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SELF-SIMILARITY IN CHEMOTAXIS SYSTEMS

BY

YUKI NAITO (Kobe) and TAKASHI SUZUKI (Osaka)

Abstract. We consider a system which describes the scaling limit of several chemo-
taxis systems. We focus on self-similarity, and review some recent results on forward and
backward self-similar solutions to the system.

1. Introduction. Self-similarity is one of the fundamental properties
of chemotaxis systems, particularly in the study of blowup solutions. For
example, n = 2 is selected for the formation of collapse by the dimen-
sional analysis [14], and the quantized blowup mechanism is obtained by the
self-similarity of the limit equation derived from the backward self-similar

transformation [42]. The present paper is devoted to the study of
ug =V - (Vu —uVo),
T = Av+u, x€R™ t>0,

(1)

where 7 > 0 is a constant. It describes the scaling limit of several chemotaxis
systems, or one of their simplified forms, or motion of the mean field of many
self-gravitational particles in astrophysics, and so forth.

System (1) is invariant under the transformation

(U, U) = (ul“ Uﬂ) = (M2’U,(,U,{E, /J'Qt)v 'U(/,LJJ, M2t))7

and a solution (u,v) invariant under this transformation is called a self-
stmilar solution:

(u,v) = (uy,vy), p>0.

Consequently, we obtain the forward self-similar solution of the form

) = 1022

v(w,t)ZQp(%), reR™ ¢t>0,
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a solution to (1) global in time, and the backward self-similar solution,

®) o) = gy o =),
@ vlet) = v =),

T—1t
a blowup solution to (1) with blowup time ¢ = 7" > 0, where ¢ and 1 are

some functions on R™. Studies on these solutions and their applications are
described in §2 and §3, respectively.

2. Forward self-similar solution

General existence. If the initial values

are taken in (2), then

(5) ug(pa) = p~%ug(x),  wvo(px) = vo(z), p>0,

and conversely, the forward self-similar solution is obtained by showing
unique existence of a solution to (1) satisfying

u(-,0)=wup and wv(-,0)=vy if7>0

for such wg,vg. This approach is taken in [2, 3, 4, 32, 33, 6, 19], and hence-
forth, the solution to (1) is said to be strong (resp. weak) if it is strongly
(resp. weakly) continuous in time in the specified function space.
First, the problem (1) with 7 = 0 is formulated as
t
(6) u(t) = eAug — SVe(t*S)A cu(s) (I xu)(s)ds

for

R2
1 2
Glr.t —|@|*/4t

(x7 ) (47Tt)n/2 )
L 1og (n=2),
2 ||

F(l’) 1 9 n
P (=)

where wy, is the (n — 1)-dimensional volume of the boundary of the unit
ball in R™. This problem has a unique strong solution in M} (R") with
n/2 < p<mn,2—-p/n < q < p,locally in time for large initial data,



SELF-SIMILARITY IN CHEMOTAXIS SYSTEMS 13

and also globally in time for small initial data, where
MJR™) = {f € L, (R™) | lf; M7 || < oo},

loc
Ifi MP|7= sup  RM@/PD o fpe
z€R™, 0<R<1 B(x,R)

denotes the Morrey space. In the limiting case p = n/2 with n > 3, we
obtain a unique strong solution local in time in the space

X = {ueC((0, T M) | sup t/4ju(t); Myr/|| < oo},
o<t<T

provided that

. 2n/3
t(uo) = limsup le*4ug; M2l < 1,

where n > 3, 3/2 < ¢ <n/2 ([2]). If n > 4, there is a unique weak solution
global in time for small initial data in PM"™ 2(R"), where
PMYR™) = {v e S'(R") |7 € L (R"), |v]lppe < oo},
[vllpme = esssup [€]*[D(E)],
£eRn
with &'(R™) and v standing for the space of tempered distributions and the

Fourier transformation of v € S§’(R™), respectively [6, 32]. This is also the
case of L™%°(R"™), the Marcinkiewicz space defined by

LP* = {v € Lioe(R") | [[vllp0 < 00},

1V]lp,c0 = sup{]E\_Hl/p S ] ‘E C R"™ a Borel set with 0 < |E| < oo}7
E

and if n > 3, there is a unique weak solution global in time for small initial
data [33]. These results guarantee the existence of the forward self-similar
solution to (1) with 7 =0, n > 3.

In the other case of 7 > 0, n > 3, similarly, there is a unique weak solution
global in time for small initial data in ug € L™/>*(R") and vy € BMO(R"),
which ensures the existence of the forward self-similar solution [4, 19].

In the case n = 2, the problem (1) has the stability property with the
parameter 7 > 0, i.e., solutions of the parabolic-parabolic system (with
7 > 0) converge to the solution of the parabolic-elliptic system (with 7 = 0)
as 7 — 0 in a subset of the space of pseudomeasures [34].

