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SELF-AFFINE MEASURES THAT ARE Lp-IMPROVING

BY

KATHRYN E. HARE (Waterloo)

Abstract. A measure is called Lp-improving if it acts by convolution as a bounded
operator from Lq to L2 for some q < 2. Interesting examples include Riesz product mea-
sures, Cantor measures and certain measures on curves. We show that equicontractive,
self-similar measures are Lp-improving if and only if they satisfy a suitable linear inde-
pendence property. Certain self-affine measures are also seen to be Lp-improving.

1. Introduction. A measure µ on the d-dimensional torus, Td = [0, 1]d,
is said to be Lp-improving if µ acts by convolution as a bounded linear
operator from Lq to L2 for some q < 2.

If µ = fdx for some f ∈ Lr with r > 1, then an application of Young’s
inequality shows that µ is Lp-improving. The Hausdorff–Young inequality
implies that any measure µ on [0, 1] with the property that µ̂ ∈ lp(Z) for
some p <∞ is also Lp-improving. More interestingly, there are Lp-improving
measures whose Fourier transform does not tend to zero. Examples include
Riesz product measures ([1], [17]) and uniform Cantor measures supported
on Cantor sets with ratios of dissection bounded away from zero, such as
the classical middle-third Cantor set. This was first established for the clas-
sical Cantor measure by Oberlin [15] using an iterative argument and was
subsequently extended to Cantor measures on Cantor sets with ratios of dis-
section bounded away from zero by Christ [3]. The Lp-improving behaviour
of measures on curves has also been extensively studied; we refer the reader
to [21], for example, and the references cited therein.

The iterative construction of the Cantor measure is key to both the
Oberlin and Christ proofs that the Cantor measures are Lp-improving. As
an invariant probability measure associated with an iterated function system
(IFS) of contractions also has an iterative construction, it is natural to ask
if it too is Lp-improving.

The main result of this paper is to prove that an invariant measure as-
sociated with an equicontractive IFS of similarities is Lp-improving if and
only if the similarities satisfy a suitable linear independence property. Our
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method is a generalization of that of [3]. A modification of the argument
shows that invariant measures associated with a self-affine, equicontractive
IFS, whose linear maps are diagonalizable over R and satisfy the same lin-
ear independence condition, are also Lp-improving. In addition to Cantor
measures, examples of such measures include Bernoulli convolutions and
invariant measures supported on Sierpiński carpets.

As one application, we show that the energy dimension of the k-fold
convolution of any such measure on Td tends to d as k tends to ∞.

2. Set up. A measure µ on Td is said to be Lp-improving if there is
some q < 2 and constant C such that

(2.1) ‖µ ∗ f‖2 ≤ C‖f‖q for all f ∈ Lq(Td).
Since (2.1) holds if and only if the same inequality holds with the measure
µ∗ defined by µ∗(E) = µ(−E), a duality argument shows that if (2.1) holds
then we also have

‖µ ∗ f‖q′ ≤ C‖f‖2 for all f ∈ Lq′(Td)
when q′ is the conjugate index to q, meaning 1/q+1/q′ = 1. As all measures
act under convolution as bounded operators from Lp to Lp for all 1 ≤ p ≤ ∞,
an interpolation argument shows that if µ is Lp-improving, then for every
1 < p <∞ there is some q > p such that µ maps boundedly from Lp to Lq.

Consider the iterated function system (IFS) of affine contractions on Rd,
(2.2) {Si(x) = Six+ bi, i = 0, . . . ,m}
where bi ∈ Rd and Si are linear maps. It is a classical result of Hutchin-
son [13] that there is a unique set K, called the attractor, satisfying K =⋃m
i=0 Si(K). Furthermore, given any probabilities {pi}mi=0, i.e., real numbers

satisfying pi > 0 and
∑m

i=0 pi = 1, there is a unique, compactly supported
probability measure µ satisfying

(2.3) µ(E) =
m∑
i=0

piµ(S−1i (E)) for all Borel sets E ⊆ Rd.

We will refer to the measure µ as the self-affine (or invariant) measure
associated with the IFS (2.2) and probabilities {pi}mi=0.

Without loss of generality we can assume b0 = 0 and that the attractor
is a subset of [0, 1]d = Td. We will suppose that all Si = S; such IFS are
sometimes called equicontractive. We are interested in two special cases:

1. The linear map S is a similarity. In this case S = rR where R is an
orthogonal transformation and 0 < r < 1 is the contraction factor.
We call the IFS an equicontractive similarity. The IFS that generates
the classical Cantor set (see below) is an example.
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2. The linear map S is diagonalizable over R. We call this an equicon-
tractive diagonalizable IFS. A Sierpiński carpet (see [6]) is an example
of the attractor of such an IFS.

