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WEAK AMENABILITY OF GENERAL MEASURE ALGEBRAS

BY

JAVAD LAALI (Tehran) and MINA ETTEFAGH (Tabriz)

Abstract. We study the weak amenability of a general measure algebra M (X) on
a locally compact space X. First we show that not all general measure multiplications
are separately weak™ continuous; moreover, under certain conditions, weak amenability of
M(X)** implies weak amenability of M (X). The main result of this paper states that there
is a general measure algebra M (X) such that M(X) and M(X)** are weakly amenable
without X being a discrete topological space.

1. Introduction. In a recent paper [4] Dales, Ghahramani and Helem-
skii studied the amenability and weak amenability of the measure alge-
bra M(G) on a locally compact group G. They have shown that M(G) is
amenable as a Banach algebra if and only if G is discrete and amenable as
a group. They have proved that M(G) is not amenable when the group G
is not discrete; moreover, M (G) is weakly amenable if and only if the group
G is discrete.

In this paper we consider the same problem for a general measure al-
gebra M (X) on a locally compact Hausdorff space X. First we prove that
if M(X)* is weakly amenable then so is M(X). Then we give a general
measure algebra M (X) which is weakly amenable but the topology of X is
not discrete.

1.1. Notations and definitions. Let X be a locally compact Hausdorff
space. We denote by Cy(X), Co(X) and C.(X) the spaces of all continuous
functions on X which are bounded, vanish at infinity and have compact
support, respectively. They are endowed with the uniform norm || - ||c.
We denote by M (X), MT(X) and M,(X) the spaces of all complex-valued
bounded regular Borel measures, positive measures and probability measures
on X, respectively. The total variation norm on each space is abbreviated
by || - |I; if p € M(X) then

il = § il = |l (D).
X
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The support of p (or supp u) is the smallest closed set F' for which |u|(F) =
lie||. By the Riesz representation theorem we have M(X) = Cy(X)* (see
[10, 14.10 Theorem]).

We shall say that M (X) has a general measure multiplication if there
is a bilinear associative map on M (X) which maps probability measures to
probability measures; that is,

My (X) * My (X) © M (X),

where we write puv or p * v for the product of ; and v. A general measure
multiplication on M (X) makes it a Banach algebra (see [15, Proposition
2.1]). A subalgebra £ of M(X) is an L-space if p € £ and |v| < |p| imply
that v € £. A subalgebra £ of M (X) which is an L-space will be called
a general measure algebra on X. Measure algebras are more general than
hypergroups (see [6] or [11]) and than J. L. Taylor’s convolution measure
algebras (see [16]).

Let 2 be a Banach algebra, and E a Banach 2(-bimodule. Then the dual
space E* of E is a Banach 2-bimodule under the following actions:

(a.x*,x) = (2", z.a), (2".a,x2)= (2" ax) (a€A z€E, x*eE").
A derivation from 2 to E is a bounded linear map D : 2 — FE such that
D(ab) = D(a).b+ a.D(b) (a,be ).
The derivation D from 2 to E is an inner derivation if it is of the form
Dy(a)=ax—za (x€E,ac)

A Banach algebra 2 is called amenable if every continuous derivation
from 2 into E* is inner for every Banach 2-bimodule E. A Banach algebra
A is weakly amenable if every continuous derivation from 2 into the dual
module 2* is inner. Weak amenability for commutative Banach algebras
was introduced in [2], and in the general case in [12]. In [2] it was shown
that a commutative Banach algebra 2l is weakly amenable if and only if
every continuous derivation from 2 into E is zero, for all symmetric Banach
2A-bimodules E.

The second dual space 2A** of a Banach algebra 2 admits two Banach
algebra multiplication known as the first and second Arens multiplications.
Each of them extends the multiplication of 2 canonically embedded in 2A**
(AN is the image of 2 in A** under the canonical mapping). Throughout this
paper, the first and second Arens multiplications are denoted by O and <,
respectively. They can be defined by

FOG=w"-limw"- lién (aabp)”, FOG=w'- lién w*-lim (aabg)”,

where (aq) and (bg) are nets of elements of A such that a), — F and bg -G
in the weak® topology. We note that 20 (or the multiplication) is Arens
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regular if and only if FOG = F { G for all F,G in A**. See [1] and [14] for
the properties of Arens multiplications.

