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ON SPACES WITH THE IDEAL CONVERGENCE PROPERTY

BY

JAKUB JASINSKI (Scranton, PA) and IRENEUSZ RECLAW (Gdarnsk)

Abstract. Let ] C P(w) be an ideal. We continue our investigation of the class
of spaces with the I-ideal convergence property, denoted ZC(I). We show that if I is
an analytic, non-countably generated P-ideal then ZC(I) C so. If in addition I is non-
pathological and not isomorphic to I, then ZC(I) spaces have measure zero. We also
present a characterization of the ZC(I) spaces using clopen covers.

1. Introduction. Throughout this paper X is a separable metric space
and I C P(w) is an ideal on w containing all finite subsets of w. The power
set P(w) is considered to be a topological space with the product topology
induced from 2% by identifying subsets of w with their characteristic func-
tions. We assume that P(w) is a closed subset of the interval [0, 1]. Recall
that an ideal I C P(w) is called a P-ideal if whenever Ay, A1, Ag,... € I
is a sequence of sets then there exists a set Ay, € I such that A, C* A
for all n < w, i.e., |A, \ Ax| < w. We are especially interested in the an-
alytic P-ideals I C P(w) because of Solecki’s theorem stating in particular
that for any such ideal there exists a finite lower semicontinuous submeasure
¢ : P(w) — [0, 00] such that I = Exh(y) := {A Cw:limy_oo (A \ n) =0}
(see [6, Theorem 3.1]).

We say that a sequence of functions f,, : X — R is I-convergent to a
function g : X — R, denoted I-lim f,, = g, if for every € > 0 and every
xz € X the set {n € w: |fu(z) — g(x)| > €} € I. In [3] the authors studied
spaces X where I-convergence of sequences of continuous functions implies
pointwise convergence of a subsequence indexed by elements of a set from
the dual filter F(I) := {B C w: B° € I'}. More specifically, recall

DEFINITION 1. Let I be an ideal on w and let X be a separable met-
ric space. We say that X has the I-ideal convergence property if whenever
fn: X — R is a sequence of continuous functions [-convergent to the zero
function then there exists a set M = {mg < m; < mg < ---} € F(I) such
that for all z € X, lim;_,o0 fim,(z) = 0. The class of all spaces with the I-ideal
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convergence property is denoted by ZC(I) and the set of all subspaces of X
with the I-ideal convergence property is denoted by ZCx (I).

In [3] we said that an ideal I C P(w) is generated by a set C C w if
I=Ic:={ACw:AC"C}. It is easy to show (see part < of the proof of
Proposition 2 of [3]|) that for any space X, if I is generated by a single set
then ZCx (I) = P(X). Clearly, if I is a P-ideal which is countably generated,
i.e., there exists a sequence Ag, A1, Ag,... Cwsuch that I = {ACw:AC*
Un<w An}, then I is also generated by a single set. For a characterization of
countably generated ideals see Proposition 1.2.8 of [2].

In this note we show that it is consistent that for all analytic, non-
countably generated, non-pathological P-ideals I the class ZC(I) contains
countable spaces only. This result should be viewed in the context of Corol-
lary 5 of [3] stating that under CH, for any analytic P-ideal I there exists an
uncountable space X in ZC(I). Note that the class of analytic, non-countably
generated, non-pathological P-ideals is very broad and includes most ideals
discussed in the literature including summable and Erdds—Ulam ideals (see
comments following Corollary 1.9.4, p. 31 of [2]). In Theorem 3 we give a
characterization of spaces with I-ideal convergence property using clopen
covers.

2. Main results. For the readers’ convenience we recall a few more
definitions and simple facts. A set X C R is called a o-set (or X € o) if
every relative G5 subset of X is also a relative Fj, set in X (see [5, p. 210]).
A mapping ¢ : P(w) — [0,00] is called a submeasure if () = 0 and
©(A) < (AU B) < p(A) + ¢(B) (see |2, p. 20]). A submeasure ¢ is called
lower semicontinuous if for all A C w, lim, oo p(ANn) = p(A). Since R
contains a closed subset homeomorphic to P(w), to simplify the notation
we assume that P(w) C [0,1] € R. For any two integers n1 < ny < w,
(n1,n2) :={k <w:n1 <k <ng}=[ni,n Nw, and for m < w we identify
m with (0,m — 1). Following the idea in the proof of Proposition 2 of [3| we
prove the following lemma.

LEMMA 1. Let I C P(w) be an ideal and let X C I be such that X €
ZC(I). Then there exists a set C' € I such that X C Ic C I. In particular,
if X =1 then X = I¢.

