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GLOBAL EXISTENCE OF SOLUTIONS TO A CHEMOTAXIS

SYSTEM WITH VOLUME FILLING EFFECT

BY

TOMASZ CIEŚLAK (Warszawa)

Abstract. A system of quasilinear parabolic equations modelling chemotaxis and
taking into account the volume filling effect is studied under no-flux boundary conditions.
The resulting system is non-uniformly parabolic. A Lyapunov functional for the system is
constructed. The proof of existence and uniqueness of regular global-in-time solutions is
given in cases when either the Lyapunov functional is bounded from below or chemotactic
forces are suitably weakened. In the first case solutions are uniformly bounded in time, in
the second one it is shown that a uniform bound is not possible.

1. Introduction. In the present paper we study the following boundary
value problem:

∂u

∂t
= ∇.[α(u)∇u − uβ(u)∇v],(1)

∂v

∂t
= Dv∆v − v + u in U × (0, T ),(2)

∇v · ~n = 0, ∇v · ~n = 0 on ∂U × (0, T ),(3)

u(x, 0) = u0(x), v(x, 0) = v0(x) in U,(4)

where U is an open bounded subset of R
n with boundary of class C2 and

~n denotes the outer normal vector. We look for classical solutions u, v :
U × [0, T ) → R.

The problem is studied under the following hypotheses:

T: (i) There exists ε > 0 such that β ∈ C2(−ε,∞) is a positive bounded
function. Dv is a positive constant.

(ii) There exists ε > 0 such that α ∈ C2(−ε,∞) is a positive bounded
function.

Such systems arise in the study of chemotaxis phenomena. Chemotaxis is
a chemosensitive movement of biological cells which may detect and response
to some chemical secreted into environment. The system we are going to
investigate describes the chemotactic movement of cells taking into account
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the volume filling effect (cf. [10]): the higher the density at x, the smaller
the chance that another cell attains that position.

The previous models of chemotactic movement, the so called minimal
version of the classical Keller–Segel model (cf. [15], see also the survey [12]
and the bibliography therein) predict a blow-up in dimensions n ≥ 2 (see,
e.g., [14], [3], [4], [5]).

In order to avoid this property, several models have been given that
were supposed to prevent blow-up which is interpreted as the overcrowding
of cells. One of such attempts was presented in [10].

The idea in [10] to get rid of this phenomenon was to consider the volume
filling effect which appears at high cell densities. We denote the density of
cells by u and the density of the chemoattractant, a chemical which attracts
cells, by v. Then the model derived in [10] is (1)–(4), where the C2 functions
α and β are given in the following way:

α(u) = q(u) − uq′(u),(5)

β(u) = q(u),(6)

where q(u) is interpreted as the probability that the particle attains a po-
sition (x, t) if the density of cells at this position equals u. Notice that the
assumptions q(u) ≥ 0 for 0 ≤ u < ∞ and q decreasing seem very natural.
So α and β are bounded. The authors suggested considering the case when
there is no value of u at which chemotaxis is switched off and

(7) q(u)
u→∞−−−→ 0.

The purpose of this paper is to find sufficient conditions on q(u) for
(1)–(4) to have unique global regular solutions if (7) holds. The case of
q(u) = 0 for u ≥ M , where M is a fixed value, was solved in [18]. Before
we formulate our results in a precise way, let us state a few facts about
connections between α, β and q.

If (7) holds we have two possibilities. If

(8) lim
u→∞

uq′(u) > 0

then (1)–(4) is uniformly parabolic. Otherwise α defined in (5) is not bounded
away from 0, so (1)–(4) is no more uniformly parabolic. On the other hand,
this case is specially interesting. Examples of q that lead to non-uniform
parabolicity are (1 + u)−λ, λ > 0, or e−γu, γ > 0. The latter was men-
tioned in [10]. The present paper is devoted to investigating non-uniformly
parabolic problems.

Notice that the functions α and β satisfy

(9)
β(η)

α(η)
≤ M
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for M = 1 and every η ∈ R. Indeed, since q is decreasing, we have q(u) ≤
q(u)− uq′(u) and (9) follows. This simple observation will be of importance
in the further part of the paper. We will state our global existence results
under hypothesis (9).

In order to estimate the L∞ norm of the solution to (1)–(4) we shall
need the following theorem.

Proposition 0. Let u solve the problem

∂u

∂t
= ∇.[α(u)∇u − uβ(u)∇v] in U × (0, T ),(10)

∇u · ~n = 0, ∇v · ~n = 0 on ∂U × (0, T ),(11)

u(x, 0) = u0(x) in U,(12)

(13) sup
τ<t<Tmax

‖∇v(·, t)‖∞ < ∞,

corresponding to u0 ∈ L∞(U). Assume that hypotheses T and (9) are satis-

fied. Then

sup
[0,Tmax)

‖u(·, t)‖∞ < ∞,

where Tmax is the maximal interval of solution’s existence.

