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ASYMPTOTIC PERIOD IN DYNAMICAL SYSTEMS
IN METRIC SPACES

BY

KAROL GRYSZKA (Kraków)

Abstract. We introduce the notions of asymptotic period and asymptotically peri-
odic orbits in metric spaces. We study some properties of these notions and their con-
nections with ω-limit sets. We also discuss the notion of growth rate of such orbits and
describe its properties in an extreme case.

1. Introduction. Topological properties of dynamical systems, partic-
ularly shapes and dynamics of orbits and limit sets are among important
topics in qualitative theory of differential equations. We usually start from a
fixed point or a periodic orbit and ask about the behaviour of the system in
its vicinity. Many tools can be chosen for that research. However, we usually
assume the presence of a fixed point, a periodic orbit or different kind of set,
especially limit sets. A natural question is: how much can we learn about
the system if we have limited information? For instance, we may not know
whether there is any fixed point but there are other indicators or values that
we can derive and that may imply other useful information.

In dynamics we can find various generalizations of periodicity in sys-
tems with both continuous and discrete time. For the continuous case one
can find such a generalization in [1] where the notion of asymptotic pe-
riod for pseudo-systems is introduced. However, that notion requires strong
conditions. To avoid this problem and to start from less amount of infor-
mation we introduce a new notion of asymptotic period and asymptotically
periodic orbits. Several basic properties, such as the characterization of or-
bits with zero asymptotic period on compact metric space, will be estab-
lished. We will also give examples of abstract flows with asymptotically
non-periodic orbits and discuss the growth rate of such orbits. Our main
contribution is to extend Theorem 1.1 of [2] using the notion of asymptotic
periodicity.

We now introduce notation and basic definitions. Let (X, d) be a metric
space.
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Definition 1.1. A dynamical system (or flow) is a continuous function
φ : R×X → X such that φ(0, x) = x and for any x, s, and t, φ(t, (φ(s, x))) =
φ(t+ s, x).

Definition 1.2. The ω-limit set of a point x ∈ X is defined to be the
set

ω(x) = {y ∈ X | ∃ (tn)n∈N ⊂ R : φ(tn, x)→ y ∧ tn ↗ +∞}.
The α-limit set of x is

α(x) = {y ∈ X | ∃ (tn)n∈N ⊂ R : φ(tn, x)→ y ∧ tn ↘ −∞}.
Definition 1.3. The orbit o(x) of x is

o(x) = {φ(t, x) | t ∈ R}.
The positive orbit o+(x) of x is

o+(x) = {φ(t, x) | t ≥ 0}.
The point x is T -periodic for some T > 0 if φ(T, x) = x.

The value
Per(x) := inf{T > 0 | φ(T, x) = x}

is said to be the period of x.

Definition 1.4. Two flows φ : R × X → X and ψ : R × Y → Y are
equivalent if there exists a homeomorphism h : X → Y that sends each orbit
of φ onto an orbit of ψ while preserving time orientation.

Let (X, d) be a metric space and let φ be a flow on X. Fix x ∈ X and
ε > 0, and define

A(x, ε) := {t ≥ 0 | d(φ(t, x), x) > ε}.
This set is the union of at most countably many pairwise disjoint and open
intervals (qi, ri). The equality ri = +∞ for some i is allowed. Define

wt :=

{
0, t 6∈ A(x, ε),
diam(qi, ri), t ∈ (qi, ri).

The set W := {wt}t≥0 contains at most countably many different non-
negative real numbers or +∞. Note that if ε decreases, then the elements of
W do not decrease.

Set
W (x, ε) := lim sup

t→+∞
wt.

We have W (x, ε) = 0 if o+(x) ⊂ B(x, ε), and W (x, ε) = +∞ if there exists
an index i0 such that ri0 = +∞.

Definition 1.5. The asymptotic period of a point x is defined as

AP(x) := lim
ε→0

lim sup
t→+∞

W (φ(t, x), ε).
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This limit always exists, and it is either finite or infinite. If AP(x) = 0,
then x is called asymptotically fixed. If x has a finite asymptotic period,
then it is called asymptotically periodic. If AP(x) = +∞, then x is called
asymptotically non-periodic. The respective definitions can be formulated for
the orbit of x.

The main advantage of the notion introduced above is that it is indepen-
dent of the limit set: the value AP(x) is determined by the behaviour of the
orbit of x.

Remark 1.6. If x is T -periodic, then it is asymptotically periodic and
AP(x) = T . If x is a fixed point, then it is asymptotically fixed.

