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ON SPACES WITH THE IDEAL CONVERGENCE PROPERTYBYJAKUB JASINSKI (Sranton, PA) and IRENEUSZ REC�AW (Gda«sk)Abstrat. Let I ⊆ P (ω) be an ideal. We ontinue our investigation of the lassof spaes with the I-ideal onvergene property, denoted IC(I). We show that if I isan analyti, non-ountably generated P -ideal then IC(I) ⊆ s0. If in addition I is non-pathologial and not isomorphi to Ib, then IC(I) spaes have measure zero. We alsopresent a haraterization of the IC(I) spaes using lopen overs.1. Introdution. Throughout this paper X is a separable metri spaeand I ⊆ P(ω) is an ideal on ω ontaining all �nite subsets of ω. The powerset P(ω) is onsidered to be a topologial spae with the produt topologyindued from 2ω by identifying subsets of ω with their harateristi fun-tions. We assume that P(ω) is a losed subset of the interval [0, 1]. Reallthat an ideal I ⊆ P(ω) is alled a P -ideal if whenever A0, A1, A2, . . . ∈ Iis a sequene of sets then there exists a set A∞ ∈ I suh that An ⊆∗ A∞for all n < ω, i.e., |An \ A∞| < ω. We are espeially interested in the an-alyti P -ideals I ⊆ P(ω) beause of Soleki's theorem stating in partiularthat for any suh ideal there exists a �nite lower semiontinuous submeasure
ϕ : P(ω) → [0,∞] suh that I = Exh(ϕ) := {A ⊆ ω : limn→∞ ϕ(A \ n) = 0}(see [6, Theorem 3.1℄).We say that a sequene of funtions fn : X → R is I-onvergent to afuntion g : X → R, denoted I-lim fn = g, if for every ε > 0 and every
x ∈ X the set {n ∈ ω : |fn(x) − g(x)| ≥ ε} ∈ I. In [3℄ the authors studiedspaes X where I-onvergene of sequenes of ontinuous funtions impliespointwise onvergene of a subsequene indexed by elements of a set fromthe dual �lter F(I) := {B ⊆ ω : Bc ∈ I}. More spei�ally, reallDefinition 1. Let I be an ideal on ω and let X be a separable met-ri spae. We say that X has the I-ideal onvergene property if whenever
fn : X → R is a sequene of ontinuous funtions I-onvergent to the zerofuntion then there exists a set M = {m0 < m1 < m2 < · · · } ∈ F(I) suhthat for all x ∈ X, limi→∞ fmi

(x) = 0. The lass of all spaes with the I-ideal2000 Mathematis Subjet Classi�ation: Primary 54C30, 03E35; Seondary 26A15,40A30.Key words and phrases: P -ideals, ideal onvergene, open over.[43℄ © Instytut Matematyzny PAN, 2008
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onvergene property is denoted by IC(I) and the set of all subspaes of Xwith the I-ideal onvergene property is denoted by ICX(I).In [3℄ we said that an ideal I ⊆ P(ω) is generated by a set C ⊆ ω if
I = IC := {A ⊆ ω : A ⊆∗ C}. It is easy to show (see part ⇐ of the proof ofProposition 2 of [3℄) that for any spae X, if I is generated by a single setthen ICX(I) = P(X). Clearly, if I is a P -ideal whih is ountably generated,i.e., there exists a sequene A0, A1, A2, . . . ⊆ ω suh that I = {A ⊆ ω : A ⊆∗
⋃

n<ω An}, then I is also generated by a single set. For a haraterization ofountably generated ideals see Proposition 1.2.8 of [2℄.In this note we show that it is onsistent that for all analyti, non-ountably generated, non-pathologial P -ideals I the lass IC(I) ontainsountable spaes only. This result should be viewed in the ontext of Corol-lary 5 of [3℄ stating that under CH, for any analyti P -ideal I there exists anunountable spae X in IC(I). Note that the lass of analyti, non-ountablygenerated, non-pathologial P -ideals is very broad and inludes most idealsdisussed in the literature inluding summable and Erd®s�Ulam ideals (seeomments following Corollary 1.9.4, p. 31 of [2℄). In Theorem 3 we give aharaterization of spaes with I-ideal onvergene property using lopenovers.2. Main results. For the readers' onveniene we reall a few morede�nitions and simple fats. A set X ⊆ R is alled a σ-set (or X ∈ σ) ifevery relative Gδ subset of X is also a relative Fσ set in X (see [5, p. 210℄).A mapping ϕ : P(ω) → [0,∞] is alled a submeasure if ϕ(∅) = 0 and
ϕ(A) ≤ ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B) (see [2, p. 20℄). A submeasure ϕ is alledlower semiontinuous if for all A ⊆ ω, limn→∞ ϕ(A ∩ n) = ϕ(A). Sine Rontains a losed subset homeomorphi to P(ω), to simplify the notationwe assume that P(ω) ⊆ [0, 1] ⊆ R. For any two integers n1 ≤ n2 < ω,
〈n1, n2〉 := {k < ω : n1 ≤ k ≤ n2} = [n1, n2] ∩ ω, and for m < ω we identify
m with 〈0, m− 1〉. Following the idea in the proof of Proposition 2 of [3℄ weprove the following lemma.Lemma 1. Let I ⊆ P(ω) be an ideal and let X ⊆ I be suh that X ∈
IC(I). Then there exists a set C ∈ I suh that X ⊆ IC ⊆ I. In partiular ,if X = I then X = IC .Proof. Let gn : X → R be de�ned as follows:

gn(A) =

{

1 if n ∈ A,
0 if n /∈ A.It is easy to verify that eah gn is ontinuous as both inverse images, g−1

n [{1}]and g−1
n [{0}], are open in X. For A ∈ X we have {n : gn(A) > 0} = {n :

gn(A) = 1} = {n : n ∈ A} = A ∈ I, so I-lim gn = 0. Sine X ∈ IC(I) there
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exists a set M ={m0 < m1 < m2 < · · · } ∈ F(I) suh that limi→∞ gmi
(A)=0for all A ∈ X. So for all A ∈ X, gmi

(A) = 0 for su�iently large i, henefor those i, mi /∈ A. It follows that M ⊆∗ Ac and onsequently A ⊆∗ M c.Setting C = M c we obtain X ⊆ IC .Lemma 2. If I is an analyti, non-ountably generated P -ideal on ωthen ICR(I) does not ontain intervals.Proof. Let ϕ : P(ω) → [0,∞] be a �nite lower semiontinuous submea-sure on P(ω) suh that(2.1) I = Exh(ϕ) = {A ⊆ ω : lim
n→∞

ϕ(A \ n) = 0}(see [6, Theorem 3.1℄). De�ne a desending sequene of sets {Ak : k < ω} asfollows: A0 = ω, Ak = {n < ω : ϕ({n}) ≤ 1/k}. We shall onsider the limit
limk→∞ limn→∞ ϕ(Ak \ n).

Case 1. Assume(2.2) lim
k→∞

lim
n→∞

ϕ(Ak \ n) = 0but(2.3) for every k, lim
n→∞

ϕ(Ak \ n) > 0.For every k < ω there exists a t > k suh that |Ak \ At| = ω. Otherwisethere would be a k0 suh that limn→∞ ϕ(Ak \ n) = limn→∞ ϕ(Ak0
\ n) forall k ≥ k0, ontraditing (2.2). De�ne an inreasing sequene kl, l < ω, asfollows: k0 = 0, kl+1 = min{k : |Akl

\ Ak| = ω}. Set Bl = Akl
\ Akl+1

.

Claim. I = {A : ∀l |Bl ∩ A| < ω}.If A ∈ I then limn→∞ ϕ(A \n) = 0 so |Bl ∩A| < ω beause otherwise wewould have limn→∞ ϕ(A \ n) ≥ 1/kl+1. On the other hand, if all sets Bl ∩Aare �nite then for every k there exists an n suh that A \ n ⊆ Ak. It followsthat limn→∞ ϕ(A \ n) ≤ limk→∞ limn→∞ ϕ(Ak \ n) = 0, whih proves theClaim.This shows that there exists a bijetion α : ω → ω2 suh that {α[A] :
A ∈ I} = Ib where(2.4) Ib := {A ⊆ ω2 : ∀n < ω ∃m < ω ∀k < ω ((n, k) ∈ A ⇒ k ≤ m)}.By Theorem 4 of [3℄ it follows that ICR(I) = ICR(Ib) ⊆ σ. Intervals are not
σ-sets [5℄, hene the assertion of Lemma 2 in Case 1 is proved.
Case 2. Assume that(2.5) lim

k→∞
lim

n→∞
ϕ(Ak \ n) = 0and(2.6) there exists a k0 suh that lim

n→∞
ϕ(Ak0

\ n) = 0.



