COLLOQUIUM MATHEMATICUM

ON THE UNIFORM BEHAVIOUR OF THE FROBENIUS CLOSURES OF IDEALS

BY
K. KHASHYARMANESH (Mashhad)

Abstract

Let \mathfrak{a} be a proper ideal of a commutative Noetherian ring R of prime characteristic p and let $Q(\mathfrak{a})$ be the smallest positive integer m such that $\left(\mathfrak{a}^{\mathrm{F}}\right)^{\left[p^{m}\right]}=\mathfrak{a}^{\left[p^{m}\right]}$, where $\mathfrak{a}^{\mathrm{F}}$ is the Frobenius closure of \mathfrak{a}. This paper is concerned with the question whether the set $\left\{Q\left(\mathfrak{a}^{\left[p^{m}\right]}\right): m \in \mathbb{N}_{0}\right\}$ is bounded. We give an affirmative answer in the case that the ideal \mathfrak{a} is generated by an u.s. d-sequence c_{1}, \ldots, c_{n} for R such that (i) the map $R / \sum_{j=1}^{n} R c_{j} \rightarrow R / \sum_{j=1}^{n} R c_{j}^{2}$ induced by multiplication by $c_{1} \ldots c_{n}$ is an R-monomorphism; (ii) for all $\mathfrak{p} \in \operatorname{ass}\left(c_{1}^{j}, \ldots, c_{n}^{j}\right), c_{1} / 1, \ldots, c_{n} / 1$ is a $\mathfrak{p} R_{\mathfrak{p}}$-filter regular sequence for $R_{\mathfrak{p}}$ for $j \in\{1,2\}$.

1. Introduction. Let R be a commutative Noetherian ring of prime characteristic p. The theory of tight closure was introduced by M. Hochster and C. Huneke [3], and many applications of it have been found (see [5]). For a proper ideal \mathfrak{a} of R, the Frobenius closure \mathfrak{a}^{F} of \mathfrak{a}, defined as

$$
\mathfrak{a}^{\mathrm{F}}:=\left\{r \in R: \text { there exists } n \in \mathbb{N}_{0} \text { such that } r^{p^{n}} \in \mathfrak{a}^{\left[p^{n}\right]}\right\}
$$

is an ideal relative to the theory of tight closure, where the nth Frobenius power $\mathfrak{a}^{\left[p^{n}\right]}$ of \mathfrak{a} is the ideal of R generated by the p^{n} th powers of elements of \mathfrak{a} (we use \mathbb{N}_{0} (respectively \mathbb{N}) to denote the set of non-negative (respectively positive) integers). Since $\mathfrak{a}^{\mathrm{F}}$ is finitely generated, ($\left.\mathfrak{a}^{\mathrm{F}}\right)^{\left[p^{n}\right]}=\mathfrak{a}^{\left[p^{n}\right]}$ for some $n_{0} \in \mathbb{N}_{0}$. Let $Q(\mathfrak{a})$ be the smallest power of p with this property. An interesting question is whether the set $\{Q(\mathfrak{b}): \mathfrak{b}$ is a proper ideal of $R\}$ of powers of p is bounded. A simpler question is whether, for a given proper ideal \mathfrak{b} of R, the set $\left\{Q\left(\mathfrak{b}^{\left[p^{n}\right]}\right): n \in \mathbb{N}_{0}\right\}$ is bounded.

In [6], M. Katzman and R. Y. Sharp gave an affirmative answer to the latter question in case \mathfrak{b} is generated by a regular sequence. To do this they used the theory of modules of generalized fractions introduced by R. Y. Sharp

[^0]and H. Zakeri in [11]. In fact they constructed a certain module of generalized fractions to which they applied the Hartshorne-Speiser-Lyubeznik theorem (Theorem 2.1). Following some ideas of [6], we are able to establish the following theorem.