Remark 1.7. Depending on the position of the ball B(φ(t, x), ε), the
sets A(φ(t, x), ε) and W may change completely. As an example consider a
planar dynamical system composed of a single periodic orbit of circle shape
and an orbit starting from a fixed point that rolls onto the circle (so the
circle is a limit set). The velocity of the motion is constant for the entire
flow, except in some small neighbourhood of the fixed point. Figure 1 shows
a part of this system. Notice that for i = 1 the set A(φ(ti, x), ε) is a single
open interval (t0,+∞) for some time t0. For i = 2 we get infinitely many
time intervals for which the point x is outside the ball and the lengths of
those intervals are similar.

B(φ(t2, x), ε)

B(φ(t1, x), ε)

Fig. 1. A sketch of a close up to a system described in Remark 1.7. The arrow indicates
the direction of motion.

2. Properties of asymptotic period. In this section we describe some
properties of asymptotically periodic orbits. We investigate how the dynam-
ics on an ω-limit set influences asymptotic periodicity.

Lemma 2.1. Assume that (X, d) is a compact metric space, φ is a flow
on X and x ∈ X. Fix ε > 0. Then there exists T > 0 such that for each
t > T we have d(φ(t, x), ω(x)) ≤ ε.
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Proof. Assume the contrary: for any T > 0 there is a time t > T such
that d(φ(t, x), ω(x)) > ε. Take T1 > 0 and t1 > T1 satisfying this condition.
Now choose T2 > t1 and t2 > T2 in the same way. By induction we can
construct a sequence (tn)n∈N diverging to infinity such that for each n ∈ N
we have

d(φ(tn, x), ω(x)) > ε.

By compactness there is a subsequence (tnk)k∈N and xs ∈ X such that
φ(tnk , x)→ xs and d(xs, ω(x)) ≥ ε. By the definition xs has to be an element
of ω(x), which contradicts our assumption.

Theorem 2.2. Assume that (X, d) is a compact metric space and φ is a
flow on X. For a given point x ∈ X the following equivalence holds:

AP(x) = 0 ⇔ ∃y ∈ X ω(x) = {y}.

Proof. (⇒) Assume that y, z ∈ ω(x) and y 6= z. Let ε < 1
5d(y, z) and let

t be such that d(φ(t, x), y) ≤ ε. Take all time shifts s such that φ(t+ s, x) ∈
B(y, 2ε). Since z ∈ ω(x), there exist countably many times tn and sn such
that φ(t + tn, x) ∈ ∂B(y, 2ε) and φ(t + sn, x) ∈ ∂B(z, ε). The sequence
(sn)n∈N is such that sn > tn and the times sn are the smallest possible for
which the above holds. Note that it follows from the continuity of φ that
there is some α such that sn − tn > α > 0.

SinceW (φ(t, x), ε) is the upper limit of a sequence whose countably many
terms are bounded from below by α (reaching a boundary of B(y, 2ε) re-
quires some positive time), the limit itself is bounded by α. One can take
an arbitrarily large initial time t such that φ(t, x) ∈ B(y, 2ε). Using the
same argument we obtain the same lower bound α (we took all possible
time shifts between two balls around y and z). Thus we conclude that
lim supt→+∞W (φ(t, x), ε) ≥ α and so AP(x) ≥ α.

(⇐) Assume that ω(x) = {y}. Then from Lemma 2.1, for each ε > 0 we
obtain T > 0 such that for all t > T we have φ(x, t) ∈ B(φ(T, x), ε). Hence
AP(x) = 0.

Theorem 2.3. Assume that (X, d) is a compact metric space and φ is a
flow on X. For a given point x ∈ X, if {y} ( ω(x) and y is a fixed point,
then AP(x) = +∞.

Proof. It is sufficient to show that the time needed for a point x to
traverse an arbitrarily small neighbourhood of a fixed point y is unbounded.

Assume the contrary. Let K be an upper bound. Take any z ∈ ω(x)\{y}
and pick ε > 0 such that d(y, z) > ε. Take (tn)n∈N satisfying φ(tn, x) → y
and d(φ(tn, x), y) < ε.

Let sn be the smallest time such that φ(tn+sn, x) 6∈ B(y, ε). The sequence
(sn)n∈N is bounded by K, hence we can pick a subsequence (snk)k∈N such
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that snk → s for some s ≤ K and

φ(tnk + snk , x)→ w 6∈ B(y, ε).

On the other hand, by continuity we have
φ(tnk + snk , x) = φ(snk , φ(tnk , x))→ φ(s, y) = y,

a contradiction.