Notice that S is both a similarity and diagonalizable over R if and only
if the rotation R is the identity map or its negative.

By an equicontractive, self-similar measure we mean an invariant mea-
sure associated with an IFS (as in (2.3)) that is an equicontractive sim-
ilarity. An example of an equicontractive, self-similar measure on [0, 1] is
the p-Cantor measure supported on a Cantor set with fixed ratio of dissec-
tion r < 1/2. This measure is generated by the IFS of similarities {S0(x)
= rx, S1(x) ≤ rx + 1 − r} and probabilities p0 = p, p1 = 1 − p, and is
purely singular with respect to Lebesgue measure. The classical, uniform
Cantor measure is the special case r = 1/3 and p = 1/2. When r ≥ 1/2 and
p0 = p1 = 1/2, the equicontractive IFS {rx, rx+1−r} generates a Bernoulli
convolution measure. The Bernoulli convolutions are well known to have an
L2 density function for a.e. r ≥ 1/2 [18], but are purely singular when r is
a Pisot number [4], [5].

Given {bj} ⊆ Rd and probabilities {pj}, put

p(z) =
m∑
j=0

pj exp i(bj · z).

It is known (see [20, p. 342]) that the Fourier transform of the self-affine
measure µ defined by (2.3) is given by

µ̂(z) =
∞∏
k=0

p(T k(z)) where T = S∗.

This infinite product structure is key to proving that such measures are
typically Lp-improving. To be precise, we will prove the following.

Theorem 2.1. Suppose µ is a measure on Td associated with the IFS
{Si(x) = S(x) + bi}mi=0, where b0 = 0 and S is either a similarity or diago-
nalizable over R. Assume the vectors b1, . . . , bm span Rd. There is a constant
C and q < 2 such that

‖µ ∗ f‖2 ≤ C ‖f‖q for all f ∈ Lq(Td).

The proof will be given for the similarity case in Section 3 and for the
diagonalizable case in Section 4. Before turning to this, we show how to
deduce the characterization of Lp-improving, equicontractive, self-similar
measures mentioned in the Introduction.

Corollary 2.2. Suppose µ is an equicontractive, self-similar measure
on Td associated with the IFS {Si(x) = Sx+ bi}mi=0, where b0 = 0 and S is
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a similarity. Then µ is Lp-improving if and only if

Wn := {Sk(bj) : k = 0, . . . , n− 1; j = 1, . . . ,m}
spans Rd for some n.

Proof. The measure µ is also the invariant measure arising from the
equicontractive IFS consisting of the collection of functions {Si1 ◦ · · · ◦ Sin :
0 ≤ ij ≤ m} (for any fixed n) and probabilities {pi1 , . . . , pin}. We have

Si1◦· · ·◦Sin(x) = Sn(x)+
∑n−1

j=0 S
j(bij+1) and thus, according to the theorem,

µ is Lp-improving if { n−1∑
j=0

Sj(bij+1) : ij ∈ {0, . . . ,m}
}

spans Rd for some n. As b0 = 0, this is the same as saying Wn spans Rd.
Conversely, suppose Wn does not span Rd for any n. Let Vn be the vector

subspace spanned byWn. By assumption, each Vn is a proper subspace of Rd,
and as they are nested there must be an integer n0 such that Vn = Vn0 for
all n ≥ n0. The attractor of the IFS is the closure of

⋃
Wn and hence is

contained in the closure of Vn0 . But Vn0 is a finite-dimensional subspace and
so is already closed. Furthermore, being a proper subspace it has Lebesgue
measure zero.

As measure zero is preserved when passing to the quotient space Td,
it follows that µ is supported on a closed subgroup of infinite index and
measure zero in Td. But this is not possible for an Lp-improving measure
(see [9]).

Remark 2.3. The property that Wn spans Rd is equivalent to the state-
ment that some subset of Wn of cardinality d is linearly independent. This
linear independence property can hold without the open set condition being
satisfied by the IFS. Indeed, when d = 1, it is equivalent to the requirement
that the IFS includes two equations, Sx and Sx + b where b 6= 0. Thus
all Bernoulli convolutions are Lp-improving measures. In R2, the linear in-
dependence property (Wn spans Rd) is satisfied by the two-function IFS
{Sx, Sx+ b} if and only if b 6= 0 and b is not an eigenvector of S.

3. Self-similar measures that are Lp-improving

3.1. Preliminary results. As in [3], we begin with two technical re-
sults; these are essentially known. The first is a version of the Littlewood–
Paley theorem.