2. General measure algebras. A general measure multiplication need
not be separately weak® continuous, as the following example shows.

ExAMPLE 2.1. There is a commutative general measure multiplication

(i) which is not weak™ separately continuous (is not a hypergroup),
(ii) which is not Arens regular.

This example serves two purposes. First, it shows that not all general
measure algebras are hypergroups (see [6] and [11] for the properties of hy-
pergroups). Second, it shows that weak* separately continuous multiplica-
tions need not have the non-regularity property for general measure algebras
(see [14, Theorem 3.1)).

CONSTRUCTION. Start with the set X = {1,..., 2 2 9} with its

n 59
usual compact topology as a sequence with its limit point. Then

M(X)= {a0(51 + Zané(n+1)/n : Z lan| < oo}.
n=1

n=0

A bilinear map from M (X) x M(X) to M(X) is given by

Omi 1 1
51’*531:5,7;*5 = {(;nln{a:,y} (ZE ?él ’y# )7
Y T =1,

for z and y in X. It is obvious that this multiplication maps probability
measures to probability measures. If z,y and z belong to X then

(0z % Oy) % 02 = 0y * (0 % 6), 01 % 0 = .

So, the multiplication is commutative, associative and distributive. There-
fore, M(X) is a general measure algebra. But the multiplication is not sep-
arately weak® continuous. In fact, set ji, = d(,11)/n and take f € Cp(X)
with f(1) # f(2). Then we have

lim i % 62(f) = i pon () = 61(f) = /1),
01 x 02(f) = d2(f) = f(2).
Hence,

w*-lm(py, * d2) # 01 * O2,

and the map = — J, * d2 is not continuous from X into M (X) with the
weak* topology. Hence, X is not a hypergroup (see [6], [10]).
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Now we show that M (X) is not Arens regular. Write

Y = Z )" X (n+1)/m

(where x4 is the characteristic function of A), and consider the double
sequence

Pam—1 * fi2n (1)

First assume that m > n, and so 2m — 1 > 2n. Thus

2m—1 * pn (V) = piam—1(¥) = (=1)*""1 = —1,

and we deduce that
lim lim proy,—1 * pon(¥) = —1.
n m
Similarly, when n > m, we get 2n > 2m — 1 and

2m—1 * pion (V) = pion () = (=1)*" =1

for each n > m, and so
lim lim pro,—1 * pon(¢0) = 1.
m n
Thus, M(X) is not Arens regular (see [9, Lemma 1.1}).

3. Amenability and weak amenability of M (X)**. The notion of
amenable algebra was introduced by B. E. Johnson in [12] and extended
to weak amenability in [2]. It is known that if the Banach algebra 2A** is
amenable then 2 is amenable [7], [9]. The question of whether the Banach
algebra 2 is weakly amenable when 2A** is weakly amenable seems to be still
open. In [7] and [8] weak amenability of 2** was considered under certain
conditions. We also find a condition under which the weak amenability of
M (X)* implies the weak amenability of M(X). In general, multiplication
in a general measure algebra is not separately w*-continuous (see Example
2.1). We assume this continuity in the following theorem.

THEOREM 3.1. Suppose that M (X) on a locally compact Hausdorff space
X has a general measure multiplication that is separately weak® continuous.

If (M(X)*,0) is weakly amenable then so is M(X).

Proof. Let n be the natural map of Cyp(X) into Cp(X )™ = M(X)* and
let n* denote the adjoint mapping from M (X)** to Co(X)* = M(X). First
we show that n* is an algebra homomorphism from M (X)** onto M(X).
It is clear that n* is weak*-to-weak™ continuous. If © € M(X) then for all
f € Co(X), we have

(" (1), £) = () = (s £ = s £)-
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Hence, n*(j1) = p. For F,G € M(X)**, if we regard M (X) as a subspace of
M (X)**, we can find two bounded nets (), (v3) in M (X) with fi, — F and
vz — G in the weak* topology o (M (X )**, M (X)*). Since the multiplication
in M(X) is separately weak* continuous, for f € Cy(X), we have