Theorem 2.4. Assume that φ is a flow on a compact metric space (X, d).
Let x∈X be such that ω(x) contains two periodic orbits. Then AP(x)=+∞.

Proof. Assume the contrary. Let AP(x) = T > 0 and let y and z be
two periodic points of two different periodic orbits with positive distance
between them. Choose ε > 0 such that d(o(z), o(y)) > 5

2ε and take δ such
that lim supt→+∞W (φ(t, x), ε) < T + δ. We can choose a sequence (tn)n∈N
such that lim supn→+∞W (φ(tn, x), ε) < T + δ. Then for sufficiently large
N > 0 and n > N we have W (φ(tn, x), ε) < T +2δ. Choose one such ñ > N
and denote s0 := tñ. Without loss of generality (see Lemma 2.1) we can
assume that B(φ(s0, x), ε) ∩ o(y) 6= ∅. From now on, φ(s0, x) is our point of
reference.

Take (sn)n≥1 and (rn)n≥1 such that ϕ(sn, x) ∈ ∂B(φ(s0, x), ε) and φ(sn+
rn, x) → z, and the orbit of φ(s0, x) does not re-enter B(φ(s0, x), ε) in
the interval (sn, rn). Note that the times rn are bounded by some ele-
ments from W , which implies that lim supn→+∞ rn ≤ lim supt≥s0 wt and
lim supt≥s0 wt is finite. Choose a convergent subsequence (rnk)k∈N such that
rnk → r. Using compactness one can choose another subsequence (snkm )m∈N
such that φ(snkm , x) → xs for some xs ∈ ∂B(φ(s0, x), ε). By continuity we
have

φ(snkm + rnkm , x)→ z,

but on the other hand
φ(snkm + rnkm , x) = φ(rnkm , φ(snkm , x))→ φ(r, xs).

However, the distance between o(z) and xs is positive so φ(r, xs) cannot be
an element of o(z). This contradiction completes the proof.

The following example describes a situation where, although the dynam-
ics of the ω-limit set can change dramatically, the asymptotic period re-
mains unchanged. It also implies, along with previous results, that an infinite
asymptotic period does not imply any specific dynamics of the limit set.

Example 2.5. Let α ∈ [0, π/2) and denote I = [0, 1]. Let T ⊂ R3 be the
torus I2/∼, where ∼ is the relation gluing opposite sides of the square with
the orientation preserved.

To construct a flow φ on T , we first build the positive orbit of (0, 0) by
drawing a straight line from (0, 0) to the top of the square at angle α to the
bottom of the square. The past is defined in the same way. Depending on
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the rationality of α that orbit can be dense or periodic. In either case we fill
T homogeneously with such orbits. We assume that any point on the torus
moves along each orbit with a constant speed η > 0.

Choose a decreasing sequence (αn)n∈N\{0} of positive numbers converging
to 0 such that tan(α+ αn) 6∈ Q for each n ∈ N \ {0}. Consider the family of
tori Tk created from squares of side 1+1/k for k = 1, 2, . . . . They are placed
in R3 so that the following properties are satisfied:
• they have the same axis of rotation and there is one special plane

orthogonal to this axis that intersects all tori in their internal and
external equators,
• Tk+1 is inside Tk for each k ≥ 1,
• T is inside all Tk’s (so it is the innermost torus).
We now construct the orbit of x ∈ T1.
Step 1 (first covering). On T1 we build a piece of o(x) using the same

method as for T . There are three additional restrictions: x need not be
(0, 0), the angle we use is α+ α1 and the orbit runs until T1 is covered with
accuracy 1

1 , which means that for some t1 we have

∀x′ ∈ T1 d(x′, φ([0, t1], x)) ≤
1

1
.

The point x moves with constant velocity η. The past can be defined in any
manner but so as not to disturb the dynamics on any tori Ti and T (for
instance the α-limit set of x is a fixed point outside T1). We do not fill T
with more orbits.

x′

Fig. 2. Illustration of the covering with accuracy 1
5

Step 2 (first jump). We pass from T1 to T2. If t1 is as in Step 1, then we
project y1 := φ(x, t1) orthogonally onto T2. This gives us the point y′2 which
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now plays the role of x from Step 1. The points y1 and y′2 are connected with
a straight line (see Figure 3) where x continues its motion with the same
velocity η. Starting from y′2 we cover T2 with accuracy 1

2 (and therefore
producing t2 and y2) and with angle α+ α2. We maintain the velocity η.

