial sums of stationarysequenes generated by Gibbs�Markov maps, Stoh. Dyn. 1 (2001), 193�237.[ATZ℄ J. Aaronson, M. Thaler and R. Zweimüller, Oupation times of sets of in�nitemeasure for ergodi transformations, Ergodi Theory Dynam. Systems 25 (2005),959�976.[B℄ P. Billingsley, Probability and Measure, 2nd ed., Wiley, 1986.



POISSON SUSPENSIONS 225

[BGT℄ N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, CambridgeUniv. Press, 1989.[CFS℄ I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodi Theory, Springer, 1982.[D℄ J. L. Doob, Stohasti Proesses, Wiley, 1953.[E℄ G. K. Eagleson, Some simple onditions for limit theorems to be mixing, Teor.Veroyatnost. i Primenen. 21 (1976), 653�660 (in Russian); English transl.: Theor.Probab. Appl. 21 (1976), 637�642.[dHS℄ L. de Haan and U. Stadtmüller, Dominated variation and related onepts andTauberian theorems for Laplae transforms, J. Math. Anal. Appl. 108 (1985),344�365.[H℄ E. Hopf, Ergodentheorie, Springer, 1937.[P1℄ S. C. Port, A system of denumerably many transient Markov hains, Ann. Math.Statist. 37 (1966), 406�411.[P2℄ �, Equilibrium systems of reurrent Markov proesses, J. Math. Anal. Appl. 18(1967), 345�354.[R℄ E. Roy, Mesures de Poisson, in�nie divisibilité et propriétés ergodiques, PhDthesis, Paris, 2006.[T1℄ M. Thaler, Transformations on [0, 1] with in�nite invariant measures, Israel J.Math. 46 (1983), 67�96.[T2℄ �, The Dynkin�Lamperti ar-sine laws for measure preserving transformations,Trans. Amer. Math. So. 350 (1998), 4593�4607.[T3℄ �, A limit theorem for sojourns near indi�erent �xed points of one-dimensionalmaps, Ergodi Theory Dynam. Systems 22 (2002), 1289�1312.[TZ℄ M. Thaler and R. Zweimüller, Distributional limit theorems in in�nite ergoditheory, Probab. Theory Related Fields 135 (2006), 15�52.[W℄ N. A. Weiss, The oupation time of a set by ountably many reurrent randomwalks, Ann. Math. Statist. 43 (1972), 293�302.[Z1℄ R. Zweimüller, Ergodi properties of in�nite measure preserving interval mapswith indi�erent �xed points, Ergodi Theory Dynam. Systems 20 (2000), 1519�1549.[Z2℄ �, S-unimodal Misiurewiz maps with �at ritial points, Fund. Math. 181 (2004),1�25.[Z3℄ �, Hopf's ratio ergodi theorem by induing, Colloq. Math. 101 (2004), 289�292.[Z4℄ �, In�nite measure preserving transformations with ompat �rst regeneration,J. Anal. Math., to appear.[Z5℄ �, Mixing limit theorems for ergodi transformations, J. Theoret. Probab., DOI10.1007/s10959-007-0085-y.Fakultät für MathematikUniversität WienNordbergstrasse 151090 Wien, AustriaE-mail: roland.zweimueller�univie.a.athttp://homepage.univie.a.at/roland.zweimueller/Reeived 20 Deember 2006;revised 21 February 2007 (4841)