Proof. Let g, : X — R be defined as follows:

1 ifneA,
i ={)
0 ifn¢ A
It is easy to verify that each g, is continuous as both inverse images, g, ' [{1}]

and g, 1[{0}], are open in X. For A € X we have {n : g,(A) > 0} = {n :
gn(A) =1} ={n:ne A} = A€ I, so I-limg, = 0. Since X € ZC(I) there
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exists aset M ={mg < m1 < my < ---} € F(I) such that lim; . gm,(4)=0
for all A € X. So for all A € X, g, (A) = 0 for sufficiently large 4, hence
for those i, m; ¢ A. It follows that M C* A¢ and consequently A C* M¢€.
Setting C' = M€ we obtain X C Io. »

LEMMA 2. If I is an analytic, non-countably generated P-ideal on w

then ZCr(I) does not contain intervals.

Proof. Let ¢ : P(w) — [0,00] be a finite lower semicontinuous submea-
sure on P(w) such that

(2.1) I =Exh(p) ={ACw: lim ¢(A\n) =0}
(see [6, Theorem 3.1]). Define a descending sequence of sets {Ay : k < w} as
follows: Ag = w, A = {n <w : ¢({n}) < 1/k}. We shall consider the limit
limy o0 limy, 00 0(Ag \ n).

CASE 1. Assume
(2.2) lim lim ¢(Ax\n)=0

k—o0 n—oo

but
(2.3) for every k,  lim @(Ag\n) > 0.

For every k < w there exists a ¢ > k such that |A; \ A = w. Otherwise
there would be a ko such that lim, .. @(Ar \ n) = limy,_o0 p(Ak, \ 1) for
all k > ko, contradicting (2.2). Define an increasing sequence kj, | < w, as
follows: ko = 0, kj11 = min{k : [Ag, \ Ax| = w}. Set By = Ay, \ Ag,,, -

Cram. I ={A:VI|BNA|l<w}.

If A €I then lim, oo p(A\n)=0so0|B;NA| <w because otherwise we
would have lim,,_,oc (A \n) > 1/k;41. On the other hand, if all sets B; N A
are finite then for every k there exists an n such that A\ n C Ag. It follows
that lim, 00 p(A \ n) < limg_oo limy,— 00 p(Ag \ n) = 0, which proves the
Claim.

This shows that there exists a bijection a : w — w? such that {a[A] :
A € I} = I, where
(24) I,:={ACW*:Vn<wIm<wVk<w((nk)cA=k<m)}.
By Theorem 4 of [3] it follows that ZCr(I) = ZCr(Ip) C o. Intervals are not
o-sets [5], hence the assertion of Lemma 2 in Case 1 is proved.

CASE 2. Assume that

(2.5) lim lim (A \n)=0

k—oo n—00

and

(2.6) there exists a ko such that lim ¢(Ag, \ n) =0.
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Then Ay, € I and I is countably generated because I = {A : A C* Ay }.
The inclusion I O {A : A C* Ay} is clear while if |A\ Ag,| = w then
liminf, oo @(A\n) > 1/kgso A ¢ I.

CASE 3. Finally assume that
(2.7) lim lim ¢(Ax\n)=¢>0.

k—00 M—00

We recursively define a sequence {n; : k < w} C w as follows. Since
lim,, o0 (Ao \ n) > € there exists an integer ng such that for all n > ny,
©(Ao \ n) > £/2. Now suppose we have defined the terms ng,ni,...,ng
such that for all j = 1,...,k, if n > n; then p(A; \ (n;j_1,n)) > /2.
Since limy—oo @(Ag+1 \ m) > € and p(Arr1 \ n) > ©(Ag+1 \ (n + 1))
for all n € w, we have @(Agy1 \ nk) > /2. By the lower semicontinuity
of ¢, limy, 00 @((Ak+1 \ nx) N 1) = ©(Akt1 \ nk) so there exists an integer
ng+1 > k + 1 such that for all n > ngi1, (Axy1 N (ng,n)) > /2. Also by
lower semicontinuity the set Z = {A : Vk > 0 (p(A\ ni) < 2/k)} is a closed
subset of P(w) and by (2.1), Z C I.

Now towards a contradiction, based on Proposition 3 of [3], without loss of
generality we may assume that [0, 1] € ZCg([). By the same Proposition 3(2),
ZCr(I) also contains Z. By Lemma 1 there exists a set C' € I such that
ZC{A: AC*C}. AsC € I,by (2.1) let [y € w be such that o(C\m) < e/2
for all m > 2%. Since for I < w, p(Ag 1 N (g1, Mg, ) > /2, we may select
numbers d; € (Agiyq N (ng1,ngry1)) \ C and define the set D = {d; : | > lp}.
As D is infinite and disjoint from C, clearly D ¢* C. In particular

(2.8) D¢ Z.
Now for k£ > 0 let I, = max{lp, [log, nﬂ} We have

p(D\ng) <> p({di}) < Z < <2<

+1 — [logy ni | n
>0 >0k 2 k

It follows that D € Z, contradicting (2.8). =

EI )

The family ZCg([I) is closed under continuous images (Proposition 3(1)
of [3]). Propositions 2.6.1 and 2.6.13 of [7] imply the following:

REMARK 1. If I is as in Lemma 2 and X € ZCg([) then X is totally
imperfect (i.e., does not contain any perfect sets).