L*-Solution. For u(z,t) given by (2), we have
| ula,t)de =127 | g(y) dy,
R" R"
and therefore, ||u(-,t)|]1 = constant if and only if n = 2. Since the L!-norm
of u = u(-,t) is expected to be preserved in (1), only in this case can the
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forward self-similar solution describe the ultimate profile of the L'-solution
to (1) globally in time.
The profile functions ¢, ), on the other hand, solve

. V~(V¢—¢V¢)+%m-v¢+¢:0,
7
A¢+gx.w+¢=o in R",

and therefore, either ¢ > 0 or ¢ = 0 by the maximum principle. In the case
of n =2 and ¢ > 0, furthermore, the first equation is equivalent to

2
(8) V-qbV(loggb—w—i-%):O.
This relation holds if
9) P(z) = ge—|71* /4 (@)
with a constant o > 0, and then (7) is reduced to

(10) Ay + gﬁ-VQﬁ—Fae_lzP/‘lew =0, xzcR%

Radially symmetric self-similar solution. Let n = 2. Assuming radial
symmetry, ¢ = ¢(r) > 0, ¢ = ¢(r), r = |z| in (7), we obtain

(10g¢—¢)’+%=0

by (8). Thus, it follows that

2

log(;b—w:—rz—kc

with a constant ¢, and therefore, (9) holds with o = e > 0:
1

Y+ <— + %7“)1#’ toe e =0, >0,
r

¥'(0) = 0.

Equation (7) with 7 = 0 is invariant under adding constants to 1, and
this induces the same property for (11). In view this, we adopt the normal-
ization 1(0) = 0 in this case, and then o = ¢(0) follows. The solution ()
exists for all » > 0, and satisfies lim,j 9(r) = —o0. The structure of the
solution set is clear in this case, and will be described in Theorems 3 and 5.

(11)

If 7 > 0, on the contrary, Sgo r(r) dr < oo follows from
(12) liTm P(r) =0.

Existence of a positive solution to (11) with (12) is discussed in this case
[24, 23], and in particular, the following result is obtained in [25].
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THEOREM 1. For (11)-(12), given 0 < 7 < 2 there is c* > 0 such that
if 0 > o* then there is no positive solution, if 0 < o < o* then there are at
least two positive solutions, and if o = o*, then there is a unique positive
solution.

Two problems arise here; radial symmetry and L!-behavior of the solu-
tion.

Radial symmetry of self-similar solution. The relation (9) and radial
symmetry of the solution are proven by a Liouville type theorem [22] and
the moving plane method [28], respectively. We obtain the following theorem
30, 29].
THEOREM 2. Let (¢,1) € C*(R?) x C?(R?) be a solution to (7), n = 2.
() If T =0, ¢ >0, » € LY(R?) N L>®(R?), and 1, = max{y,0} €
L>®(R?), then (9) holds with a constant ¢ > 0, and ¢ = ¢(r), ¥ =
Y(r) are decreasing functions of r = |z| > 0.

(ii) The same conclusion holds if T > 0, v, > 0, and ¢(x),(x) — 0
as |x| — oo. In this case, ¢,v € L'(R?).

L'-norms of radially symmetric self-similar solutions. Given profile func-
tions ¢ = ¢(r), 1 = 1(r) satisfying (7), we define the volume functions [1, 2]

1 Ve
O(s) = 5 Vo(Vtydt = | ro(r)dr,
0 0
1 ve
w(s) = 5 \u(Viydt = | ro(r)dr,
and obtain " "

Vo(y)dy = 2 | ro(r) dr = 20®(c0),

[e=]
[e=]

1 T r
U(T’,t) = ;(]3(%), 'U(T',t) :Qp(%>
Since (u,v) solves (1), we see that

rug = (rug )y — rupvy — u(roy)y,  TrUe = (rUp), + ru,

and hence
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T T T
Ssut(s, t)ds = ru, — ruvy, TSSUt(S, t)ds = rv, + S su(s,t)ds.
0 0 0

This means
Uy=r(r 'U)r —Upn(r™'Vo),  7Ve=r(r V), + U
for
¢ 72 ¢ 2
U(r,t) = Ssu(s,t) ds = @(7), V(rt) = Ssv(s,t) ds = t@(7>,
0 0
and then it follows that

1
(13) @'+ @ =200 =0, A" +70 — T +P=0, 5>0,
where ' = d/ds.

In the case of 7 = 0, this relation is reduced to

1 dP
14 '+
(14) + 4 + 2s

as 4s¥” = —@. Since ¢ > 0, we have

=0, s>0,

(15) B0 =0, F()20, 530, B(o0) = lmd(s) = ;ﬂ

for A = ||¢||1. Studies on (14) with (15) are summarized as follows [1, 2, §],
where \ = ||¢||1 acts as a control parameter instead of o = ¢(0).