Notation. Given a bounded function φ : Zd → C, we define a multi-

plier, Mφ, by M̂φ(f)(n) = φ(n)f̂(n) for n ∈ Zd. We write ‖Mφ‖p,q for the

operator norm of Mφ as a mapping Lp(Td)→ Lq.
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Lemma 3.1. Suppose Fj ⊆ Fj+1 are subsets of Zd with j = 1, 2, . . . and
F0 is empty. Assume dist(Fj , F

c
j+1) ≥ 2 diamFj and

⋃
Fj = Zd.

(a) Given a trigonometric polynomial f on Td, define

fj(x) =
∑

n∈Fj\Fj−1

f̂(n)ein·x, j = 1, 2, . . . .

There is a constant C, independent of the choice of sets {Fj}j, such
that for all trigonometric polynomials f ,

‖f‖4 ≤ C
∥∥∥(∑ |fj |2

)1/2∥∥∥
4
.

(b) Given any A > 1, there is some p > 2 such that if φ : Zd → C is
a bounded function and φj = φ1Fj\Fj−1

, then the multiplier Mφ has
operator norm

‖Mφ‖2,p ≤ A sup
j

(‖Mφj‖2,p).

Proof. (a) For completeness, we give a proof in the spirit of [10].

First, we remark that there is no loss of generality in assuming that if
fj 6= 0, then fj−1 = fj+1 = 0. This is because if the result is established for
all such polynomials f , then taking an arbitrary polynomial f and putting
g1 =

∑
j even fj and g2 =

∑
j odd fj gives

C
∥∥∥(∑

j

|fj |2
)1/2∥∥∥4

4
≥ C

�( ∑
j even

|fj |2
)2

+ C
�( ∑

j odd

|fj |2
)2

≥ ‖g1‖44 + ‖g2‖44 ≥ 2−4‖f‖44.

So assume f is a trigonometric polynomial with fj−1 = fj+1 = 0 when-

ever fj 6= 0. Put Gj =
∑j−1

k=1 fk and Bj =
∑∞

k=j+1 fk. We claim

(i)
	
|Gj |2(fjGj + fjGj) = 0,

(ii)
	
|fj |2(BjGj +BjGj + fjBj +Bjfj) = 0.

This is trivially true if fj = 0, so assume otherwise. In this case, we have

Gj =
∑j−2

k=1 fk and Bj =
∑∞

k=j+2 fk, so

supp Ĝj ⊆
j−2⋃
k=1

supp f̂k ⊆ Fj−2 and supp B̂j ⊆
∞⋃

k=j+2

supp f̂k ⊆ F cj+1.

If n ∈ supp |̂Gj |2, then n = n1 − n2 where n1, n2 ∈ supp Ĝj . Hence ‖n‖ =
‖n1 − n2‖ ≤ diamFj−2.

If n∈ supp f̂jGj or n∈ supp Ĝjfj then n = ±(n1−n2) where n1 ∈ supp f̂j
⊆ Fj \ Fj−1 and n2 ∈ supp Ĝj . Thus ‖n‖ = dist(n1, n2) ≥ dist(F cj−1, Fj−2)
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≥ 2 diamFj−2. This shows that |Gj |2 is orthogonal to both fjGj and fjGj ,
so the integral in (i) is zero.

Similarly, if n ∈ supp |̂fj |2, then ‖n‖ ≤ diamFj . If n ∈ supp B̂jGj or n ∈
supp ĜjBj , then ‖n‖≥ dist(Fj−2, F

c
j+1)≥ 2 diamFj , so

	
|fj |2(BjGj +BjGj)

= 0. A similar argument shows that the remaining integrals in (ii) are zero.

Put G1 = 0 and let Pj = |Gj + fj |4 − |Gj |4 =
∑
c(a, b)G2−a

j G
2−b
j faj fj

b

where the sum is over a, b ∈ {0, 1, 2} with a, b not both zero and c(a, b) are
suitable binomial coefficients.

If a + b = 1, then (i) implies that
	
G2−a
j G

2−b
j faj fj

b
= 0. Thus we may

assume a+ b ≥ 2, and then we have∣∣∣ �G2−a
j G

2−b
j faj fj

b
∣∣∣ ≤ �

(|fj |4 + |fj |2|Gj |2).

The orthogonality relations of (ii) imply that
�
|fj |2|f |2 =

�
|fj |2|Gj + fj +Bj |2

=
�
|fj |2

(
|Gj |2 + |fj |2 + |Bj |2 + fjGj + fjGj

)
≥

�
|fj |2(|Gj |2 − 2|fjGj |)

so that �
|fj |2|Gj |2 ≤

�
|fj |2|f |2 + 2|fj |3|Gj |.