Similar theorems were proved in [8] and [6]. In the first case it was
impossible to infer uniform-in-time estimates for ‖u(·, t)‖∞, in the second
the authors did not attempt to do it. In fact following their calculations we
will show the uniform in time (Tmax = ∞) estimates of ‖u(·, t)‖∞ provided
(13) holds uniformly.

Now we are in a position to present our main results. In the theorems
given below, conditions on α and β under which (1)–(4) has global unique
solutions, are given. The conditions depend on the dimension. For example,
in dimension one for every system (1)–(4) satisfying (9) (in particular this
assumption holds if α and β satisfy (5), (6)) global bounded classical solu-
tions exist. This means that the model presented in [10] predicts no blow-up
in dimension n = 1.

Theorem 1. Assume n = 1, u0, v0 ∈ W 1,p(U) for p > 2 are nonnegative

functions and hypotheses T and (9) are satisfied. Then there exists a unique

classical nonnegative global uniformly-in-time bounded solution to (1)–(4).

Theorems 2 and 3 specify conditions that prevent blow-up in (1)–(4) in
dimensions 2 and 3. The assumptions of Theorem 2 are excluded by those
of Theorem 3 and vice versa. It seems worth underlying that according to
Theorem 2 we do not need the boundedness from below of the Lyapunov
functional to prevent blow-up in (1)–(4) (see Lemma 2.2). Let B(0, r) be
the ball centred at 0 with radius r.
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Theorem 2. Assume n = 2, 3. Let u0, v0 ∈ W 1,p(U) for p > n be non-

negative and assume that hypotheses T and (9) are satisfied. Then there

exists a unique classical nonnegative global-in-time solution to (1)–(4) pro-

vided there exists a positive constant M1 such that for every u > 0,

(14) β(u) ≤ M1u
−γ1

for some γ1 > n−1. If Ω = B(0, r), then for every choice of β satisfying (14)
such that (19) holds there exists an unbounded radially symmetric solution.

Theorem 3. Assume n = 2, 3. Let the nonnegative functions u0, v0 ∈
W 1,p(U) for p > n and assume that hypotheses T and (9) are satisfied. Then

there exists a unique classical nonnegative global uniformly-in-time bounded

solution to (1)–(4) provided there are positive constants M2 and γ2 < 2/n
such that for every u > 0,

(15)
uβ(u)

α(u)
≤ M2u

γ2 .

The inspiration for this paper was [13], where it was proved that for α = 1
and uβ = uγ , γ < 2/n, there exists a global bounded solution to (1)–(4).
This paper extends the results of [13] to the case of a quasilinear system,
including non-uniformly parabolic ones. The authors of [13] pointed out that
their interests are purely mathematical. The results of our considerations,
in view of [10], can be interpreted as the prevention of overcrowding in the
model taking into account the volume filling effect.

The paper is organized as follows: Section 2 contains some preliminaries.
In this section we also construct a Lyapunov functional for the system and
present estimates of it. In Section 3 we prove the global existence in the one-
dimensional case. Section 4 is devoted to proving the results in dimensions 2
and 3.

Notation. The norm in the space Lp(U), 1 ≤ p ≤ ∞, is denoted by ‖·‖p.
The same notation is used for vector-valued functions u ∈ Lp(U ; Rn). The
classical Sobolev spaces will be denoted by W 1,p(U) for 1 ≤ p ≤ ∞. Some-
times to shorten the notation we shall denote the vector-valued function
(u, v) by u. We shall denote the Lebesgue measure of a set A by |A|.

2. Preliminaries. First we consider the local existence of solutions to
(1)–(4). We set

G = {(u, v) : u > −ε, v > −ε},
where ε is as in hypotheses T. For any (ϕ1, ϕ2)∈G, aj,k(ϕ1, ϕ2), 1 ≤ j, k ≤ n,
is a family of 2 × 2 matrices such that

akk(ϕ1, ϕ2) =

[
α(ϕ1) −ϕ1β(ϕ1)

0 Dv

]
, aj,k ≡ 0 for j 6= k.
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We define the boundary-value operator (A,B) in the following way:

A(ϕ)z = −
n∑

j,k=1

∂j(aj,k(ϕ)∂kz), B(ϕ)z =
n∑

j,k=1

njaj,k(ϕ)∂kz,

where ~n = (n1, . . . , nn) and z = (z1, z2).