THEOREM 3. In the case of T = 0, n = 2, the problem (7) has a non-
trivial radially symmetric solution (¢,v) satisfying ¢ > 0, [|¢]l1 = A if and
only if 0 < X\ < 8w, and it is unique for each A € (0,8).

To treat the case 7 > 0, we put W(s) = —4s®”(s). Then, by the second
equation of (13),
P = (—4s0") — 750" = W' + i W.

Since s¥"(s) = \/sv¥'(v/s)/4, we have W(0) = limgo W(s) = 0, and
W(s) = e /4| ™4/ (1) dt.
0
This means

—SLD//(S) _ le 778/48 Tt/4d5/ )d
0
f

and putting this into the first equation of (13), we obtain

¢II+ Z@/ = —TS/4Q§/§ Tt/4@/ =0.
0

From this relation, we obtain an a priori L!-estimate of the solution [30].
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THEOREM 4. If (¢,%) is a radially symmetric solution to (7) with T > 0,
n = 2, satisfying ¢, € L*(R?), ¢, > 0, then
4 4
lloll < max{g 73, 3 7737'2}.
If 0 <7 <1/2, we obtain ||p||1 < 8.

The above estimate can be improved as follows (cf. [5]):
4
ol < min{g 73 max{r, 1}, 87 (1 + 1)}
Structure of the solution set. Let S be the set of all solutions (¢, 1) €
C?(R?) x C?(R?) to (7) satisfying
ag ©20 ¢ LY(R*) N L=(R?), ¢4 € L*(R?), $(0) =0 if 7 =0,
o, >0, o(z),Y(x) =0 as|z]— o0 if 7> 0.

By Theorem 2, this set is composed of radially symmetric solutions to (10)
satisfying (9), and furthermore, the problem is formulated as

(go e 7P/t do

using A = |[|¢[|1. Then, the following results [30, 29] are obtained by the
blowup analysis [11, 21].

(17) A¢+%x.w+ 0, =ecR?

THEOREM 5. If n = 2, the above set S of solutions to (7) forms a one-
parameter family denoted by {(¢(s),1(s)) | s € R} with

s (9(s),¥(s)) € CIOC(RQ) X CIOC(R2)7
s — A(s) = [|é(s)[lx

continuous. Moreover, A\(s) — 0 as s | —oo and \(s) — 8w, ¢(s) — 8wy as
s T oo in the sense of measures.

If 7 = 0, then s — A(s) is strictly increasing by Theorem 3, while
Theorem 4 guarantees the upper bound of A(s), e.g., 0 < A(s) < 87 in the
case of 0 < 7 < 1/2.

Convergence to the self-similar solution. If (u,v) is a radially symmetric
solution to (1) with 7 =0,
up =V - (Vu —uVv),
(18) 0=Av+u, xR t>0,
u(-,0) = up,
and if we define

M(s,t) = Q(Vs,1), Q(rit)= | wu(x,t)dz, r>0,

B(0,r)
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then
Mt:4sMSS+lMMS, s € (0,00), t >0,
M(0,t) =0, 7;\J(oo,t) = inglo M(s,t) = A,
M(s,0) = Mo(s),

where A = ||ug||1 and

Mo(s) = Qo(Vs), Qo(r) = S ug(x) d.

B(0,r)

By Theorem 3, for each A € (0,87) there exists a unique radially sym-
metric self-similar solution (¢,1) = (¢x, ¥a) to (7) satisfying ||¢all1 = A
Then, defining M) = M)(s,t) by

My(s,1) = Qa(v5,1),  Qa(rt)= | ux(@,t)da,

B(0,r)
(e = on (1),

we obtain the following theorem [9].

THEOREM 6. For each \ € (0,87),

Similar problems to (18) with A\ = 87 for 2 = B(0, R) or 2 = R? without
radial symmetry are also studied [9, 8, 10].

Convergence to the self-similar solution (continued). To describe the
case 7 > 0 of this convergence problem, we assume 7 = 1 for simplicity:

up =V - (Vu—uVv),
(19) vp=Av+u, z€R2 >0,
u(+,0) =wug, v(-,0)=uvp.

This is transformed into

u(t) = ePug — [ (Ve =92 . (u(s)Vu(s)) ds,

=944 (s) ds.

—~
DO
o
~—

O e S O e

First, applying the contraction mapping principle in the space

X,={u: (0,00) — LP(R?) Bochner measurable |sup VP (- ) |lp < oo},
t>0
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lullx, = supt' = 2|u(-, )],
t>0

for 4/3 < p < 2, we obtain the following fact [4, 27].

ProproOSITION 2.1. There are M > 0, A\g > 0, By > 0 sufficiently small
such that |Jupll1 < Ao, ||Vvoll2 < Bo implies the existence of a unique solution
(u,v) to (20) satisfying u € X, and |jul|x, < M.