Theorem 1.1. Suppose that the ideal \mathfrak{a} of R is generated by an u.s.dsequence c_{1}, \ldots, c_{n} for R such that
(i) the map

$$
R / \sum_{j=1}^{n} R c_{j} \rightarrow R / \sum_{j=1}^{n} R c_{j}^{2}
$$

induced by multiplication by $c_{1} \ldots c_{n}$ is an R-monomorphism;
(ii) for all $\mathfrak{p} \in \operatorname{ass}\left(c_{1}^{j}, \ldots, c_{n}^{j}\right), c_{1} / 1, \ldots, c_{n} / 1$ is a $\mathfrak{p} R_{\mathfrak{p}}$-filter regular sequence for $R_{\mathfrak{p}}$ for $j \in\{1,2\}$.
Then there exists $e \in \mathbb{N}_{0}$ such that $\left(\left(\mathfrak{a}^{\left[p^{n}\right]}\right)^{\mathrm{F}}\right)^{\left[p^{e}\right]}=\left(\mathfrak{a}^{\left[p^{n}\right]}\right)^{\left[p^{e}\right]}$ for all $n \in \mathbb{N}_{0}$.
The proof employs the Hartshorne-Speiser-Lyubeznik theorem. The new point of view is the use of Koszul homology with respect to a generalized regular sequence.

Throughout the paper, A will denote a general commutative Noetherian ring and R will denote a commutative Noetherian ring of prime characteristic p. We shall always denote by $f: R \rightarrow R$ the Frobenius homomorphism, for which $f(r)=r^{p}$ for all $r \in R$. Our terminology follows the textbook [1] on local cohomology.
2. An ideal generated by an u.s. d-sequence. In this paper, we shall work with the skew polynomial ring $R[x, f]$ associated to R and f in the indeterminate x over R. Recall that $R[x, f]$ is, as a left R-module, freely generated by $\left(x^{i}\right)_{i \in \mathbb{N}_{0}}$, and so consists of all polynomials $\sum_{i=0}^{n} r_{i} x^{i}$, where $n \in \mathbb{N}_{0}$ and $r_{0}, \ldots, r_{n} \in R$; however, its multiplication is subject to the rule

$$
x r=f(r) x=r^{p} x \quad \text { for all } r \in R
$$

Now, let Z be a left $R[x, f]$-module. Then it is easy to see that the x-torsion submodule $\Gamma_{x}(Z)$ of Z, defined as

$$
\Gamma_{x}(Z):=\left\{z \in Z: x^{j} z=0 \text { for some } j \in \mathbb{N}\right\}
$$

is an $R[x, f]$-submodule of Z (cf. [6, Lemma and Definition 1.2]).
Crucial to this paper is the following extension, due to G. Lyubeznik, of a result of R. Hartshorne and R. Speiser. It shows that, when R is local, an x-torsion left $R[x, f]$-module which is Artinian (that is, "cofinite" in the terminology of Hartshorne and Speiser) as an R-module exhibits a certain uniformity of behaviour.

Theorem 2.1 ([9, Proposition 4.4]; cf. [2, Proposition 1.11]). Suppose that (R, \mathfrak{m}) is local, and let G be a left $R[x, f]$-module which is Artinian as an R-module. Then there exists $e \in \mathbb{N}_{0}$ such that $x^{e} \Gamma_{x}(G)=0$.

Hartshorne and Speiser first proved this result in the case where R is local and contains its residue field which is perfect. Lyubeznik applied his theory of F-modules to obtain the result for any local ring R of characteristic p.

Definition 2.2 (see [6, Definition 1.5]). Suppose that (R, \mathfrak{m}) is local, and let G be a left $R[x, f]$-module which is Artinian as an R-module. By the Hartshorne-Speiser-Lyubeznik Theorem 2.1, there exists $e \in \mathbb{N}_{0}$ such that $x^{e} \Gamma_{x}(G)=0$; we call the smallest such e the Hartshorne-Speiser-Lyubeznik number, or HSL-number for short, of G.