Applying the elementary inequality sxtn−x ≤ εsn + c(ε, x)tn for s, t ≥ 0,
0 ≤ x ≤ n, with ε = 1/4 gives

�
|fj |3|Gj | ≤

1

4

�
|fj |2|Gj |2 + c

�
|fj |4,

hence �
|fj |2|Gj |2 ≤ 2

�
|fj |2|f |2 + 4c

�
|fj |4.

Thus, we deduce that∣∣∣ �G2−a
j G

2−b
j faj fj

b
∣∣∣ ≤ c � (|fj |4 + |fj |2|f |2)

(for a new constant c). Summing over j gives

‖f‖44 =
�∑

Pj ≤
∑
j

c
�
(|fj |4 + |fj |2|f |2).

Applying the elementary inequality again to |fj |2|f |2, with small enough ε,
and simplifying gives the desired result,

‖f‖44 ≤ c
∑
j

�
|fj |4 ≤

� (∑
|fj |2

)2
.
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(b) We use the same notation as in (a). Since the inequality

‖f‖p ≤ C
∥∥∥(∑ |fj |2

)1/2∥∥∥
p

holds for p = 4 by (a) and for p = 2 with C = 1 by Parseval’s theorem,
the vector-valued version of the Riesz–Thorin interpolation theorem implies
that for any 2 < p < 4 with 1/p = t/4 + (1− t)/2 we have

‖f‖p ≤ Ct
∥∥∥(∑ |fj |2

)1/2∥∥∥
p
.

Given A > 1, choose t > 0 small enough (equivalently, p sufficiently close
to 2) so that Ct ≤ A. Since (Mφf)j = Mφj (fj), with this p and Minkowski’s
inequality we obtain

‖Mφf‖p ≤ A
∥∥∥(∑

j

|(Mφf)j |2
)1/2∥∥∥

p
≤ A

(∑
‖Mφj (fj)‖

2
p

)1/2
≤ Amax

k
‖Mφk‖2,p

(∑
j

‖fj‖22
)1/2

= Amax
k
‖Mφk‖2,p‖f‖2

with the (final) equality holding because the functions fj are mutually or-
thogonal.

A similar interpolation argument gives a related result for a finite de-
composition.

Lemma 3.2. Suppose L is fixed and F1, . . . , FL ⊆ Zd are disjoint sets.
Given any A > 1, there is some p > 2 such that if φ : Zd → C is a bounded
function and φj = φ1Fj , then

‖Mφ‖2,p ≤ Amax(‖Mφj‖2,p : j = 1, . . . , L).

3.2. Proof of Theorem 2.1 in the self-similar case. Recall that
µ̂(z) =

∏∞
k=0 p(T

k(z)) where T = S∗ and p(z) =
∑m

j=0 pje
ibj ·z. For each

z ∈ Zd we have |p(z)| ≤ 1, thus for any positive integer J ,

|µ̂(z)| ≤
∣∣∣ ∞∏
k=0

p(T kJ(z))
∣∣∣ =: ΦJ(z).

Consequently, ‖µ∗f‖2 ≤ ‖MΦJ
(f)‖2 for all f , and thus it is enough to prove

MΦJ
: Lq → L2 is a bounded multiplier for some J . Since the contraction

factor of T J is rJ , where r is the contraction factor of T , it follows that
there is no loss of generality in assuming r ≤ 1/9.

As the vectors {b1, . . . , bm} are assumed to span Rd, there is also no loss
of generality in assuming b1, . . . , bd are linearly independent.

Elementary trigonometry arguments show that there is a constant c > 0
such that for any ε > 0, |p(z)| ≤ 1 − ε if |1 − eibj ·z| > c

√
ε for any j. Let
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k = (k1, . . . , kd) ∈ Zd. For each j, the set

{z ∈ Rd : bj · z = kj}
is a (d− 1)-dimensional hyperplane. The linear independence of {b1, . . . , bd}
ensures that for each d-tuple k = (k1, . . . , kd) ∈ Zd, there is a unique z ∈ Rd
such that bj · z = kj for all j = 1, . . . , d. Further, {z : |bj · z − kj | ≤ c

√
ε} is

the region between two hyperplanes with distance O(
√
ε), and thus

{z : |bj · z − kj | ≤ c
√
ε for j = 1, . . . , d}

is contained in a d-dimensional cube Λk = Λk(ε) ⊆ Rd of side lengths O(
√
ε)

and centred at the unique solution to {bj · z = kj : j = 1, . . . , d}. For small
enough ε > 0, say ε ≤ ε0, the cubes Λk(ε) are disjoint for different k ∈ Zd.
Outside these cubes, |p(z)| ≤ 1− ε.