The expected self-similar solution describing the asymptotic behavior of
the above solution is defined by ug = Adyp and vg = 0 in (5):
t

u(t) = AG(-,t) = [ (Vel™)2) - (u(s)Vu(s)) ds,

Similarly, we obtain the following fact:

PROPOSITION 2.2. Given M > 0, A\g > 0, Bo prescribed in the previous
proposition, for each N € (0,)\) there exists a self-similar solution (u,v)
to (21) satisfying ||ullx, < M, [u(-,t)]s = A,

The above self-similar solution has the profile functions (¢, ) satisfy-
ing (2), and hence

tl—l/p”u( -, t)|lp = ||¢|l, = constant, ¢ > 0.

Next, we obtain convergence to the self-similar solution for small initial data
in the following sense [27]. It is an open question whether A\g = 87 is valid
or not.

THEOREM 7. Let (ug,vo) satisfy the assumptions of Proposition 2.1 and
(1+ |zP)ug € LY(R?), Vuy € LY(R?),
and define (uy,vy) of Proposition 2.2 for X = ||lug|l1 < Ao. Then
7P t) —un(-, )|l = Ot™)  ast — oo,
where o € (0,1/2).

3. Backward self-similar solution. The profile functions (¢, 1) of the
backward self-similar solution defined by (4) satisfy

V- (V- 6Vy) — 5o Vo 6=0,

(22) ,
A¢—§x-v¢+¢20, x € R".

Such a solution induces self-similar blowup to (1), while its actual existence
depends on the dimension n. In more detail, the cases n = 2,3 < n <9,
and n > 10 are distinguished.
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Non-existence. This subsection is mostly devoted to the case of n = 2.
First, a radially symmetric solution to (22) satisfies
1 T
(¢ = ow') + = (¢ —o0) = 3¢/ =6 =0,
(23) " 1 7 /
'l,b‘i‘ ;—57" ’l/)—f‘d)zo, ’I">0,

and similarly to the forward self-similar case, the first equation reduces to
(24) b= e e,
where o > 0 is a constant. It follows that
" + <i—%r>@!)’+aer2/4ew:0, r >0,
v(0) =0,
while (25) admits no positive solution in the case of 7 > 0 ([24]).
To describe the case 7 = 0, we recall that a solution (u,v) to (1) is

reasonable if the L'-norm of u(-,t) is preserved. If (u,v) is defined by (4),
then

(25)

Qrty= | u@tyde= | oy,
B(0,r) ly|<r/vT—t
which implies

lim S u(z t)dx{<oo if € LY(R?),

R =oco if ¢ ¢ L'(R?).
Putting
r
r,t) =®(s), s5=-——,
Qrt) = (s) ——
we obtain
Y _ lell
P(o0) = lim P(s) = < o0
sToo 2
in the case ¢ € L1(R?). On the other hand,
S P st
2 by — =D ——1)—=
(6) 557 5 S+<27r >S 0, s> 0,

by (23) similarly to (14). Since (26) admits no bounded non-trivial solu-
tion [15], we obtain the following theorem.

THEOREM 8. Ifn =2, 7 > 0, there is no non-trivial radially symmetric
solution to (22) satisfying ¥ > 0. If n = 2, 7 = 0, there is no non-trivial
radially symmetric solution to (22) satisfying ¢ € L'.
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The reduction to (24) is valid similarly to the forward self-similar solu-
tion [30]. First, writing
V- [l 4et v (ge e A=) = 0

for the first equation of (22), we obtain

AC+Vb-V(=0, zeR?
where ,

(=—¢ge eV <0, b=—|z]?/4—.
It follows that
z-Vb<0, |z|>1,

if
(27) Vip(z) = of|z]), |z — oo,

and then Lemma 2.1 of [30] is applicable. Thus, ¢ is a constant denoted by
—o, and it follows that

¢ = oel*/4e?.
First, we consider the case 7 = 0. If A = ||¢||1 < oo, it follows that
Ae¥tzl?/4
= Lo
and then ,
—AyY = M z € R?,

(o e¥tlel?/a?
by the second equation of (22). Putting
w =1+ |z|?/4 + log A — log( S ewH“'z/‘l),
R2
we obtain
(28) —Aw=e" -1, zecR? S e’ =\,
R2
while we have the following fact.
PROPOSITION 3.1. The problem (28) admits no solution.