Step 3 (induction). Having constructed one jump we can now proceed
by induction and jump from Tk to Tk+1, change to an angle α + αk+1 and
cover Tk+1 with accuracy 1

k+1 . All the time, xmoves with the same velocity η.

Tk

Tk+1

Fig. 3. Sketch of how an orbit switches between Tk and Tk+1. The bottom torus has
a denser orbit and a different angle.

Our phase space is composed of T , the set o(x) we have just constructed,
and α(x). By construction, ω(x) = T . Depending on the choice of α we
obtain two different dynamics of the ω-limit set. Moreover, irrationality of
angles on tori Tk surrounding T implies AP(x) = +∞. This can be derived
from the following sketch of argument.

Consider the mapping f : S1 → S1 given by f(u) = u + β mod 2π,
where β /∈ Q. We can find N such that the orbit {fn(0)}n∈N has the fol-
lowing property: the upper limit of the number of consecutive iterations
for which the orbit of 0 is outside the ball B(0, ε) is greater than or equal
to N . Given N , consider the set {fn(0) : n = 0, . . . , N} and take εN :=
min{d(0, fn(0)) : n = 1, . . . , N}. Then we need at least N iterations of 0 to
jump into B(0, ε) provided ε ≤ εN . If we take the upper limit, the desired
value will be obtained.

The above reasoning can now be translated to the case described in the
example. Iterations become circuits (that is: one segment of the orbit from
the bottom to the top of the corresponding square) along the orbit on each
Tk and the first jump into the ball becomes the time when o(x) enters the
ball again. Now this gives the information that the smaller the ε we choose,
the more time the orbit o(x) needs to hit the ball B(φ(x, t), ε) for some initial
t > 0, regardless of t.
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Each periodic orbit is also asymptotically periodic, so it is natural that
we should distinguish the two notions. We introduce the following notion.

Definition 2.6. A point x ∈ X (and so its orbit) is called essentially
asymptotically periodic if it is asymptotically periodic and not periodic.

This definition is well-motivated and explained in the next section, where
we discuss the growth rate of asymptotically periodic orbits.

3. Growth rate of asymptotically periodic orbits. We introduce
the definition of growth rate of asymptotically periodic orbits which extends
the definition of growth rate of periodic orbits in [2]. Let us recall the latter.
Let φ : R × X → X be a flow on a metric space (X, d). Given A ∈ R+ we
define the number of periodic orbits of period at most A by

π(φ,A) := max
{
1,#{o(x) ⊂ X | φ(x, a) = x for some 0 < a ≤ A}

}
.

If the set of orbits with period A is infinite, then we set π(φ,A) = +∞. Let

p(φ,A) :=
1

A
log π(φ,A), p(φ) := lim sup

A→+∞
p(φ,A).

p(φ) is called the growth rate of periodic orbits for φ. Note that p(φ) ∈
[0,+∞].

Now we introduce the growth rate for asymptotically periodic orbits.

Definition 3.1. Given A ∈ R+ we define the number of asymptotically
periodic orbits of period at most A by

πAP(φ,A) := max
{
1,#{o(x) ⊂ X | 0 < AP(x) ≤ A}

}
.

And similarly

pAP(φ,A) :=
1

A
log πAP(φ,A), pAP(φ) := lim sup

A→+∞
pAP(φ,A).

pAP(φ) is called the growth rate of asymptotically periodic orbits.

In the same way we introduce the growth rate of essentially asymptoti-
cally periodic orbits.

Definition 3.2. Given A ∈ R+ we define the number of essentially
asymptotically periodic orbits of period at most A by

πEAP(φ,A) := max
{
1,#({o(x) ⊂ X | 0 < AP(x) ≤ A} \ Pφ,A)

}
,

where Pφ,A := {o(x) ⊂ X | 0 < Per(x) ≤ A}. Similarly we introduce the
growth rate of essentially asymptotically periodic orbits:

pEAP(φ,A) :=
1

A
log πEAP(φ,A), pEAP(φ) := lim sup

A→+∞
pEAP(φ,A).
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Motivation for both definitions seems very natural. We want to describe
separately properties involving periodic and asymptotically periodic but not
periodic orbits. We already noted in Remark 1.6 that in easy cases they
coincide. We can also provide a much stronger result that uses both notions.