A subset X C R is called an sg-set (or X € sq) if for every perfect subset
P C R there exists another perfect subset @ C P\ X (see [5, p. 217]).

THEOREM 1. If I is an analytic, non-countably generated P-ideal on w
then ZCr(I) C sp.

Proof. Suppose X € ZCr(I) and let P C R be a perfect set. Let P, C P
be a perfect set homeomorphic to the Cantor set (see |7, Theorem 2.6.3|).
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Let h: P — P; X P; be a homeomorphism and let p : P, x P, — P; be the
projection, p(x,y) = x. It is well known that there is a continuous surjection
g : P1 — [0,1] (see |7, Theorem 2.6.13|). The composition ¢ = gopoh :
P; — [0, 1] is a continuous surjection so ¢[PyNX] € ZCr(I) by Proposition 3
of [3]. By Lemma 2 there exists y € [0,1] \ ¢[P1 N X]. It is easy to see that
Q = ¢ '[{y}] is a perfect subset of P disjoint from X. m

Under the Continuum Hypothesis we have an example of a non-countably
generated, non-analytic P-ideal J such that ZC(J) contains large spaces.

EXAMPLE 1. (CH) There exists a maximal P-ideal J such that R €
IC(J).

Proof. We will construct a sequence of subsets X, € [w]¥, @ < ¢, such
that X, C* Xg whenever o < 8 < ¢. The sequence {X, : a < ¢} will be
such that the ideal J dual to the filter F = {B Cw: Ja < ¢ (X, C* B)}
will have the desired properties.

Let {Aq+1: a<c} be a sequence of all subsets of w and {(foT :n<w):
a < ¢} be an indexed family of all sequences of continuous functions fo+1! :
R — R. Set X = w. Suppose that for some o < ¢ the sets X3, 8 < «, are
defined. Define X, as follows. If the sequence (f7 : n € X,) is pointwise
convergent to the zero function then we set X/, = X,. Otherwise there
exists an € > 0 and = € R such that E = {n : |f%(z)| > ¢} is an infinite
subset of X,,. In that case we set X/, +1 = E. Now to obtain X1 we consider
the intersection X/ N A,. If it is infinite then let X1 = X/, N Aq.
Otherwise set Xoq1 = X/, N (w )\ 4a).

To finish the proof we need to define the X, for limit ordinals 0 < \ < ¢.
Let {7, :n < w} C X be a sequence of ordinals cofinal in A. For each n < w
let Y,, = ﬂk<n X,,- We have Yy O Y7 D Y2 O --- and each Y, is infinite.
Recursively pick points z,, € Y, \ {z;, : m < n} and let X = {z,, : n < w}.
It is easy to verify that X, C* X, for all a < A.

Now having defined the sequence {X, : a < ¢}, it is easy to show that
the ideal J dual to the filter F = F(J) ={BCw:3a<c¢ (X, C" B)}isa
maximal P-ideal such that R € ZC(J). =

Recall that a measure on P(w) is a submeasure which is additive, i.e.,
p: P(w) — [0, 00] is a measure if () = 0, u(A) < p(AUB), and u(AUB) =
p(A) + p(B) for any two disjoint sets A, B € P(w). Before stating our next
theorem we recall a definition from [2, p. 21]. We say that a submeasure
¢ : P(w) — [0, 00] is non-pathological if
(2.9)  @(A) =sup{p(A) : pu is a measure on P(w) and
VB Cw (1(B) < p(B)}.

An ideal I C P(w) is non-pathological if I = Exh(y) for some non-patho-
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logical submeasure ¢. Let A and A* be the Lebesgue measure and the outer
Lebesgue measure respectively. Set N ={Y C R : A(Y) = 0} and recall I} is
as in 2.4.

THEOREM 2. If I is an analytic, non-pathological, non-countably gener-
ated P-ideal not isomorphic to I,, then ICr(I) C N.