Proof. Suppose w = w(x) is such a solution, and put
1

w(r) = %‘ |S_ w(x) ds.
Then
o0 1 o .
wo__ L w w(r)
(29) Se —27787’(17“ - S e d5227rxe rdr

R2 0 ‘aj|:7‘ 0
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by Jensen’s inequality, while
1

(rwy )y =1 — — S e’ds, r>0,
27
|z|=r
from (28). This implies
2

r A

"Wy > — — —
2 2r’

and hence w,(r ) > r/4 for r sufficiently large. We obtain w(r) > r2/8 — C
and hence {, e"” = oo by (29). The proof is complete.
In the case of 7 > 0, we set

o(r) = o—

2rr

S P(x)ds.

|z|=r

Then the equation
Ayp — %:c VY +oel et =0, zeR?

implies

_ _ r2/4
(80) TR — e+

U35 P
- S e¥ds=0, r>0,

|z|=r

and therefore,

_ r2/4
(re= /Y7 5 ), 4 e 197 ";7 | | evds=o.
We obtain

r 2

re_(7/4)r21fr(r) = — S{e_(T/A‘)gQ dg - Eha S e¥ds < 0.

2m€
0 |z|=¢
In the case of ¥ > 0, this implies
r2/4
—_ _ Z 27 _ agre w _ 7’2/4
(1r)r 5" Py Sy S e¥ds < —ore” ', r>0,

|z|=r

and therefore,
2

ri(r) < 20(1 — er2/4) < —20- TZ = _% r2.
We obtain B o
Ur(r) < b r, >0,
and hence

p(r) < (0) - 7‘—> —o0, 7100,

a contradiction. Thus, the followmg theorem is proven.
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THEOREM 9. Ifn =2, 7 = 0, there is no non-trivial solution (¢,1) to
(22) satisfying (27) and ¢ € L*(R?). If n =2, 7 > 0, there is no non-trivial
solution (¢, ) to (22) satisfying (27) and ¢ > 0.

Aggregation rate. Backward self-similar transformation describes local
behavior of the blowup solution, in particular, the quantized blowup mech-
anism in the simplified system of chemotaxis [18, 31, 17, 26, 42],

up =V - (Vu —uVv),
1

(31) —Av:u—ﬁSu, x € t>0,
Q
ou ov Ov
5—’&5—%—0, $€3Q,t>0,

where 2 C R? is a bounded domain with smooth boundary 0f2. First, if the
solution u = u(x,t) has a blowup time T' < oo, then there is a collapse [38],

(32) u(m, t) = Y m(w0)duy + f(x)

ToES

as t T T in the sense of measures on {2, where S is the blowup set,

[ 81 (z0 € 12),
m(zo) > ma«(z0) = {471- (zog € 012),

and 0 < f = f(z) € LY(2) N C(N2\ S). Next, we obtain mass quantization
m(zg) = my(z0) ([42]), using the backward self-similar transformation,
2y, s) = (T —thu(z,t),  w(y,s) =v(z,1),

(33) y=(@—2)/(T -2 s =—log(T—1)

More precisely, first, we have

(34) lim lim sup S u(z,t) dr —m(zo)| =0,
bfoo 4T
B(zob(T—)1/2)n02

which is referred to as the effect of “parabolic envelope”. Then any s T oo
admits {s},} C {sx} such that z(y, s}, +s) converges in Cyeak(—00, 00; M(R?))
as k — oo, where the 0-extension of z(y, s}, + s) is taken where the latter
is not defined. If we take even reflection in case x¢ € 0f2, furthermore, the
limit measure ¢ = ((dy, s) is a weak solution to

2s =V - (Vz—2V(w+ |y|2/4)),

(35) :
Vw=VIx%z inR?x (—c0,00).

Then, similarly to the pre-scaled case [20], we obtain u < 87 as a necessary
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condition for the existence of a solution global in time, where

m(xo) (xo € 2),
2m(zo) (xo € 002).

Since p > 87 is obtained by (34), this implies m(zp) = m«(xg). In more
detail, first, we show that the assumption ¢(R?,0) > 87 with sufficient con-
centration of ((dy,0) at the origin implies the blowup of ((dy, s) in finite
time, a contradiction, and then we remove this condition using self-similarity
of (35). Actually, this concentration condition is described by the local sec-
ond moment, which results in y < 87 in the limit of the scaling parameter.

There is, on the other hand, convergence of the global second moment,
and this, combined with mass quantization, implies that a type (I) blowup
point is impossible [37]. To prove this, we use the key inequality to de-
rive (34),

(36) p=C((R%5) = {

d
‘% (Szu(:c, t)o(z) dz

with a constant C' > 0 independent of ¢ € C2(£2). More precisely, in (34) we
applied this to ¢ = ¢y, r, a smooth cut-off function supported by B(zg, R),
while now we take the second moment, ¢ = |z — xo\Qapxo, Rr. This results in

<C.

d
2V 12— 20, n(w)u(e, ) do
2

Operating with StT -dt, we obtain
§ o~ 02w a(e)u(r. ) de < O(T 1) + § 2 — 20 oy m(x) f(x) da
2 Q
by (32), and therefore, for R(t) = (T — t)'/?,
1
R(t)?