Theorem 1.1 from a recent work of Sun and Zhang [2] gives us an example
of an extreme growth rate only for periodic orbits. In this section we will
extend this result to both asymptotically periodic and essentially asymp-
totically periodic orbits. Because each periodic orbit is also asymptotically
periodic (see Remark 1.6), we can rewrite [2, Theorem 1.1] for pAP(φ) in
place of p(φ) and obtain the same result. Thus we will focus on the second
kind of orbits.

Before we state and prove our main theorem (Theorem 3.8), let us de-
scribe separately two cases of extreme growth rate of specific orbits.

Remark 3.3. Consider the example in Remark 1.7. Assume that the
velocity (which is constant) is equal to v (linear velocity) or ω (angular
velocity). Denote by Tv and Tω the respective periods of a circular orbit. Then
for a given x belonging to an orbit rolling onto a circle we have AP(x) = Tv
or AP(x) = Tω.

Proposition 3.4 (see [2, Theorem 1.1]). For any a, b ∈ [0,+∞], there
exist compact metric spaces X and Y , and a pair of equivalent flows φ : R×
X → X and ψ : R× Y → Y with fixed points such that

p(φ) = a, p(ψ) = b.

Proof. This was already proven in [2] in the simple case a = 0 and
b = +∞. We give a different construction.

Assume that λ ∈ (0,+∞). We construct a flow (Z, ξλ) on a subset of R2

such that p(ξλ) = λ. For simplicity we write ξ instead of ξλ.
Note that

1

A
log 2

λ
log 2

A
= λ.

If we define
µ(A, λ) :=

⌊
2

λ
log 2

A⌋
,

then
2

λ
log 2

A ≤ µ(A, λ) ≤ 2
λ

log 2
A
+ 1.

Let X := {Xn : x ∈ N}, where

X0 := {(0, 0)}, Xn := ∂B((0, 0), 1/n), n ≥ 1,

and B((a, b), r) denotes an open ball in R2 equipped with the Euclidean
metric. Now we define the dynamics (and consequently the flow ξ) on the
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set Z :=
⋃
X . Suppose X0 is a fixed point and Xn is a periodic orbit of the

following period:

• a 1-periodic orbit for n = 1, . . . , µ(1, λ),
• a 2-periodic orbit for n = µ(1, λ) + 1, . . . , µ(2, λ),
• a k-periodic orbit for n = µ(k − 1, λ) + 1, . . . , µ(k, λ).

In the case of µ(k, λ) = µ(k + 1, λ) we take no k + 1-periodic orbits.
Here and later (in Proposition 3.6) we assume that the motion on each

periodic orbit is with constant velocity. We also assume that the motion on
all orbits (both periodic and later, with minor modifications, asymptotically
periodic) is in the positive direction of the plane.

Fig. 4. Plot of a system in Proposition 3.4. A few orbits are drawn. The arrow indicates
the direction of motion.

It follows directly from the construction that for the flow ξ : R×Z → Z
we have

2
λ

log 2
A ≤ π(ξ, A) ≤ 2

λ
log 2

A
+ 1,

and so p(ξ) = λ.
Assume now that λ = 0. Then we define the dynamics on the circles as

follows:

For n ∈ N \ {0} the set Xn is an n-periodic orbit,

and X0 remains a fixed point. In this case π(ξ, A) = A and hence p(ξ) = 0.
Finally, assume that λ = +∞. Similarly, X0 is a fixed point and X1 is a

1-periodic orbit. For n ≥ 2 we introduce the following dynamics:

X
2(k−1)2+1

, . . . , X
2k2

are k-periodic orbits, for k = 1, 2, . . . .

In this case π(ξ, A) = 2A
2 for A ≥ 2, so p(ξ) = +∞.
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Clearly, any two flows as above are equivalent: the identity is the desired
homeomorphism.

Remark 3.5. For any λ ∈ [0,+∞] the flow (Z, ξ) constructed in Propo-
sition 3.4 satisfies the equality pEAP(ξ) = 0.

Proposition 3.6. For any c, d ∈ [0,+∞], there exist compact metric
spaces X and Y , and a pair of equivalent flows φ : R×X → X and ψ : R×
Y → Y with fixed points such that

pEAP(φ) = c, pEAP(ψ) = d.