Since aj,k is upper triangular, the normal ellipticity of the boundary-
value operator (A,B), according to Amann’s terminology, follows from T(ii)
and the positivity of Dv.

We are now in a position to apply Amann’s existence theory for quasilin-
ear parabolic systems. Thanks to [2, Theorem 1] and the maximum principle
we obtain local existence of a regular nonnegative solution. [2, Theorem 2]
yields the continuation principle and [2, Theorem 5.2] gives the Hölder reg-
ularity estimate (cf. (16)). To be more precise, we obtain the following the-
orem where C1+σ(Ω) denotes the space of C1 functions whose derivatives
are Hölder continuous.

Theorem 2.1. Assume T and u0 ∈ W 1,p(U, R2), u0 ≥ 0. Then (1)–(4)
has a unique maximal classical nonnegative solution. Let Tmax be the time

of the solution’s existence.

(a) If

sup
t∈[0,Tmax)∩[0,T ]

‖u(·, t)‖∞ < ∞

for every T < ∞ and u is bounded away from ∂G, then Tmax = ∞,
and there exists 0 < σ < 1 such that

(16) sup
t<Tmax

‖u(·, t)‖C1+σ(Ω) < ∞.

(b) For every t ∈ (0, Tmax),

(17)

\
U

u(t) dx =
\
U

u0 dx,\
U

v(t) dx =
\
U

u0dx +
(\

U

v0dx −
\
U

u0dx
)
e−t.

Part (b) follows by integrating (1) and (2) and using the Stokes formula.

Now let us give a Lyapunov functional for the system (1)–(4) and prove
some estimates of it. Set

Φ(s) :=

s\
0

σ\
1

α(τ)

τβ(τ)
dτ dσ, s > 0.

Then it turns out that

L(u, v) :=
\
U

Φ(u) +
Dv

2

\
U

|∇v|2 +
1

2

\
U

v2 −
\
U

uv
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is a Lyapunov functional for the system (1)–(4). Indeed, we have

Lemma 2.1. Let (u, v) be the classical solution to (1)–(4). Then L is a

Lyapunov functional , more precisely ,

(18) L(u)(t) +

t\
s

\
U

v2
t dx dτ +

t\
s

\
U

|α(u)∇u − uβ(u)∇v|2
uβ(u)

= L(u)(s)

for every t > s > 0.

Proof. We see that u(x, t) > 0 for t > 0 by the nonnegativity of u0 and
the strong maximum principle unless u(x, t) ≡ 0. Notice that from (1),\

U

ut(Φ
′(u) − v) dx =

\
U

∇.{α(u)∇u − uβ(u)∇v}(Φ′(u) − v) dx

= −
\
U

(α(u)∇u − uβ(u)∇v)(Φ′′(u)∇u −∇v) dx

= −
\
U

|α(u)∇u − uβ(u)∇v|2
uβ(u)

dx.

Since d

dt

\
U

Φ(u) =
\
U

Φ′(u)ut,

and
d

dt

(\
U

v2 dx +
\
U

Dv|∇v|2 dx −
\
U

uvdx
)

= 2
\
U

vvt dx − Dv

\
U

∆vvt dx −
\
U

uvt dx −
\
U

utv dx

= −
\
U

v2
t dx −

\
U

utv dx,

the claim follows.

Similar Lyapunov functionals for quasilinear chemotaxis systems were
introduced in [17] and [13]. As the Lyapunov functional given above is of
the same form as the one given in [13], the following estimates hold (for the
proofs see [13, Remark after Lemma 5.1, and Lemma 5.2] and [11] for n = 2,
γ = 2/n).

Lemma 2.2. If (15) holds with γ < 2/n, n ≥ 2, then there exists a

constant C such that L ≥ C for every (u, v) ∈ (W 1,∞(U))2. Moreover , if

n = 2, 3 and

(19)
uβ(u)

α(u)
≥ Muγ

for some γ > 2/n (in the two-dimensional case for γ = 2/n we can choose

the initial data such that the subsequent conclusion holds), then for any fixed
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λ > 0 there exists ε0 > 0 and families (uε)ε∈(0,ε0), (vε)ε∈(0,ε0) ⊂ W 1,∞ such

that uε, vε > 0 in U ,\
U

uε = λ and
\
U

vε → 0 as ε → 0,

but

L(uε, vε) → −∞ as ε → 0.

We will need the following lemma and an inequality. Although this is a
standard result, we include the proof for the reader’s convenience. Since v
is a solution to (2) we give Schauder type estimates of it.