S |z — 900’2%0,1)1%(1:) (z)u(z,t) dx

1

Q
C+R(t)2

IN

V12 = 2012000 pr() (2) () dz < C + V(000 pr(e)» f)-

Q

Giventy 1 T, now we take {s;.} C {s} with s} T oo, where s, = —log(T'—t)
and then let b T co. This implies

(37) (ly*,¢(dy,s)) < C,  —o0 <5 <o0.

Putting
I(s) = (ly[*,¢(dy, 9)).

we obtain ,

dI 7

— =4y ——+7T
ds H 2w +
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by (35), and then from (37) it follows that
2

(38) I(s) = (Jyl*.C(dy. ) = 5= —4p,  —00 <5 < ox.
This ((dy, s), derived from sy = —log(T — t1), takes the form
(39) C(dy,s) = 3 87dy(dy) +g(y,s) dy
YoEBs

for each s € R, similarly to the quantized blowup mechanism arising in
the blowup solution in infinite time [39, 40]. Here, Bs is a finite set and
0<g=g(,s) € LY(R*) NC(R?\ Bs). Since pu = 8, (38) implies I(s) =0,
and therefore, we obtain ¢(y, s)dy = 0, §(Bs) = 1, and yo = 0. Thus,

(40) 2(y, 8"+ 8) — mu(20)do

in Cyeak(—00,00; M(R?)) as s’ T oo, where z(y,s) is the backward self-
similar transformation of u(z,t) defined by (33) with 0-extension taken
where u is not defined. (It is not the scaling limit ((dy, s), where the even
extension is taken with respect to the line parallel to the tangent in case
xg € 02 )

We say that z¢ € S is of type (II) if

(41) 11Y?T§FUP R()?Ju( -, )] Lo (B bR(1)N2) = 0O

for some b > 0, and of type (I) in the other case, i.e.,

(42) 1iI?T§}1P R [[u( -, ) Lo (Blao pR(T))ND) < OO

for any b > 0. The relation (40) says that the total blowup mechanism
is enclosed by parabolic shape hypersurfaces in arbitrarily small parabolic
regions. Thus, we obtain

1;%1 R(t)*[lu( -, )| Loo (B0 bR()NQ) = OO
for any b > 0.

THEOREM 10. Ewvery xo € S is of type (II), and what is more, the rela-
tion (40) holds in Cyeax(—00, 00; M(R?)) as s’ T .

The above asymptotic profile has been first observed in the family of
blowup solutions constructed by matched asymptotic expansion [16]. These
solutions are provided with a super-self-similar blowup rate 0 < r(t) < R(t),
and obey the profile of emergence [42],

ltiT%ﬂlfmo,br(t) (u(t)) =



26 Y. NAITO AND T. SUZUKI

for any b > 0, where

Fao.r(u) = S u(logu — 1)
2NB(zo,R)
- % S S G(z, 2 )u(z)u(z") do dz’

2NB(zo,R)x 2NB(zo,R)
is the local free energy defined by the Green function G = G(z, ') for

6U—O on 0f2.

—Av=u— ’Q’Su in £2, Sv:(), ey

2
Thus, emergence is a consequence of mass quantization and blowup envelope.
There is an alternative proof of the collapse mass quantization, assuming
type (II) blowup with residual vanishing [41]. For the reader’s convenience,
we describe the argument to conclude this subsection. First, we use the
reverse second moment and show that

(= )+ ¢y )
> (4= ly*)+,¢(dy, 8)) — 8¢(Ba, 5) +

where By = B(0,2). This implies

A loP)s vy, ) = (4~ P vy, ) + 1)

1
— (B 2
o C( 278) ’

for
— 1
v(dy,s) = ((dy, s) — 8mdp(dy), I(s) = 32w —8((Ba,s)+ by ¢(Ba, 3)2.
Next, we note that

(43) (4= ly[*)+, v(dy,0)) >0
implies ((Bs,0) > 87, and consequently, I(0) > 0. Then, using a continua-
tion argument, we infer that (43) implies

lim (4~ [y?),v(dy, ) = oc.

a contradiction. If 0 € By, this implies v(dy,0) = 0, and hence F(y,0) =0
on Bs. Since F(y, s) satisfies a parabolic equation in the residual open set
U, (R?\ Bs) x {s}, we obtain F' = 0 by the unique continuation theorem.

To treat the other case of 0 # yy € By, we take the moving (reverse
second) moment (4 — |y — yo(s)|?)+, where yo(s) = yoe®. Using '(dy, s) =
C(dy + {yo(s)},s), we can argue similarly, and obtain F(y,s) = 0 with
By N B(yo,2) = 0. Since By # 0 if 9 € S is of type (II), this results in

¢(dy, s) ZSW{S (s)(dy),
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with
(44) yi(s) —y;(s)| =22 (i #j, —00 <s < 00).
The movement of y;(s) is detected again by the reverse second moment (cf.
[42, p. 318]), and it follows that
yi(s) = vi(0)e®, —o0 < s < o0,

which, however, contradicts (44) as s | —oc.