Proof. Assume that λ ∈ (0,+∞). We will construct a flow (Z, ξλ) on a
subset of R2 such that pEAP(ξλ) = λ. We use the idea from Proposition 3.4
and we also use the same notion of µ and the definition of Xn’s. We addi-
tionaly set X ′1 := ∂B((0, 0), 2) and Z ′ :=

⋃
X ∪X ′1. For simplicity we write

ξ instead of ξλ.
We will define a flow ξ′ on Z ′. Suppose X0 is a fixed point and X ′1 is a

1-periodic orbit. Finally, assume Xn’s are n-periodic orbits. Between Xn−1
and Xn for n ≥ 2, and between X1 and X ′1, we place essentially asymptoti-
cally periodic orbits Y k

n using the following description:

• For n = 1 we place orbits Y k
1 , k = 1, . . . , µ(1, λ), so that their α-limit

set is X ′1 and ω-limit set is X1.

Fig. 5. Partial plot of a system in Proposition 3.6. A few periodic orbits and one asymp-
totically periodic orbit are drawn. The arrow indicates the direction of motion.
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• For n = 2 we place orbits Y k
2 , k = µ(1, λ)+1, . . . , µ(2, λ), so that their

α-limit set is X1 and ω-limit set is X2.
• For n = ` we place orbits Y k

` , k = µ(` − 1, λ) + 1, . . . , µ(`, λ), so that
their α-limit set is X`−1 and ω-limit set is X`.

If µ(k, λ) = µ(k + 1, λ), then we take no such orbits.
Define

Z := Z ′ ∪
+∞⋃
n=1

µ(n,λ)⋃
k=µ(n−1,λ)+1

Y k
n .

The motion of the entire flow is as follows. On periodic orbits we move
with a constant velocity, in the positive direction of the plane. The motion of
a point x ∈ Y j

i depends on how close it is from the closest circle. It decelerates
close to ω(x) and then maintains the same velocity as the velocity on ω(x)
(see Remark 1.7 where we described a similar case). Similarly we describe
the motion close to α(x). This extends ξ′ to ξ defined on the entire set Z.

It follows from our construction that for (Z, ξ) we obtain pEAP(ξ) = λ.
The cases λ = 0 and λ = +∞ are similar to the respective cases in

Proposition 3.4, hence the details are omitted.

Remark 3.7. For any λ ∈ [0,+∞] the flow (Z, ξ) constructed in Propo-
sition 3.6 satisfies p(ξ) = 0.

Main Theorem 3.8. For any a, b, c, d ∈ [0,+∞], there exist compact
metric spaces X and Y , and a pair of equivalent flows φ : R ×X → X and
ψ : R× Y → Y with fixed points such that

p(φ) = a, p(ψ) = b, pEAP(φ) = c, pEAP(ψ) = d.

Proof. Using Propositions 3.4 and 3.6 we construct two compact metric
spaces C1 and C2, and two flows φ and ψ, such that

p(φ|C1) = a, pEAP(φ|C1) = 0, p(ψ|C1) = b, pEAP(ψ|C1) = 0,

and similarly

p(φ|C2) = 0, pEAP(φ|C2) = c, p(ψ|C2) = 0, pEAP(φ|C2) = d.

Take X = Y = C1 tC2. Then the flows (X,φ) and (Y, ψ) satisfy the desired
conditions.

Our construction also guarantees that we can provide a system of ordi-
nary differential equations describing the flow. One can write them using
polar coordinates on the plane.

4. Conclusion. The tools described in Section 2 can provide us some
more information based on asymptotic behaviour of an orbit. As an example,
Theorem 2.2 gives a sufficient condition for detecting a fixed point. The
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remaining part explains that the case AP(x) = +∞ cannot determine any
specific behaviour of the limit set.

There are several more questions that one can ask. Is there a character-
ization for periodic orbits similar to the one for fixed points? Can any of
these constructions be refined so as to obtain extreme properties of entropy?

Acknowledgements. The author would like to thank Marcin Kulczy-
cki for his helpful remarks and ideas given while preparing this paper. The
author would also like to thank Professor Włodzimierz Zwonek for point-
ing out language errors and the referee for his comments and suggestions to
clarify and rephrase several things in the second section.

REFERENCES

[1] J. Kłapyta, Asymptotically periodic motions in pseudo-processes, Univ. Iagel. Acta
Math. 33 (1996), 73–86.

[2] W. Sun and Ch. Zhang, Extreme growth rates of periodic orbits in flows, Proc. Amer.
Math. Soc. 140 (2012), 1387–1392.

Karol Gryszka
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: karol.gryszka@im.uj.edu.pl

Received 17 April 2014;
revised 28 September 2014 and 6 February 2015 (6240)

http://dx.doi.org/10.1090/S0002-9939-2011-10997-3



	1 Introduction
	2 Properties of asymptotic period
	3 Growth rate of asymptotically periodic orbits
	4 Conclusion
	REFERENCES