Lemma 2.3. Let v be the solution to (2), T < ∞. Then

(i) sup
τ<t≤T

‖∇v(·, t)‖q ≤ C sup
τ<t≤T

‖u(·, t)‖δ,

where q = nδ/(n − δ), δ ≥ 1 and C is a positive constant.
(ii) If supτ<t≤T ‖u(·, t)‖p < ∞, p > n, then

sup
τ<t≤T

‖∇v(·, t)‖∞ < ∞.

Proof. For the proof of (i) see [13, Lemma 4.1]. To prove (ii) consider (2).
We shall use the concept of Xα solutions, which can be found in [16]. Let
X = Lp(U). Being a regular solution, v is an Xα solution after arbitrarily
small time τ (after this time v(·, t) ∈ Xα). Thus rescaling time tnew := told−τ
we see that the solution is given by the formula (see for example [16])

(20) v(t) = P tv0 +

t\
0

P t−su(s) ds, t > 0.

Here P t is the semigroup generated by A∆ = I − Dv∆. The operator is
defined on X, with the domain

D(A∆) =

{
u ∈ W 2,p :

∂u

∂~n
= 0

}
, p > n.

Since Xα ⊂ C1 for α > n/2p + 1/2, we see that in order to prove Lemma
2.3(ii) it suffices to find estimates for supt∈(0,T ] ‖v(t)‖Xα (thanks to the
condition p > n).

Applying Aα
∆ to both sides of (20) we see that for t > 0,

‖v(t)‖Xα ≤ ‖Aα
∆P tv0‖p +

t\
0

‖Aα
∆P t−su(s)‖p ds

≤
∥∥∥∥
e−νt

tα
v0

∥∥∥∥
p

+

t\
0

e−ν(t−s)

(t − s)α
‖u(s)‖p ds

for some ν > 0 and thus ‖v(t)‖Xα < ∞ and Lemma 2.3 follows.
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Next notice that from Theorem 2.1(b) we know that ‖u(·, t)‖1 is finite.
Thus, with the use of the Gagliardo–Nirenberg inequality and Lemma 2.3(i)
with δ = 1 one obtains

(21) ‖∇v(·, t)‖2
2p′ ≤ C‖∆v(·, t)‖2b′

2 ,

where C is a positive constant, p′ < n/(n − 2) and

(22) b′ =

n
q − n

2p′

1 − n
2 + n

q

.

For the details see [13, (27)].

For completeness we also present the following easy proposition.

Proposition 2.1. Assume T and hypothesis (9) are satisfied and u0 ∈
W 1,p(U ; R2), u0 ≥ 0. Then to prove the global existence to (1)–(4) it suffices

to show that

sup
t∈[0,Tmax)∩[0,T ]

‖u(·, t)‖∞ < ∞

for every T < ∞.

Proof. Theorem 2.1 gives us the existence of regular unique maximal
solutions. In order to prove that solutions are global we only have to estimate
their L∞ norms.

Notice that on every finite interval [0, T ],

(23) Gt + M

is a supersolution to (2), where

M ≥ sup
x∈U

v0, G ≥ sup
t∈[0,Tmax)∩[0,T ]

‖u(·, t)‖∞.

Thus, Proposition 2.1 is proved.

Next we provide some propositions that enable us to distinguish between
uniformly bounded solutions and unbounded ones.

Let the triple (u∞, v∞, Γ ) ∈ (C(Ω), C2(Ω), R) be a solution to the sta-
tionary problem (Sλ)

−Dv∆v∞ + v∞ = u∞ in U,(24)

Φ′(u∞) − v∞ = Γ in U,(25)

∇v∞ · ~n = 0 on ∂U,(26) \
U

u∞(x) dx =
\
U

v∞(x) = λ.(27)

Since the proof of [13, Theorem 6.1] relies only on the form of the Lya-
punov functional (the same as in our case) and (24), we have immediately
the following result.
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Proposition 2.2. Let n ∈ {2, 3} and τβ(τ)/α(τ) ≥ c0τ
δ, δ > 2/n, for

all τ > 1. Then for every λ > 0 and for every radially symmetric solution

(u∞, v∞, Γ ) to the stationary problem (Sλ) there exists a constant cλ > 0
such that L(u∞, v∞) ≥ −cλ.

Proposition 2.3. Suppose (u, v) is a bounded solution to (1)–(4) with

the initial data (u0, v0) satisfying u0 > 0 in U and λ =
T
U u0(x) dx. Then

there exist (u∞, v∞, Γ ) satisfying (Sλ) and a sequence of times tk such that

(u(tk), v(tk)) → (u∞, v∞)

as k → ∞ in W = W 1,p(Ω) × C2(Ω), p > n.