Aggregation rate (continued). Proposition 3.1 indicates the non-existence
of a classical L!-stationary solution to (35), and this induces an alternative

proof of the non-existence of a type (I) blowup point. Since the argument
uses the Lyapunov function, we have to put an additional condition

(45) %IT?O lil?é}lp R [u( -, )| oo (Blao pR(1)N2) < 0O

We say that xg € S is uniformly of type (II) in this case, and then any
sk T oo admits {s} } C {si} generating a classical solution z = z(y,s) > 0
to (35) satisfying
(46) 120, 9)[lr =8m,  [|z(+, 8)[lec < C.
We now show this is impossible.

In fact, first, the maximum principle guarantees z > 0, and therefore,

(47) h% inf inf{R(t)*u(z,t) | * € B(zo, bR(t)) N2} >0
for any b > 0. Next, we apply the transformation [42]

2(y,s) = e AW, 5),  w(y,s) =B, 5),

s

(48) -

and obtain

(49) Ay =V' - (VA-AV'B), V'B=V'TxA, ¢ eR? s <0.
This is nothing but (1) with 7 = 0, n = 2. The transformation (48), inci-
dentally, preserves the homogeneous Morrey space M; /2 (R™), where

MP(R™) = {f € LL (R") | ||f; MP|| < oo},

loc

I M7l = sup  RMOETDN g,
z€R™, 0<R<00 B(z,R)

and this suggests the threshold phenomenon concerning the existence of
self-similar solutions.

Here, A = A(dy’,s') is regarded as an element in C,(—o0, 0; M(R?)). We
have A(R?,s') = 87 by ((R?,s) = 87 and also A(-,s") € Xo, where

Xo={fex |20, { fn)( -+l dy <o}

RQ
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for X = L' (R?)NL>°(R?). For the moment, we simplify the notation and take
(50) u=V-(Vu—uVv), Vuv=VIx*u inR2x(0,7)
in X, i.e., we study the solution u = u(-,t) > 0 to this problem satisfying

(51) sup [[u(t)||x, < oo.
te(0,T)

First, (50) is interpreted via the Duhamel formula as in (6), using
IV ulloo < Cllulloo + i),
and then it follows that
(52) [AY u(t)|l < CTV4 0<t<T.
Since Calder6n—Zygmund’s estimate guarantees [44]
DT s ullp < Cpllullp,  (Jol =2, 1 <p <o),
it follows that
IAY2 (w1 - VI s ug) o < (1= 2) 2w |lolus| x
and then the interpolation theorem implies
(53) 1AV (- VT« u)ls < Ofl(1 = A)Y 2 lullx
since
[ur - VI uglly < Cllug[l2]Juz]|x-
From (6), (51), (52), (53), we obtain
[Vu®)|s <Ct™Y2, 0<t<T,
and hence

d
E(U7 90) = _(vu - 'LLV'U, VSO)

for ¢ € HY(R?) and t > 0. Then |[u(t)|l1 = |luolls = A is obtained by
approximating ¢ = 1. Similarly, we obtain
1A% u(t)ls < CE34, Aut) o < CEY fu(t)llz <CEY, 0<t<T,

which provides sufficient regularity to z = z(y, ).
The logarithmic HLS inequality [12], on the other hand, guarantees

~ §§ f@)logle i) dedy < 3 | Flog fda+ O,

R2xR2 9 R2

A
Cy = - (1+logm +log\)
for f € Xo with || f|1 = A. Since
1d

§%<F5*z,z>:(zt,Fs*z)
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for I. € C§°(R?), we can justify
1d

5 g\ * 2 2) = (2, w).

Next, we use
(2, H(2) = |y[*/4) = =(Vz = 2V (jy|*/4), V(H (2) + |y[*/4))

for H € C§°[0,00) and approximate logu by this H(z). Thus, we obtain
Vy/z € L2(R? x (—s0,50)) for any so > 0, and also

S

| ds | 12Vvz = VaV(w + |y?/4)] dy < F(z(—s)) — F(2(s))
L

for s > 0, where
1 1
F(z) = S z(logz —1) — = ('« z,2) + = S |y|%2.
2 4
R2 R2

Then the uniform estimate (46) guarantees

o0

| ds | 12Vvz— V2V (w+ [y /4) dy < oo

—00 RQ

and in particular, there is s — oo satisfying

(54) | 12VvZ = VaV(w+ [y /4) (-, ) dy — 0.
R2

Finally, parabolic regularity is applicable to (35) by (46), and there are
{s}.} C {sk} and 2o, woo such that

2(+,8%) = 200, Vw(-,8)) = Ve
locally uniformly in R? such that
l2oollt 8,  2oo € L°(R?), Vwe = VI * 2s.
Furthermore, we obtain zo, > 0 by (47), and therefore (54) yields
10g 200 — Woo — |y|?/4 = constant  in R2.