Proof. Suppose I = Exh(p) for some non-pathological submeasure ¢.
Let X € ZCr(I). By Lemma 2, X is zero-dimensional and we may assume
that X C [0, 1]. Similarly to (but not exactly as in) the proof of Lemma 2 we
define a sequence of sets Ag, A1, As,... as Ay = {n < w: p({n}) < 1/2F}
and again consider the limit (2.2). By the proof of Lemma 2 our assumptions
on I imply that

lim lim ¢(Ax\n)=¢ for some ¢ > 0.

k—o0 n—00

Let {ny : k < w} be defined exactly as in Case 3 of Lemma 2. Define
I, = A N [ng,ng+q1 — 1] and let py be a measure on P(w) such that pp < ¢
and fu,(I) > 3(I),) (see (2.9)). For each k we form a partition of X into
open (in X) sets {Uy; : i € It} such that \*(Uy;) < 2pr({i})/px(Ix). We
define F' : X — P(w) by F(z) = {i : Ik (z € Uy;)}. Since the sets I are
finite and pairwise disjoint the function F' is continuous and we have F[X] €
ZCr(I) by Proposition 3(1) of [3]. Also for each z € X, F(x) € I because
lim,, oo 0(F(x) \ n) = 0. This is due to the fact that we are using 1/2% in
the definition of Ay and |F(x) N (Ag \ Ag+1)| < 1. So with F[X] C I and
F[X] € ZCr(I) by Lemma 1 there exists a set C' € I such that F(z) C* C
for all x € X. It follows that

xcUnN U e
n<w k>n i€CNIy
Notice that for any k < w,
XU Un) €D Neenn Uk) <0 2m{ih)/ mi(Ty)
1€CNly, 1€CNly
= 2u(C N Ii) /e (I) < 20k (C N 1)/ (e/2)
<4dp(C\ ng)/e.
Since C' € I the last quantity converges to zero as k — oo. It follows that
(N U vk)=o
k>n ieCNlIy,
and \*(X) =0 as well. =
COROLLARY 1. [t is consistent with ZFC that if I is an analytic, non-

pathological, non-countably generated P-ideal, then ZCr(I) contains count-
able sets only.
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Proof. Suppose X € ZCg([I). If I is not isomorphic to I, then by Theorem
2 and Proposition 3(1) of [3] all continuous images of X are also in ZCr(I)
and they have Lebesgue measure zero. Bartoszynski and Shelah [1] showed
that consistently such spaces may be countable only. If I is isomorphic to I
then see Corollary 7 of [3]. m

Recall add*(I) := min{|A| : A C I and 3B € I VA € A (A C* B)}
and non(N) := min{|X| : X C R, A*(X) > 0}. By Proposition 4 of [3] for
P-ideals I if X C R with |X| < add*([) then X € ZCr(I). By Theorem 2
above we obtain

COROLLARY 2. If I is an analytic, non-pathological, non-countably gen-
erated P-ideal non-isomorphic to I, then add*(I) < non(N).

Our last theorem gives a characterization of spaces with the I-ideal con-
vergence property using clopen covers.

THEOREM 3. Suppose I is a P-ideal on w and let X be a separable,
zero-dimensional metric space. Then X € ZC(I) if and only if for every
sequence of clopen sets Uy, Uy,Us,... € X with {n : x ¢ U,} € I for any
x € X, there exists a set A € F(I) such that

xclJ N Ve
m<w g€ A\m
Proof. Assume that X € ZC(I). Let Uy, Uy, Us, ... C X be a sequence of
clopen sets such that for any =z € X,

(2.10) {n:x¢U,} el

Define a sequence of functions h,, : X — R by

() {O if x € Uy,
n\T) =
1 ifz ¢ U,.

Since U, is clopen, hy, is continuous. By (2.10), Flimh,(x) = 0. As X €
ZC(I), there exists a set A = {ap < a1 < ag < ---} € F(I) such that
limy, o0 g, (z) = 0 for all x € X. It follows that for every x € X there
exists m < w such that for any a,, > m we have h,, (x) = 0, so z € U,,,.

Hence
xclJ N Ve

m<w g€ A\m

To prove the other implication suppose that f,, : X — R is a sequence
of continuous functions with Flim f,, = 0. Since X is a separable, zero-
dimensional metric space, any two disjoint closed subsets of X may be sep-
arated by a clopen set (see [4, pp. 35 and 357]). It follows that there exist
clopen sets U¥ C X such {z : |fu(2)| < 1/k} CUF C {z: |fu(z)| < 2/k}.
Since Llim f,,(z) = 0 for every z € X, we have {n : xz ¢ U} € I for every
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k < w. By our assumption for each k < w there exists a set A* € F(I)
such that X C U< Nnearim UF. Since I is a P-ideal there exists a set

M = {mg<mp <mg <---} € F(I) with M C* A* for all k < w. Tt follows
that lim; o fm,;(z) =0 for all z € X. Hence X € ZC(I). m
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