Proof. Let us denote the ω-limit set of {(u(·, t), v(·, t))} by ω(u, v). By
(16) and the parabolic regularity there exists t0 > 0 such that

⋃

t≥t0

{(u(·, t), v(·, t))}

is relatively compact in W . Hence ω(u, v) is a nonempty compact connected
set. Let (u′, v′) ∈ ω(u, v).

Since u(·, t) is bounded, L(u(·, t), v(·, t)) is bounded from below. We see
that L is continuous as a function on W . By La Salle’s invariance principle
we know that L is constant on ω(u, v). Thus, if (U(·, t), V (·, t)) is a solution
to (1)–(4) emanating from (u′, v′), by the entropy production term in (18)
we have Vt(x, t) = 0 and ∇(Φ′(U) − V ) = 0 for all t > 0. Hence V and U
are constant in time, V ≡ v′ ≡ v∞, U ≡ u′ ≡ u∞, and Proposition 2.3 is
proved.

Now let us prove Proposition 0. A generalization of the Alikakos–Moser
method to the non-uniformly parabolic case was presented for the first time
in [6]. However, the authors of that paper did not attempt to use it for
proving a uniform-in-time estimate of the L∞ norm of the solution (for other
reasons they could not ensure a uniform estimate for ‖∇v(·, t)‖∞). We shall
prove that in our case this method leads to uniform-in-time estimates. The
key is to use (9) and the nonlinear test function given for any η > 0, p > 2
as

(28) α(η)φ′′(η) = p(p − 1)ηp−2

and φ(0) = φ′(0) = 0.

Proof of Proposition 0. We proceed as in [6, Lemma 6.14]. Multiplying
(1) by φ′(u) and slightly modifying the calculations in [7, Section 9.3] as
in [8, Lemma 4.1, steps I, II, III], we arrive at the following inequality (we
use (9)):

(29)
d

dt

\
U

φ(u) dx ≤ −4k
\
U

u2k

dx + C(4k)n/2+1
(\

U

u2k−1

dx
)2

.
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Integrating (28) twice we see that\
U

up dx ≤ C
\
U

φ(u),

hence (29) implies, for every 0 ≤ s < t (we choose p = 2k),\
U

u(·, t)2k

dx −
\
U

u(·, s)2k

dx

≤ −4kC

t\
s

\
U

u2k

dx dτ + C(4k)n/2+1
t\
s

(\
U

u2k−1

dx
)2

dτ.

Since u is regular we divide both sides by t − s and letting t − s → 0 we
arrive at

d

dt

\
U

u2k

dx ≤ −4kC
\
U

u2k

dx + C(4k)n/2+1
(\

U

u2k−1

dx
)2

.

Keeping in mind the last inequality (analogous to [7, first displayed inequal-
ity, p. 215]), we finish the proof exactly as in [7].

3. Dimension n = 1. In this section we prove Theorem 1. The proof is
split into two steps. Tmax is the maximal time of the solution’s existence. Due
to Theorem 2.1 we have classical local-in-time solutions. In the first step we
have to obtain a uniform-in-time bound on ‖∇v(·, t)‖∞. Then we can apply
Proposition 0 to show that there is no finite time blow-up of solutions to
(1)–(4) and they are uniformly bounded.

Step 1. By Theorem 2.1(b) we see that u ∈ L∞((0, Tmax); L
1(U)). We

will show that this implies ∇v ∈ L∞((τ, Tmax); L
∞(U)) for τ arbitrarily

small. To this end we need the following auxiliary result.

Lemma 3.1. Assume

(30) f(x, t) ∈ L∞((0, Tmax); L
1(R)) ∩ C((0, Tmax) × U)

and there exists a positive constant f∗ such that ‖f(·, t)‖1 ≤ f∗. If Γ is a

classical solution to the Cauchy problem

∂Γ

∂t
= ∆Γ − Γ + f(t, x)

in the L1 sense with the initial data Γ0(x) ∈ L1(R), i.e.

Γ ∈ C2,1(R × (0, Tmax)) ∩ C([0, Tmax); L
1(R))

then ∇Γ ∈ L∞((τ, Tmax); L
∞(R)).

Proof. The first step of the proof is the following standard proposition.

Proposition 3.1. The fundamental solution of

(31)
∂Γ

∂t
− ∆Γ + Γ = 0
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is

G1(x, t) = e−tG(x, t),

where G is the Gauss–Weierstrass kernel.

With the use of Proposition 3.1 we can represent Γ (x, t) by the following
formula:

Γ (x, t) =
e−t

(4πt)1/2

\
R

e−|x−y|2/4tΓ0(y) dy

+

t\
0

e−(t−s)

(4π(t − s))1/2

\
R

e−|x−y|2/4(t−s)f(s, y) dy ds.