(' (FOG), f) = (F B G,n(f)) = limlim {(uavs)", /)
= limlim (pav, ) = limlim (" (fia)r" (7). £)

= (" (F)n"(G), f)-
Hence, n*(F O G) = n*(F)n*(G) and n* is an algebra homomorphism.
Now, suppose that D : M(X) — M(X)* is a derivation. We shall prove
that sois D = n™* o Don* : M(X)*™ — M(X)**. Indeed if F,G,H €
M (X)** then

(D(FOG),H) = {(n

Thus
D(FOG)=D(F)G+ FD(G).
Hence D is a derivation. By assumption, M (X)** is weakly amenable. Hence
there exists ¢ € M (X)** such that
D(F)=F.¢—¢.F (F¢c M(X)™).
Now, let A : M(X) — M(X)*™ be the canonical mapping and let \* denote
the adjoint mapping from M (X )*** to M (X)*. On the other hand, M (X )**

is naturally a M (X)-bimodule and A* is an M (X )-bimodule morphism. In
fact, for g and v in M (X),

(N (1-9), v) = (1.6, A(v)) = (&, A(vp))
= (N (@), v) = (u-A*(9), V),
50, A*(11.¢) = p.A*(¢). Similarly A*(¢.11) = A*(¢).p. Therefore
(D(p),v) = (D" (1), 0" (V) = (n"" o D o™ (), v)
= (D(@), Av)) = (ii-¢ — ¢.11, A(v))
= V(b — D7), v) = (N () — X*(6)., ).

>
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Set A*(¢) = fo. Then if p € M(X), we have D(u) = pufo— fop and so M(X)
is weakly amenable. m

In [4], Dales, Ghahramani and Helemskii studied some implications of
amenability and weak amenability and proved a conjecture on M(G). We
summarize all these results in the following theorem.

THEOREM 3.2. Let G be a locally compact group. Then:

(1) M(G) is amenable if and only if G is discrete and amenable;

(2) M(G) is weakly amenable if and only if G is discrete;

(3) if G is non-discrete then the Banach algebra (L'(G)**,0) is not
weakly amenable.

Proof. For details and proof, see [4]. m

Here we are going to study the above assertions for a general measure
algebra. We shall show that they are not necessarily true.
Let X be a locally compact Hausdorff space. Define a multiplication on
M(X) by
pr=v(p  (p,v € M(X)).
Now let p,v, A € M(X). Then

()X = AL () = AOw(Lps = (N (L)t = a(wA).
If p,v € Mp(X) then

()(1) = v()u(1) = 1-1 = 1.
So, the multiplication is associative, and also, pv is a probability measure
if 4 and v are. Thus we have a general measure algebra.

Now, we are in a position to present our theorem which shows the dif-

ference from the group case. The motivation for this theorem is given in [5,
Example 4.5]. See also [3].

THEOREM 3.3. Let M(X) have the above multiplication. Then the fol-
lowing statements hold for any topology of X:

(i) If X contains at least two points then M (X) is not amenable.
(il) M(X) and M(X)** are weakly amenable.
(iii) There is a general measure algebra L' (1) for which the Banach alge-
bra (L'(p)**,0) is weakly amenable, but the topology of supp L' (i)
is not discrete.

Here the support, supp £, of £ is defined by supp £ = cl(|J L8 Supp ).

Proof. (i) If X contains at least two points, then M,(X) contains at
least two elements. Suppose M (X) is amenable. So, M (X) has a bounded
approximate identity (eq). If p # v and p,v € M,(X), then pu(1) = v(1)
and
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p=limeyp =limpu(l)e, =limv(l)ey = limesv = v.
(0% 03 (e (0%

So, i = v contrary to our assumption. Hence, M (X) is not amenable.

(ii) Let D : M(X) — M(X)* be a continuous derivation and e € M,(X).
Then pe = p and e.D(u) = D(p) for all p € M(X). Now, let p,v € M(X).
Then

(D(ep),v) = (D(u(1)e),v) = (D(e), u(1)v)
= <D(€)7 VM> = <:U’D(e)7 V>'
Therefore, D(eu) = p.D(e) and
D(ep) = e.D(p) + D(e).pp = D(u) + D(e).,
D(1) = D(ep) — D(e).p = .D(e) — D(e)..
Hence, D is the inner derivation implemented by D(e) and so M(X) is
weakly amenable. Similarly, M (X)** is weakly amenable.