Let a_{1}, \ldots, a_{n} be a sequence of elements of R. Set $\mathfrak{a}:=R a_{1}+\cdots+R a_{n}$. Then the nth local cohomology module $H_{\mathfrak{a}}^{n}(R)$ can be interpreted as the direct limit of Koszul homology modules (cf. [1, Theorem 5.2.9]), and in the present situation we have

$$
H_{\mathfrak{a}}^{n}(R) \cong \lim _{k \in \mathbb{N}} R / \sum_{j=1}^{n} R a_{j}^{k}
$$

with the map

$$
R / \sum_{j=1}^{n} R a_{j}^{k} \rightarrow R / \sum_{j=1}^{n} R a_{j}^{k+1}
$$

induced by multiplication by $a_{1} \ldots a_{n}$. For each $t \in \mathbb{N}$, let

$$
\Theta_{t}: R / \sum_{j=1}^{n} R a_{j}^{t} \rightarrow \underset{k \in \mathbb{N}}{\lim } R / \sum_{j=1}^{n} R a_{j}^{k}
$$

be the canonical homomorphism. We will show that the above direct limit has a structure of a left $R[x, f]$-module. To do this we recall the following lemma.

Lemma 2.3 ([6, Lemma 1.3]). Let M be an R-module and $\tau: M \rightarrow M$ be a \mathbb{Z}-endomorphism of M such that $\tau(r m)=r^{p} \tau(m)$ for all $r \in R$ and $m \in M$. Then the R-module structure on G can be extended to a structure of a left $R[x, f]$-module in such a way that $x m=\tau(m)$ for all $m \in M$.

Remark 2.4. In view of the above lemma, it is routine to check that $H_{\mathfrak{a}}^{i}(R)$ (and hence $\underline{\lim }_{k \in \mathbb{N}} R / \sum_{j=1}^{n} R a_{j}^{k}$) has a natural structure of a left $R[x, f]$-module (see [6, Reminder 2.1]). In the following lemma we determine precisely this structure.

Lemma 2.5. Let a_{1}, \ldots, a_{n} be a sequence of elements of R. Then the module $\lim _{k \in \mathbb{N}} R / \sum_{j=1}^{n}$ Ra a_{j}^{k} has a structure of a left $R[x, f]$-module with

$$
x\left(\Theta_{t}\left(r+\sum_{j=1}^{n} R a_{j}^{t}\right)\right)=\Theta_{p t}\left(r^{p}+\sum_{j=1}^{n} R a_{j}^{p t}\right)
$$

for all $r \in R$ and $t \in \mathbb{N}$.
Proof. Suppose that $r, u \in R$ and $t, s \in \mathbb{N}$ are such that

$$
\Theta_{t}\left(r+\sum_{j=1}^{n} R a_{j}^{t}\right)=\Theta_{s}\left(u+\sum_{j=1}^{n} R a_{j}^{s}\right) \quad \text { in } \underset{k \in \mathbb{N}}{\lim } R / \sum_{j=1}^{n} R a_{j}^{k}
$$

Hence $r\left(a_{1} \ldots a_{n}\right)^{v-t}-u\left(a_{1} \ldots a_{n}\right)^{v-s} \in \sum_{j=1}^{n} R a_{j}^{v}$ for some $v \in \mathbb{N}$ with $v \geq t$ and $v \geq s$. Application of the Frobenius homomorphism yields $r^{p}\left(a_{1} \ldots a_{n}\right)^{p(v-t)}-u^{p}\left(a_{1} \ldots a_{n}\right)^{p(v-s)} \in \sum_{j=1}^{n} R a_{j}^{p v}$. It follows that $\Theta_{p t}\left(r^{p}+\right.$ $\left.\sum_{j=1}^{n} R a_{j}^{p t}\right)=\Theta_{p s}\left(u^{p}+\sum_{j=1}^{n} R a_{j}^{p s}\right)$ and that there is a \mathbb{Z}-endomorphism τ of ${\underset{\mathrm{lim}}{k \in \mathbb{N}}} R / \sum_{j=1}^{n} R a_{j}^{k}$ such that $\tau\left(\Theta_{t}\left(r+\sum_{j=1}^{n} R a_{j}^{t}\right)\right)=\Theta_{p t}\left(r^{p}+\sum_{j=1}^{n} R a_{j}^{p t}\right)$ for all $r \in R$ and $t \in \mathbb{N}$. Now the claim follows from Lemma 2.3.