Fix a sphere S0 whose diameter is so small that even τS0, the tripled
sphere of S0—meaning the sphere with the same centre and three times the
radius—has the property that any translate of τS0 can intersect at most
one of the cubes Λk(ε) for any fixed ε ≤ ε0.

If r is the contraction factor of T , then T−1(Λk(ε)) is also a cube of
diameter O(

√
ε)r−1. By taking sufficiently small ε ≤ min(ε0, 1/2), we can

assume that for each k, T−1(Λk(ε)) is contained in a translate of S0. This
choice of ε is now fixed.

Take q to be the conjugate index to the minimal of the p > 2 that are
found in Lemmas 3.1 and 3.2 with A= 1+ ε4, and L the number of translates
of S0 required to cover τ(T−1(S0)), where τ(T−1(S0)) denotes the tripled
sphere of T−1(S0). Note that linearity of T implies τ(T−1(S0)) = T−1(τS0).

Define the function φn : Zd → C by

φn(z) =
∣∣∣ n∏
k=0

p(T k(z))
∣∣∣ for z ∈ Zd,

and let Mn denote the multiplier Mφn . Since |µ̂(z)| ≤ |φn(z)| for all n, it is
enough to prove there is a constant C such that ‖Mn‖q,2 ≤ C for all n. In
fact, it is enough to show

(3.1) ‖Mn1T−n(S0)‖q,2 ≤ C for all n,

where by 1E we mean the multiplier Mφ with φ = 1E∩Zd . This is because if

f is any trigonometric polynomial, then supp f̂ ⊆ T−n(S0) for some n, and
thus, assuming (3.1) holds,

‖µ ∗ f‖2 ≤ ‖Mn(f)‖2 = ‖Mn1T−n(S0)(f)‖2 ≤ C‖f‖q.

We will actually prove that if Sn = T−n(S0) and S′n is any translate
of Sn, then ‖Mn1S′n‖q,2 ≤ C for all n. We will do this by an induction
argument on n.
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Let B0 be an upper bound on the number of integer vectors in Zd con-
tained in any translate of τS0, and put C = 2B0. Since |p(z)| ≤ 1, we even
have ‖M01S′0‖q,2 ≤

√
B0 ≤ C/2 whenever S′0 is a translate of S0.

Now we proceed by induction, assuming ‖Mj1S′j‖q,2 ≤ C for all j ≤ n−1.

Fix a translate, S′n, of T−n(S0) and let τS′n be its tripled sphere. Then
τS′n = T−n(τS′0) for some translate S′0 of S0.

Recall that |p(z)| ≤ 1−ε except if z ∈
⋃
j∈Zd Λj . Thus |p(Tn(z))| ≤ 1−ε

except if z ∈ T−n(
⋃
Λj). As there is at most one choice of j such that

Λj ∩ τS′0 is non-empty, there is also at most one choice of j such that

T−n(Λj) ∩ T−n(τS′0) = T−n(Λj) ∩ τS′n
is non-empty.

Case 1: T−n(
⋃
Λj)∩S′n is empty. In this case, |p(Tn(z))| ≤ 1− ε for all

z ∈ S′n.

We know that T−1(S′0) can be covered by at most L translates of S0.
Thus S′n = T−(n−1)(T−1(S′0)) can be covered by at most L translates of

T−(n−1)(S0), say S
(i)
n−1 = T−(n−1)(S

(i)
0 ) for i = 1, . . . , L. By the induction

assumption,

‖Mn−11T−(n−1)(S
(i)
0 )
‖q,2 = ‖Mn−11S(i)

n−1

‖q,2 ≤ C

for each translate S
(i)
0 of S0. As Mn−11S′n ≤

∑L
i=1Mn−11S(i)

n−1

, it follows

from Lemma 3.2 (for the choice of q that has been made) that

‖Mn−11S′n‖q,2 ≤ (1 + ε4) max(‖Mn−11S(i)
n−1

‖q,2 : i = 1, . . . , L) ≤ (1 + ε4)C.

Since Mn(z) = p(Tn(z))Mn−1(z) and |p(Tn(z))| ≤ 1 − ε for all z ∈ S′n, we
deduce that

‖Mn1S′n‖q,2 ≤ (1− ε)‖Mn−11S′n‖q,2 ≤ (1− ε2)C ≤ C

and we are done.