46 J. JASINSKI AND I. REC�AW
Then Ak0

∈ I and I is ountably generated beause I = {A : A ⊆∗ Ak0
}.The inlusion I ⊇ {A : A ⊆∗ Ak0

} is lear while if |A \ Ak0
| = ω then

lim infn→∞ ϕ(A \ n) ≥ 1/k0 so A /∈ I.

Case 3. Finally assume that(2.7) lim
k→∞

lim
n→∞

ϕ(Ak \ n) = ε > 0.We reursively de�ne a sequene {nk : k < ω} ⊆ ω as follows. Sine
limn→∞ ϕ(A0 \ n) ≥ ε there exists an integer n0 suh that for all n ≥ n0,
ϕ(A0 \ n) > ε/2. Now suppose we have de�ned the terms n0, n1, . . . , nksuh that for all j = 1, . . . , k, if n > nj then ϕ(Aj \ 〈nj−1, n〉) > ε/2.Sine limn→∞ ϕ(Ak+1 \ n) ≥ ε and ϕ(Ak+1 \ n) ≥ ϕ(Ak+1 \ (n + 1))for all n ∈ ω, we have ϕ(Ak+1 \ nk) > ε/2. By the lower semiontinuityof ϕ, limn→∞ ϕ((Ak+1 \ nk) ∩ n) = ϕ(Ak+1 \ nk) so there exists an integer
nk+1 ≥ k + 1 suh that for all n ≥ nk+1, ϕ(Ak+1 ∩ 〈nk, n〉) > ε/2. Also bylower semiontinuity the set Z = {A : ∀k > 0 (ϕ(A \ nk) ≤ 2/k)} is a losedsubset of P(ω) and by (2.1), Z ⊆ I.Now towards a ontradition, based on Proposition 3 of [3℄, without loss ofgenerality we may assume that [0, 1] ∈ ICR(I). By the same Proposition 3(2),
ICR(I) also ontains Z. By Lemma 1 there exists a set C ∈ I suh that
Z ⊆ {A : A ⊆∗ C}. As C ∈ I, by (2.1) let l0 ∈ ω be suh that ϕ(C\m) < ε/2for all m ≥ 2l0 . Sine for l < ω, ϕ(A2l+1 ∩ 〈n2l , n2l+1〉) > ε/2, we may seletnumbers dl ∈ (A2l+1 ∩ 〈n2l , n2l+1〉) \ C and de�ne the set D = {dl : l ≥ l0}.As D is in�nite and disjoint from C, learly D *∗ C. In partiular(2.8) D /∈ Z.Now for k > 0 let lk = max{l0, ⌈log2 nk⌉}. We have

ϕ(D \ nk) ≤
∑

l≥lk

ϕ({dl}) ≤
∑

l≥lk

1

2l + 1
≤

2

2⌈log2 nk⌉
≤

2

nk
≤

2

k
.It follows that D ∈ Z, ontraditing (2.8).The family ICR(I) is losed under ontinuous images (Proposition 3(1)of [3℄). Propositions 2.6.1 and 2.6.13 of [7℄ imply the following:Remark 1. If I is as in Lemma 2 and X ∈ ICR(I) then X is totallyimperfet (i.e., does not ontain any perfet sets).A subset X ⊆ R is alled an s0-set (or X ∈ s0) if for every perfet subset

P ⊆ R there exists another perfet subset Q ⊆ P \ X (see [5, p. 217℄).Theorem 1. If I is an analyti, non-ountably generated P -ideal on ωthen ICR(I) ⊆ s0.Proof. Suppose X ∈ ICR(I) and let P ⊆ R be a perfet set. Let P1 ⊆ Pbe a perfet set homeomorphi to the Cantor set (see [7, Theorem 2.6.3℄).
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Let h : P1 → P1 × P1 be a homeomorphism and let p : P1 × P1 → P1 be theprojetion, p(x, y) = x. It is well known that there is a ontinuous surjetion
g : P1 → [0, 1] (see [7, Theorem 2.6.13℄). The omposition q = g ◦ p ◦ h :
P1 → [0, 1] is a ontinuous surjetion so q[P1∩X] ∈ ICR(I) by Proposition 3of [3℄. By Lemma 2 there exists y ∈ [0, 1] \ q[P1 ∩ X]. It is easy to see that
Q = q−1[{y}] is a perfet subset of P disjoint from X.Under the Continuum Hypothesis we have an example of a non-ountablygenerated, non-analyti P -ideal J suh that IC(J) ontains large spaes.Example 1. (CH ) There exists a maximal P -ideal J suh that R ∈
IC(J).Proof. We will onstrut a sequene of subsets Xα ∈ [ω]ω, α < c, suhthat Xα ⊆∗ Xβ whenever α < β < c. The sequene {Xα : α < c} will besuh that the ideal J dual to the �lter F = {B ⊆ ω : ∃α < c (Xα ⊆∗ B)}will have the desired properties.Let {Aα+1 : α<c} be a sequene of all subsets of ω and {〈fα+1

n : n<ω〉 :
α < c} be an indexed family of all sequenes of ontinuous funtions fα+1

n :
R → R. Set X0 = ω. Suppose that for some α < c the sets Xβ, β ≤ α, arede�ned. De�ne X ′