This implies

)\e‘y|2/4ewoo ,
—AWso — Wa y S R 5
A= 2ol < 8m, | eld/teve < oo,

R2
which is impossible by Proposition 3.1.
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The assumption (45) may be weakened in this argument, but at least
zlog z( -, s) € L'(R?) is necessary.

Ezistence. The case 7 = 0 is mostly studied for (22) with n > 3. If
n = 3, there is a family of radially symmetric backward self-similar solutions
{(ug,vi)} to (1) satisfying ug(r, T) ~ cxgr=2 as 7 | 0 for ¢ | 2. It is obtained
formally by the method of matched asymptotic expansion [15]. Here, we
describe the method of phase plane, first adopted in the study of stationary
solutions [7].

In fact, a radially symmetric stationary solution to (1) satisfies

0=V-(Vu—uVv),
0=Av+u, xeR™

If u = u(r) is such a solution, then

D(r) = —— Ssnflu(s) ds
0
solves
nw,n—3 /_2(n_2) g _ A
(55) "+ " D 2 Q5+r2{(n 2P+rd'} =0, r>0,

B(0) = & (0) = 0.
Using V(s) = &(r) — 2, s = log r, we obtain
Vit (n=2)V'+(n=2)(V+2)V+VV' =0, seR,
V() =2, V'(-o0)=0.
This is written as
(56) Vi=—(n—2V+W, W =-2(n-2V-WV,
where W = (n — 2)V + V’. Equilibrium points of this system are
(VW) =(0,0), (V,W)=(-2,-2(n-2)),
and 1 W+ 2(n —2)
n—
L(V,W) = §V2+W+logw
is a Lyapunov function:
d

—L(V.W) =—(n—-2)V?<0.
ds(,) (n—2)V= <

Then (56) with V(—o0) = —2, V/(—00) = 0 generates a heteroclinic orbit O,
and the linearized eigenvalues around (0, 0) are

n—2 L V/(n —2)(n - 10)
2 2 '
Thus, O spirals to (0,0) if and only if 2 < n < 10.

pt = —
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We apply an analogous argument for the backward self-similar solution
(u,v) defined by (4) using the profile functions (¢, ). More precisely, we
introduce

. 1 ‘ n—1 o ;T n—1 S
@(r,t)_rn_2§)s U(S’t)ds_r”—Q(T—t)§S ¢< T—t) ds
r 2—nr/VT—t L
:<¢TTJ NERCL
and define
U(s)=P(r,t), s= Tr_ -
This means
1 S
v(s) =~ Ve 20(t) dt
0

and then it follows that

2 2
@(0) = ¥'(0) = 0.

~3 2An—2) W
1) w”+<” —§>T’—%W+S—2{(n—2)w+sﬁ}:O, s> 0,

These relations are summarized by

7,2

9 7”2“(“”:¢T_t¢(m_t>:52¢(8>’ =1,
24(s) = s0/(s) + (n— 2)B(s),

and s T oo if and only if ¢ T T for fixed r > 0.
Equation (57) has the exact solution [35]

452
2(n—2)+ 2

and from this we obtain the following fact.

W(s) =

PROPOSITION 3.2. If n > 3, 7 = 0, then (1) admits a backward self-
similar solution

1 r _ 16(n—2) 4(n —2)
“(T’t)_T—t¢< T—t)’ qb(r)_(2(n—2)+r2)2+2(n—2)+7”2'

Here,
r2u(r,t) - 4(n—2) ast]T.

To detect other solutions, we put ¥(s) = W(t) for s = at, where a > 0.
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Then (57) reads

2
" n—3 a°t , 2(n—2)
+< t _7> 2

w
+ t—2{<n—2)W+tW/}:0, t >0,
W(0)=W'(0) = 0,

and (55) is regarded as the limiting equation as « | 0. If 3 < n < 9, we
obtain ay | 0 and the corresponding Wy, = Wy (¢) such that

Wi(t) >0, t>0,
Wi(t) — 2 has 2k zeros in t € (0, 00),
Hm Wk(t) =cCi € (0, 2).

Then the following theorem is obtained [35].

THEOREM 11. In the case of 3 < n <9, there is a family {(ux,vr)} of
radially symmetric backward self-similar solutions to (1) such that

r2u(r,t) — (n—2)c,  ast 1T,
where 0 < ¢, < 2.

If n > 10, there is a blowup rate higher than the backward self-similar
solution, i.e., type (II) blowup rate [36].

Acknowledgments. We thank Professor T. Senba for several com-
ments on the study of self-similar solutions in chemotaxis systems.
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