We differentiate this with respect to x to get

∂

∂x
Γ (x, t) =

∂

∂x

e−t

(4πt)1/2

\
R

e−|x−y|2/4tΓ0(y) dy(32)

+

t\
0

ds
\
R

e−(t−s)

4π1/2(t − s)3/2
(x − y)e−|x−y|2/4(t−s)f(s, y) dy.

Thus,

(33)

∣∣∣∣
∂

∂x
Γ (x, t)

∣∣∣∣ ≤ F (t)+
1

4π1/2

t\
0

e−(t−s)

(t − s)3/2
ds
\
R

(t−s)ωe−ω2

f(s, x−ω) dω

where

F (t) =
∂

∂x

e−t

(4πt)1/2

\
R

e−|x−y|2/4tΓ0(y) dy.

The second term on the right-hand side of (33) was obtained by the change
of variables (x − y)/

√
t − s 7→ ω in (32). From the general theory we know

that F (t) is uniformly bounded for t > τ > 0. Hence,

∣∣∣∣
∂

∂x
Γ (x, t)

∣∣∣∣ ≤ F (t) + Cf∗

t\
0

e−(t−s)

(t − s)1/2
ds,

where the bound on xe−x2

is absorbed in C.

The last formula implies that

(34) ‖∇Γ (·, t)‖∞ ≤ W,

where W is independent of time. Indeed,

t\
0

e−(t−s)

(t − s)1/2
ds =

t\
0

e−z

z1/2
dz.
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Since for small δ > 0 and every z > 0, e−z < 1/z1/2+δ, we choose ς > 0 such
that

t\
0

e−z

z1/2
dz <

ς\
0

1

z1/2
+

t\
ς

1

z1+δ
≤ 2ς1/2 − δ(t−δ − ς−δ) < 2ς1/2 + δς−δ.

In particular ∇v(·, t) is uniformly bounded. This completes the proof of
Lemma 3.1.

Those estimates of Green’s function will be of importance in proving
that

∇v(·, t) ∈ L∞((τ, Tmax); L
∞(U)).

In view of Theorem 2.1,

u ∈ C2,1(U × (0, Tmax)) ∩ L∞((0, Tmax); L
1(U)).

Since v is a solution to (2), from the uniqueness and regularity of solutions
to the heat equation we infer that ∂

∂xv satisfies

(35)
∂ ∂

∂xv

∂t
− Dv∆

∂

∂x
v +

∂

∂x
v =

∂

∂x
u

in U under the zero Dirichlet boundary conditions.

Let us now define a function f̃ which is a suitable continuation of u to the
whole real line. First we fix a positive number δ and the domain U = [a, b].
From the regularity of solutions to (1)–(4) we see that there are continuous
functions A, B : [0, Tmax) → R+ such that u(a, t) = A(t), u(b, t) = B(t). For
(x, t) ∈ R × (0, Tmax) we set

(36) f̃(x, t) =





u(x, t) if (x, t) ∈ [a, b] × (0, Tmax),

M1(t)x + M2(t) if (x, t) ∈ [a − δ/u(a, t), a] × (0, Tmax),

M3(t)x + M4(t) if (x, t) ∈ [b, b + δ/u(b, t)] × (0, Tmax),

0 elsewhere,

where
M1(t) = u2(a, t)/δ, M2(t) = u(a, t) − au2(a, t)/δ,

M3(t) = −u2(b, t)/δ, M4(t) = u(b, t) + bu2(b, t)/δ.

From the construction we observe that f̃(x, t) differs from u only outside the

set [a, b] × (0, Tmax) and satisfies the condition (30). Moreover, ‖f̃(·, t)‖1 =

‖u(·, t)‖1 + δ and f̃ ∈ C([0, Tmax); W
1,∞(R)). We denote by ṽ the solution

to

(37)
∂ṽ

∂t
− Dv∆ṽ + ṽ = f̃

in R × (0, Tmax). Then, in view of classical regularity results for parabolic
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equations, ∂
∂x ṽ satisfies

(38)
∂ ∂

∂x ṽ

∂t
− Dv∆

∂

∂x
ṽ +

∂

∂x
ṽ =

∂

∂x
f̃

in R × (0, Tmax). Owing to Lemma 3.1 and the fact that ṽ is a solution to
(37), we see that

∂

∂x
ṽ ∈ L∞((τ, Tmax); L

∞(R)).

Next note that (35) and (38) result in

∂w

∂t
− Dv∆w + w = 0

in U × (0, Tmax), where w := ∂
∂x(v− ṽ). Thus, by the maximum principle we

infer
|w| ≤ |w||∂U×(τ,Tmax),

which implies∥∥∥∥
∂

∂x
v(x, t)

∥∥∥∥
L∞(U×(τ,Tmax))

≤ 2

∥∥∥∥
∂

∂x
ṽ(x, t)

∥∥∥∥
L∞(U×(τ,Tmax))

+

∥∥∥∥
∂

∂x
w(·, τ)

∥∥∥∥
L∞(U)

.