α+1 as follows. If the sequene 〈fα
n : n ∈ Xα〉 is pointwiseonvergent to the zero funtion then we set X ′

α+1 = Xα. Otherwise thereexists an ε > 0 and x ∈ R suh that E = {n : |fα
n (x)| ≥ ε} is an in�nitesubset of Xα. In that ase we set X ′

α+1 = E. Now to obtain Xα+1 we onsiderthe intersetion X ′
α+1 ∩ Aα. If it is in�nite then let Xα+1 = X ′

α+1 ∩ Aα.Otherwise set Xα+1 = X ′
α+1 ∩ (ω \ Aα).To �nish the proof we need to de�ne the Xλ for limit ordinals 0 < λ < c.Let {γn : n < ω} ⊆ λ be a sequene of ordinals o�nal in λ. For eah n < ωlet Yn =

⋂

k≤n Xγk
. We have Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · and eah Yn is in�nite.Reursively pik points xn ∈ Yn \ {xm : m < n} and let Xλ = {xn : n < ω}.It is easy to verify that Xλ ⊆∗ Xα for all α < λ.Now having de�ned the sequene {Xα : α < c}, it is easy to show thatthe ideal J dual to the �lter F = F(J) = {B ⊆ ω : ∃α < c (Xα ⊆∗ B)} is amaximal P -ideal suh that R ∈ IC(J).Reall that a measure on P(ω) is a submeasure whih is additive, i.e.,

µ : P(ω) → [0,∞] is a measure if µ(∅) = 0, µ(A) ≤ µ(A∪B), and µ(A∪B) =
µ(A) + µ(B) for any two disjoint sets A, B ∈ P(ω). Before stating our nexttheorem we reall a de�nition from [2, p. 21℄. We say that a submeasure
ϕ : P(ω) → [0,∞] is non-pathologial if
(2.9) ϕ(A) = sup{µ(A) : µ is a measure on P(ω) and

∀B ⊆ ω (µ(B) ≤ ϕ(B))}.An ideal I ⊆ P(ω) is non-pathologial if I = Exh(ϕ) for some non-patho-
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logial submeasure ϕ. Let λ and λ∗ be the Lebesgue measure and the outerLebesgue measure respetively. Set N = {Y ⊆ R : λ(Y ) = 0} and reall Ib isas in 2.4.Theorem 2. If I is an analyti, non-pathologial , non-ountably gener-ated P -ideal not isomorphi to Ib, then ICR(I) ⊆ N .Proof. Suppose I = Exh(ϕ) for some non-pathologial submeasure ϕ.Let X ∈ ICR(I). By Lemma 2, X is zero-dimensional and we may assumethat X ⊆ [0, 1]. Similarly to (but not exatly as in) the proof of Lemma 2 wede�ne a sequene of sets A0, A1, A2, . . . as Ak = {n < ω : ϕ({n}) ≤ 1/2k}and again onsider the limit (2.2). By the proof of Lemma 2 our assumptionson I imply that

lim
k→∞

lim
n→∞

ϕ(Ak \ n) = ε for some ε > 0.Let {nk : k < ω} be de�ned exatly as in Case 3 of Lemma 2. De�ne
Ik = Ak ∩ [nk, nk+1 − 1] and let µk be a measure on P(ω) suh that µk ≤ ϕand µk(Ik) > 1

2
ϕ(Ik) (see (2.9)). For eah k we form a partition of X intoopen (in X) sets {Uki : i ∈ Ik} suh that λ∗(Uki) < 2µk({i})/µk(Ik). Wede�ne F : X → P(ω) by F (x) = {i : ∃k (x ∈ Uki)}. Sine the sets Ik are�nite and pairwise disjoint the funtion F is ontinuous and we have F [X] ∈