Case 2: There is one choice of j = j(n) such that T−n(Λj) ∩ S′n is
non-empty. In this case T−n(Λk)∩ τS′n is empty for all k 6= j, and therefore
|p(Tn(z))| ≤ 1− ε for all z ∈ τS′n \ T−n(Λj).

Since T−1(Λj) is contained in a translate of S0, T
−n(Λj) is contained in

a translate of T−(n−1)(S0), say S′n−1. The set τS′n can be covered by at most

L translates of T−(n−1)(S0), hence the same reasoning as above shows that

‖Mn1τS′n\S′n−1
‖q,2 ≤ (1− ε2)C.

Now we repeat the argument. We know that τS′n−1 can intersect at

most one set T−(n−1)(Λj). If S′n−1 misses all the sets T−(n−1)(Λj), then
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|p(Tn−1(z))| ≤ 1−ε for all z∈S′n−1. Arguing as in Case 1 above, we find that

‖Mn1S′n−1
‖q,2 ≤ ‖Mn−11S′n−1

‖q,2 ≤ (1− ε2)C.

Applying Lemma 3.2 completes the induction step since

‖Mn1τS′n‖q,2 ≤ (1 + ε4) max(‖Mn1τS′n\S′n−1
‖q,2, ‖Mn1S′n−1

‖q,2)

≤ (1 + ε4)(1− ε2)C ≤ (1− ε4)C.

Thus we can suppose there is one choice of j such that T−(n−1)(Λj)∩S′n−1
is non-empty. Then we are back to the beginning of the Case 2 scenario, but
with the index n replaced by n− 1. Consequently,

‖Mn1τS′n−1\τS′n−2
‖q,2 ≤ ‖Mn1τS′n−1\S′n−2

‖q,2 ≤ (1− ε2)C

for S′n−2 a suitable translate of T−(n−2)(S0).

We continue to repeat these arguments, producing sets S
′
n−j satisfying

‖Mn1τS′n−j+1\τS′n−j
‖q,2 ≤ ‖Mn1τS′n−j+1\S′n−j

‖q,2 ≤ (1− ε2)C,

until either some set S′n−J misses all the sets T−(n−J)(Λk), or J = n.

In the former case,
∣∣p(Tn−J(z))

∣∣ ≤ 1 − ε for all z ∈ S′n−J , and then as
in the Case 1 argument,

‖Mn1S′n−J
‖q,2 ≤ ‖Mn−J1S′n−J

‖q,2 ≤ (1− ε2)C.

We therefore have

‖Mn1τS′n−J
‖q,2 ≤ ‖Mn1τS′n−J+1

‖q,2
≤ (1 + ε4) max

(
‖Mn1τS′n−J+1\S

′
n−J
‖q,2, ‖Mn1S′n−J

‖q,2
)

≤ (1− ε4)C.

We recall that C was chosen so that ‖Mn1τS′0‖q,2 ≤ C/2, so that also in

the case when n = J, we have ‖Mn1τS′n−J
‖q,2 ≤ (1− ε4)C.

The construction process ensures that S′k−1 ∩ S′k is non-empty provided

k ≥ n − J + 1. Since r−1 ≥ 9, one can check that τS′k−1 ⊆ τS′k, and since

diam τS′k−1 = 3r−(k−1) diamS0, we even have

dist(τS′k−1, (τS
′
k)
c) ≥ diamS′k − 3 diamS′k−1

≥ r−(k−1)(r−1 − 3) diamS0

≥ 6r−(k−1) diamS0 = 2 diam τS′k−1.

Thus we are now in a position to apply Lemma 3.1(b), taking the nested
sets Fk = τS′n−J+k−1 for k = 1, . . . , J + 1 and m = Mn1τS′n . Appealing to
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that lemma we see that

‖Mn1τS′n‖q,2
≤ (1 + ε4) max

(
‖Mn1

τS
′
n−J
‖q,2, ‖Mn1τS′n−j+1\τS′n−j

‖q,2 : j = 1, . . . , J
)

≤ (1− ε8)C,

completing the proof.

4. Self-affine measures that are Lp-improving

4.1. Preliminary results. In this section we argue similarly to estab-
lish the Lp-improving properties of the measures associated with the IFS
{Sx+bi : i = 0, . . . ,m}, when S is a linear map on Rd that is diagonalizable
over R.

To begin, we introduce additional notation. Let e1, . . . , ed be a linearly
independent set of vectors in Rd. By d-dimensional parallelepipeds oriented
in the directions e1, . . . , ed we mean sets of the form

Fj =
{
v =

d∑
i=1

viei ∈ Rd : vi ∈ [aij , bij ]
}
.