Step 2. Owing to Proposition 0 we have

sup
[0,Tmax)

‖u(·, t)‖∞ < ∞.

In view of Theorem 2.1 and Proposition 2.1 we obtain Tmax = ∞ and the
bound on the L∞ norm is uniform. The proof is complete.

4. Dimensions n = 2, 3. In this section we give the proofs of Theorems
2 and 3. The scheme of the proof will be the same in both cases. First we
assume Tmax to be finite. Due to Theorem 2.1 we have classical local-in-time
solutions. In the first step we have to obtain a bound on ‖u(·, t)‖p, p > n, on
finite time intervals. Then, with the use of Lemma 2.3(ii), we get a bound
on ‖∇v(·, t)‖∞ on finite time intervals. This lets us apply Proposition 0 to
show that there is no finite time blow-up of solutions to (1)–(4). Note that
proving Theorem 3 we shall show that ‖u(·, t)‖p, p > n, can be estimated
independently of time, and thus the solution is uniformly bounded. By the
proof of Theorem 2 we can only infer (u, v) ∈ L∞

loc((0,∞); L∞(U)), and it
will be shown that this is essential.

As just said, Steps 2 and 3 of both proofs are the same and Step 1 differs
in each case.

Step 2. From Lemma 2.3(ii) we infer that ‖∇v(·, t)‖∞ < ∞ on finite
time intervals.
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Step 3. We apply Proposition 0 to get

sup
τ<t<Tmax

‖u(·, t)‖∞ < C(Tmax).

Theorem 2.1 and Proposition 2.1 give a contradiction to the assumption
Tmax < ∞. Since C(Tmax) does not depend on Tmax when the Lyapunov
functional is bounded from below, the uniform boundedness in Theorem 3
holds.

So to complete the proofs we only have to show that there exists p > n
such that

(39) ‖u(·, t)‖p < ∞
on finite time intervals.

Step 1 of the proof of Theorem 2. We will denote by C a generic
constant which may depend on Tmax (assumed to be finite), but its value
may vary from line to line.

We multiply (1) by up−1 to obtain

(40)
1

p

d

dt

\
U

updx + (p − 1)
\
U

α(u)|∇u|2up−2 dx

= (p − 1)
\
U

up−1β(u)∇v · ∇u dx.

Since

up−1β(u) = u(p−2)/2up/2
√

β(u)
√

β(u)

and (9) holds, the Cauchy–Schwarz inequality and (40) imply

(41)
1

p

d

dt

\
U

up dx +
p − 1

2

\
U

α(u)|∇u|2up−2 dx ≤ C
\
U

upβ(u)|∇v|2 dx.

On the other hand, multiplying (2) by ∆v and using the Cauchy–Schwarz
inequality yields

(42)
d

dt

\
U

|∇v|2 dx +
Dv

2

\
U

|∆v|2 dx + 2
\
U

|∇v|2 dx ≤ C
\
U

u2 dx.

Now adding inequalities (41) and (42) we obtain (p > 2)

(43)
d

dt

(\
U

|∇v|2 dx +
\
U

up dx
)

+
Dv

2

\
U

|∆v|2 dx

≤ C
(\

U

up dx
)2/p

+ C
\
U

upβ(u)|∇v|2 dx.

Thanks to (14),

upβ(u) ≤ M1u
p−γ1 .
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Next the Hölder inequality yields

(44)
\
U

upβ(u)|∇v|2 dx ≤ C‖up−γ1‖l‖∇v‖2
2p′,

where 1/l + 1/p′ = 1.
We claim that

‖up−γ1‖l‖∇v‖2
2p′ ≤ C

\
U

up dx + C‖∆v‖2b′p′

2 .

Indeed, since ‖u(·, t)‖1 = ‖u0‖1, putting δ = 1 in Lemma 2.3(i) we see that
‖∇v‖q is finite for q < n/(n − 1). We choose q = p′ = n/(n − 1) − ν1 for
small ν1 > 0. Then l < n. We observe that

(45) (p − γ1)l ≤ p provided γ1l − p(l − 1) ≥ 0.

Since (14) gives γ1 > n − 1 we find p > n small enough to ensure that the
right inequality of (45) holds. By (21) and the Young inequality applied to
the right-hand side of (44) we see that the claim holds. We have used the
fact that (22) ensures

2b′p′ ≤ 2.