(iii) Let g € My(X) and let a,, € (0,00) for each n, with ) |an| < oco.
Put A =", a,u™. Then L*()) is a general measure algebra (see [15, Propo-
sition 2.1(iii)]). Without loss of generality we can assume that supp A = X.

Take F, E € L*(\)**, and let (ua), (vg) be nets in L'()\) such that F =
w*-limg py, £ = w*-limg vj. Then the first Arens multiplication in LY(\)**
is determined by

FOFE =w"- li('in w*- lién (tavg)”

= w*- li(in w*- lién vg(L)uh = E(1)F.

Take E € L'(\)* with E(1) =1,s0 FOE=F.
Now, let D : L'(A\)** — LY(A\)*** be a derivation. Then D(E O F) =
F.D(E) and E.D(F) = D(F). Thus, for F € L'(\)**, we have
D(F) = E.D(F) = D(EQ F) — D(E).F = F.D(E) — D(E).F.
Hence, D is an inner derivation and (L'()\)**, 0) is weakly amenable for any
topology on X. m

In [13], B. E. Johnson proved that L!(G) of a locally compact group
G is weakly amenable. The authors in [4] have shown that if the group G
is discrete then M(G) is weakly amenable. Now we prove that this is not
necessarily true in a general measure algebra.

EXAMPLE 3.4. There is a general measure algebra M(X) which is not
weakly amenable but the topology of X is discrete.

CONSTRUCTION. Let (x,) be a set of different points of real numbers
with lim, z, = z. Suppose that X = {x1,29,...} and z ¢ X. So the
topology of X is discrete (not compact) and

M(X) = {Zanémn :Z]an\ < oo}.
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Let S = {s1,...,s-} be any finite commutative semigroup and set X, =
{z1,...,2,}. Define a multiplication on M (X,) by

Oy, * 0g; = Oz, Where s;5; = 8.
It is commutative and associative. So, M (X, ) is a general measure algebra.
Define ¢ : M(X) — M(X,) by

0o r—1 [e's)
@( Z anémn) = Z andgjn + ( Z an) 536r‘
n=1 n=1 n=r
It is a positive linear operator and maps probability measures to probability
measures. In fact:

(i) If p € Mp(X) then p(pn) € Mp(X,) € Mp(X). In general, [[¢(p)|| <
[lal]-
(ii) If p € M(X,) then ¢(u) = p.
(iii) For p € M(X), ¢(p(n)) = @(u). So ¢ is a linear projection on
M(X). If the range and null space of ¢ are denoted by R(y) and
N (p) respectively, then
R(p) = M(X,), M(X)=M(X,)& N(p).
Now, let u, v € M(X). Define a multiplication on M (X) by

v = o) * p(v).
So for p,v,\in M(X), uv = vyu and
p(A) = @(u) * o) * e(X)) = o(u) * () * ¢(A))
= (o) x () * o(A) = (ur)A
Hence, this multiplication is a commutative, associative and symmetric bilin-
ear map from M (X)x M (X) to M (X,) which maps probability measures to
probability measures. Thus M (X) is a general measure algebra and M (X,)
is an ideal of M(X), i.e. M(X,)M(X) C M(X,).
Now we prove that M (X) is not weakly amenable. It is sufficient to show

that there is a continuous derivation on M (X) which is not inner. Define
fo e M(X)* by

(form) = (= @() (1) = | d(p — o(p)),

X
so fo # 0 and fo|M(X,) = 0. In fact, if u,v € M(X) then

(fo, ) = (v — () (1) = (p(p) * (1) = @(p(p) * (1)) (1) = 0.
On the other hand, the map D : M(X) — M(X)* given by
D(p) = (fo,m) fo  (n€ M(X))
is a continuous derivation. Indeed, D(ur) = 0 and
(1-D(v), A) = (D(v), A = {fo, ) (fo, Au) = 0
for any p,v,A € M(X). So, u.D(v) = D(p).v = 0. Thus D is a non-zero
continuous derivation, but it is not inner. =
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