These sets are nested if [ai,j−1, bi,j−1] ⊆ [aij , bij ] for all i, j, and in that case
we say the ith coordinate distance between Fj−1 and F cj is

Di(Fj−1, F
c
j ) := min(|aij − ai,j−1|, |bij − bi,j−1|).

We call vi the ith coordinate of v and write

li(Fj) ≡ bij − aij .

Our first lemma is analogous to Lemma 3.1.

Lemma 4.1. Suppose the sets Fj are nested, d-dimensional parallelepipeds
oriented in the directions e1, . . . , ed. Assume

⋃
Fj = Rd and that for all i, j,

Di(Fj−1, F
c
j ) > li(Fj−1).

(a) Given a trigonometric polynomial f on Td, define

fj(x) =
∑

n∈Fj\Fj−1

f̂(n)ein·x, j = 1, 2, . . .

(where F0 is the empty set). There is a constant C (independent of
the choice of sets {Fj}) such that for all trigonometric polynomials f ,

‖f‖4 ≤ C
∥∥∥(∑ |fj |2

)1/2∥∥∥
4
.
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(b) Given any A > 1, there is some p > 2 such that if φ : Zd → C is a
bounded function and φj = φ1Fj\Fj−1

, then

‖Mφ‖2,p ≤ A sup
j

(‖Mφj‖2,p).

Proof. The proof is quite similar to that of Lemma 3.1. We can assume
f is a trigonometric polynomial with fj−1 = fj+1 = 0 whenever fj 6= 0. Put

Gj =
∑j−1

k=1 fk and Bj =
∑∞

k=j+1 fk. As in the proof of Lemma 3.1 it will
suffice to show that

(i)
	
|Gj |2(fjGj + fjGj) = 0,

(ii)
	
|fj |2(BjGj +BjGj + fjBj +Bjfj) = 0.

Of course this is obvious if fj = 0, so we can assume Gj =
∑j−2

k=1 fk
and Bj =

∑∞
k=j+2 fk. Thus if n ∈ supp |̂Gj |2, then n = n1 − n2 where

n1, n2 ∈ Fj−2. Hence |(n1 − n2)k| ≤ lk(Fj−2) for all k.

If m ∈ supp f̂jGj or supp f̂jGj , then m = m1 −m2 where m1 ∈ F cj−1
and m2 ∈ Fj−2 (or vice versa). For some coordinate k, |(m1 − m2)k| ≥
Dk(Fj−2, F

c
j−1). As Dk(Fj−2, F

c
j−1) > lk(Fj−2), we cannot have m = n. Thus

|Gj |2 is orthogonal to fjGj and fjGj , and that establishes (i). Identity (ii)
is similar.

The remainder of the proof follows exactly as before.

4.2. Proof of Theorem 2.1 for the diagonalizable case. With the
revised lemma, the proof of Theorem 2.1 in the equicontractive, diagonal-
izable case is quite similar to the self-similar case, with the main difference
being that we replace spheres by parallelepipeds. We note that T , the ad-
joint of S, is also diagonalizable over R, and we will assume e1, . . . , ed is
a basis of eigenvectors of T corresponding to eigenvalues r1, . . . , rd. As S
is a contraction, each |rj | < 1. When we say parallelepiped, we will mean
a d-dimensional parallelepiped oriented in the directions of these vectors
e1, . . . , ed.

To begin, we let Λk(ε) denote a parallelepiped with equal side lengths ε,
centred at the unique solution to {bj · z = kj : j = 1, . . . , d} (with the same
notation as for the similarity case) and choose ε0 > 0 so that if ε ≤ ε0, these
sets are disjoint for distinct k. Fix a parallelepiped, S0, which is so small
that even its triple, τS0, the parallelepiped with the same centre and triple
the side lengths, has the property that any translate of τS0 can intersect at
most one of the parallelepipeds Λk(ε) for any ε ≤ ε0.

The linear map T−1 is also diagonalizable, with the same eigenvectors
as T , and T−1(Λk(ε)) is a parallelepiped with side lengths |r−1j |O(ε), j =

1, . . . , d. By taking ε sufficiently small we can assume each T−1(Λk(ε)) is
contained in a translate of S0. Fix this ε.
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We remark that T−n(S0) and its triple, τT−n(S0) = T−n(τS0), are also
parallelepipeds (with the obvious modifications to their meaning).