ICR(I) by Proposition 3(1) of [3℄. Also for eah x ∈ X, F (x) ∈ I beause
limn→∞ ϕ(F (x) \ n) = 0. This is due to the fat that we are using 1/2k inthe de�nition of Ak and |F (x) ∩ (Ak \ Ak+1)| ≤ 1. So with F [X] ⊆ I and
F [X] ∈ ICR(I) by Lemma 1 there exists a set C ∈ I suh that F (x) ⊆∗ Cfor all x ∈ X. It follows that

X ⊆
⋃

n<ω

⋂

k>n

⋃

i∈C∩Ik

Uki.Notie that for any k < ω,
λ∗

(

⋃

i∈C∩Ik

Uki

)

≤
∑

λ∗
i∈C∩Ik

(Uki) ≤
∑

i∈C∩Ik

2µk({i})/µk(Ik)

= 2µk(C ∩ Ik)/µk(Ik) ≤ 2µk(C ∩ Ik)/(ε/2)

≤ 4ϕ(C \ nk)/ε.Sine C ∈ I the last quantity onverges to zero as k → ∞. It follows that
λ∗

(

⋂

k>n

⋃

i∈C∩Ik

Uki

)

= 0and λ∗(X) = 0 as well.Corollary 1. It is onsistent with ZFC that if I is an analyti, non-pathologial , non-ountably generated P -ideal , then ICR(I) ontains ount-able sets only.



IDEAL CONVERGENCE PROPERTY 49

Proof. Suppose X ∈ ICR(I). If I is not isomorphi to Ib then by Theorem2 and Proposition 3(1) of [3℄ all ontinuous images of X are also in ICR(I)and they have Lebesgue measure zero. Bartoszy«ski and Shelah [1℄ showedthat onsistently suh spaes may be ountable only. If I is isomorphi to Ibthen see Corollary 7 of [3℄.Reall add∗(I) := min{|A| : A ⊆ I and ∄B ∈ I ∀A ∈ A (A ⊆∗ B)}and non(N ) := min{|X| : X ⊆ R, λ∗(X) > 0}. By Proposition 4 of [3℄ for
P -ideals I if X ⊆ R with |X| < add∗(I) then X ∈ ICR(I). By Theorem 2above we obtainCorollary 2. If I is an analyti, non-pathologial , non-ountably gen-erated P -ideal non-isomorphi to Ib, then add∗(I) ≤ non(N ).Our last theorem gives a haraterization of spaes with the I-ideal on-vergene property using lopen overs.Theorem 3. Suppose I is a P -ideal on ω and let X be a separable,zero-dimensional metri spae. Then X ∈ IC(I) if and only if for everysequene of lopen sets U0, U1, U2, . . . ⊆ X with {n : x /∈ Un} ∈ I for any
x ∈ X, there exists a set A ∈ F(I) suh that

X ⊆
⋃

m<ω

⋂

a∈A\m

Ua.Proof. Assume that X ∈ IC(I). Let U0, U1, U2, . . . ⊆ X be a sequene oflopen sets suh that for any x ∈ X,(2.10) {n : x /∈ Un} ∈ I.De�ne a sequene of funtions hn : X → R by
hn(x) =

{

0 if x ∈ Un,
1 if x /∈ Un.Sine Un is lopen, hn is ontinuous. By (2.10), I-limhn(x) = 0. As X ∈

IC(I), there exists a set A = {a0 < a1 < a2 < · · · } ∈ F(I) suh that
limn→∞ han

(x) = 0 for all x ∈ X. It follows that for every x ∈ X thereexists m < ω suh that for any an > m we have han
(x) = 0, so x ∈ Uan

.Hene
X ⊆

⋃

m<ω

⋂

a∈A\m

Ua.To prove the other impliation suppose that fn : X → R is a sequeneof ontinuous funtions with I-lim fn = 0. Sine X is a separable, zero-dimensional metri spae, any two disjoint losed subsets of X may be sep-arated by a lopen set (see [4, pp. 35 and 357℄). It follows that there existlopen sets Uk
n ⊆ X suh {x : |fn(x)| ≤ 1/k} ⊆ Uk

n ⊆ {x : |fn(x)| < 2/k}.Sine I-lim fn(x) = 0 for every x ∈ X, we have {n : x /∈ Uk
n} ∈ I for every
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k < ω. By our assumption for eah k < ω there exists a set Ak ∈ F(I)suh that X ⊆

⋃

m<ω

⋂

n∈Ak\m Uk
n . Sine I is a P -ideal there exists a set

M = {m0 < m1 < m2 < · · · } ∈ F(I) with M ⊆∗ Ak for all k < ω. It followsthat limi→∞ fmi
(x) = 0 for all x ∈ X. Hene X ∈ IC(I).
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