Owing to (44) and (14), taking p > n we arrive at

(46)
\
U

upβ(u)|∇v|2 dx ≤ C
\
U

up dx + C1‖∆v‖2
2 + C|U |.

Obviously, using the Young inequality in (44), we can ensure C1 < Dv/4.
In view of (46), by (43) we obtain

(47)
d

dt

(\
U

|∇v|2 dx +
\
U

up dx
)

+
Dv

4

\
U

|∆v|2 dx ≤ C
\
U

up dx + C|U |.

With the use of the Gronwall inequality we estimate
T
U updx. The proof of

Step 1 is finished.

In order to finish the proof of Theorem 2 we still need to show that it is
essential that we cannot obtain uniform-in-time boundedness of u.

Step 4 of the proof of Theorem 2. We assume (19) holds and
Ω = B(0, R). We choose radially symmetric initial data (u0(x), v0(x)). At
the same time we assume the solution to be uniformly bounded. We will
show that this leads to a contradiction.

Indeed, by Proposition 2.3 there exists a subsequence tk → ∞ such that
(u(·, tk), v(·, tk)) tends to a solution of (24)–(25) in W (for the definition see
Proposition 2.3). This holds for all the choices of (u0(x), v0(x)). But then
thanks to Lemma 2.2 we can define a sequence of initial data (ul

0(x), vl
0(x)),

l = 1, 2, . . . , in such a way that

(48) L(u(·, tk)l, v(·, tk)l) → −∞ as tk, l → ∞.
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The system (1)–(4) is rotationally invariant and thus (u(·, tk)l, v(·, tk)l) is
radially symmetric for all tk. Hence ω(u, v) (for the definition see Proposi-
tion 2.3) consists of radially symmetric solutions. Indeed, since the conver-
gence is in the space of continuous functions, one can analyze the difference
between (u(·, tk)l, v(·, tk)l) and the element of ω(u, v) on the sphere ∂B(0, r),
r ≤ R.

But then Proposition 2.2 contradicts (48).

Step 1 of the proof of Theorem 3. In [9, Theorem 2.1] it was
proved that (39) holds on finite time intervals. We shall analyze this proof
in order to ensure that (39) holds uniformly-in-time.

The proof of [9, Theorem 2.1] was split into two steps. First we stated [9,
Lemma 2.2] which is a generalization of the bootstrapping from [13] to the
case of non-uniform parabolicity. Then we were able to repeat the argument
in [13]. Notice that having [9, Lemma 2.2] (which we state below for the
reader’s convevience) with constants Ci, i = 1, 2, 3, on the right-hand side
independent of time, we finish the proof exactly as in [9, Theorem 2.1] and
obtain uniform estimates in (39).

Lemma 2.2 ([9]). Suppose that for a given v such that

(49) sup
[τ,Tmax)

‖∇v(·, t)‖q0
≤ C1, q0 > 2,

u is the solution to (1) under the no-flux boundary condition. Assume also

(50) sup
[τ,Tmax)

‖u(·, t)‖γ0
≤ C2.

Moreover , suppose

(51)

(
n

q0
− 1

)
γ0 < n(1 − γ).

Then

sup
[τ,Tmax)

‖u(·, t)‖γ1
≤ C3

for any γ1 > max{γ0, 2 − 2γ} which fulfills

(52)

(
n

q0
− 1

)
γ1 < (n − 2)(1 − γ).

We have to check that if both C1 and C2 on the right-hand sides of (49)
and (50) are independent of time, then so is C3. We see that the energy
estimates in [9, Lemma 2.2] are obtained with the use of the nonlinear test
function (28). Then it is enough to follow the method used in the proof
of Proposition 0 to ensure the uniform boundedness. We integrate [9, (19)]
with respect to time from s to t, τ ≤ s < t < Tmax. Then the right-hand
side is estimated in the same way as in [9, Lemma 2.2], and since C1 and C2



SOLUTIONS TO A CHEMOTAXIS SYSTEM 133

are independent of time, this estimate is also independent of time. We let
t−s go to 0 and see that C3 does not depend on time. The proof is finished.

Concluding remarks. At the end let us overview the possible choices
of functions q generating Hillen–Painter models from the point of view of
preventing blow-up.

In the one-dimensional case every nonincreasing q satisfies (9), so it pre-
vents blow-up.

For higher dimensions let us focus on the choices of q of the form either
q(u) = (1 + u)−λ or q(u) = e−γu. In both 2- and 3-dimensional cases the
second choice of q prevents blow-up and the solution is uniformly bounded.
The first q prevents blow-up for λ > n − 1, but for every such choice of q
there exists an initial data such that the solution emanating from it becomes
unbounded at ∞.
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