Now proceed as in the proof of the similarity case (and with the anal-
ogous notation) taking Fk = τS′n−J+k−1 for k = 1, . . . , J + 1. The fact
that S′k ∩ S′k−1 is non-empty and both S′k, S

′
k−1 are parallelepipeds oriented

in the directions e1, . . . , ed allows one to establish that the sets Fk satisfy
the hypothesis of Lemma 4.1. The proof is completed by appealing to the
lemma.

5. Consequences. Many self-similar measures are known to have an
average decay in their Fourier transform. For instance, if µ is the self-similar
measure associated with an IFS on Rd, satisfying the open set condition (1),
with contractions {rj}mj=0 and probabilities {pj}mj=0, then

(5.1) sup
R

1

Rd−β

�

B(0,R)

|µ̂(z)|2 dz <∞,

where β satisfies the equation 1 =
∑m

i=0 p
2
i r
−β
i . For more about this see [7],

[14], [19] and [20].
There is a discrete version of (5.1) known for Lp-improving measures,

and thus, in particular, for suitable self-affine measures.

Corollary 5.1 ([11]). If there is some q < 2 and constant C such that
‖µ ∗ f‖2 ≤ C‖f‖q for all f ∈ L2(Td), then

(5.2) sup
N

1

N2d/q′

∑
‖n‖≤N

|µ̂(n)|2 <∞.

The Hausdorff dimension of a measure µ is defined as dimH µ =
inf{dimH F : µ(F ) 6= 0}. When µ is the self-similar measure as above,
then dimH µ = s where s solves the equation s =

∑
pj log pj/

∑
pj log rj

(see [2] or [6]). A related dimension is the energy dimension, defined as

dime µ = sup

{
t :

�

Td

�

Td

dµ(x) dµ(y)

‖x− y‖t
<∞

}
.

It is well known that for all measures µ, dime µ ≤ dimH µ and often the
dimensions are equal. It is also known (see [12]) that

(5.3) dime µ = sup
{
t : sup

N

∑
‖n‖≤N

|µ̂(n)|2‖n‖t−d <∞
}
.

Combining this with (5.2), one immediately sees that

(1) An IFS, {Si}, is said to satisfy the open set condition if there is a non-empty,
bounded, open set U such that

⋃
Si(U) ⊆ U and the sets Si(U) are disjoint. For example,

the IFS {rx, rx+ 1− r} satisfies the open set condition if and only if r ≤ 1/2.
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Corollary 5.2. If there is some q < 2 and constant C so that ‖µ∗f‖2 ≤
C‖f‖q for all f ∈ Lq(Td), then dime µ ≥ d(2/q − 1).

Example 5.3. If µ is the uniform Cantor measure on the classical middle-
third Cantor set, then the Hausdorff and energy dimensions are both
log 2/log 3. Thus if µ : Lq → L2, then 2/q ≤ 1 + log 2/log 3. This lower
bound on q was also obtained by Oberlin [16], using other methods.

If µ is an equicontractive, self-affine measure, then so is µk for any posi-
tive integer k, where this notation means the k-fold convolution product of
µ with itself. But even if the IFS associated with µ satisfies the open set
condition, the IFS generating µk does not, in general, have this property.

However, all convolution powers of an Lp-improving measure are Lp-
improving. In fact, if µ is Lp-improving, say µ : L2 → Lr is a bounded
operator for some r > 2, an interpolation argument can be used to show
that µk is a bounded operator from L2 to Lrk where rk = rk/2k−1. Using this
observation we can deduce the following facts about Lp-improving measures.
The notation Grp(E) means the subgroup of Td generated by E.

Corollary 5.4. Suppose there is some r > 2 and constant C such that
‖µ∗f‖r ≤ C‖f‖2 for all f ∈ L2(Td). For each k = 1, 2, . . . let pk = 1−2k/rk.
Then for some constants Ck we have

(5.4)
1

Nd(2/r)k

∑
‖n‖≤N

|µ̂(n)|2k ≤ Ck for all N.

Thus dime µ
k ≥ dpk and dime µ

k → d as k → ∞. Furthermore, if µ is
concentrated on E ⊆ Rd, then dimH Grp(E) = d.

Proof. Since µk maps L2 to Lrk where rk = rk/2k−1 and 2/r′k − 1 = pk,
(5.4) and the statements about the energy dimension follow from Corollary
5.1 and (5.3). The final claim holds because if µ is concentrated on E, then
µk is concentrated on the k-fold sum of E, and hence on the group generated
by E. Thus dimH Grp(E) ≥ dime µ

k → d as k →∞.

The fact that dime µ
k → 1 for (non-trivial) equicontractive, self-similar

measures on [0, 1] was previously established in [8]. For further dimensional
properties of Lp-improving measures we refer the reader to [11].
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