Now we recall a certain generalization of the notion of regular sequence. Let M be an A-module. A sequence b_{1}, \ldots, b_{n} of elements of an ideal \mathfrak{b} of A is said to be a \mathfrak{b}-filter regular sequence for M if

$$
\operatorname{Supp}_{A}\left(\frac{\left(b_{1}, \ldots, b_{i-1}\right) M:_{M} b_{i}}{\left(b_{1}, \ldots, b_{i-1}\right) M}\right) \subseteq V(\mathfrak{b})
$$

for all $i=1, \ldots, n$, where $V(\mathfrak{b})$ denotes the set of prime ideals of A containing \mathfrak{b}. The concept of a \mathfrak{b}-filter regular sequence for M is a generalization of that of a filter regular sequence which has been studied in [10], [12], [7] and has led to some interesting results. Note that both concepts coincide if \mathfrak{b} is the maximal ideal in a local ring. Also note that b_{1}, \ldots, b_{n} is a weak M-sequence if and only if it is an A-filter regular sequence for M. It is easy to see that the analogue of [12, Appendix 2(ii)] holds true whenever A is Noetherian, M is finitely generated and \mathfrak{m} is replaced by \mathfrak{a}; so that, if b_{1}, \ldots, b_{n} is a \mathfrak{b}-filter regular sequence for M, then there is an element $b_{n+1} \in \mathfrak{b}$ such that $b_{1}, \ldots, b_{n}, b_{n+1}$ is a \mathfrak{b}-filter regular sequence for M. Thus, for a positive integer n, there exists a \mathfrak{b}-filter regular sequence for M of length n.

Proposition 2.6 (see [7, Proposition 1.2]). Let $b_{1}, \ldots, b_{n}(n>1)$ be a \mathfrak{b}-filter regular sequence for M. Then

$$
H_{\mathfrak{b}}^{i}(M) \cong \begin{cases}H_{\left(b_{1}, \ldots, b_{n}\right)}^{i}(M) & \text { for } 0 \leq i<n \\ H_{\mathfrak{b}}^{i-n}\left(H_{\left(b_{1}, \ldots, b_{n}\right)}^{n}(M)\right) & \text { for } n \leq i\end{cases}
$$

Proposition 2.7. Suppose that (R, \mathfrak{m}) is a local ring and $t \in \mathbb{N}$. Then $H_{\mathfrak{m}}^{t}(R)$ is an $R[x, f]$-submodule of $H_{\left(r_{1}, \ldots, r_{t}\right)}^{t}(R)$ for every \mathfrak{m}-filter regular sequence $r_{1}, \ldots, r_{t} \in \mathfrak{m}$ for R.

Proof. Let $r_{1}, \ldots, r_{t} \in \mathfrak{m}$ be an \mathfrak{m}-filter regular sequence for R. If $\alpha \in$ $H_{\left(r_{1}, \ldots, r_{t}\right)}^{t}(R)$ is annihilated by \mathfrak{m}^{h} for a positive integer h, then $\left(\mathfrak{m}^{h}\right)^{[p]} x \alpha=0$, and so, in view of Lemma 2.3 and Proposition 2.6, $\Gamma_{\mathfrak{m}}\left(H_{\left(r_{1}, \ldots, r_{t}\right)}^{t}(R)\right) \cong$ $H_{\mathfrak{m}}^{t}(R)$ is an $R[x, f]$-submodule of $H_{\left(r_{1}, \ldots, r_{t}\right)}^{t}(R)$.

The theory of d-sequences was introduced by Huneke in [4]. Let M be an A-module. The sequence a_{1}, \ldots, a_{n} in A is called a d-sequence for M if, for each $i=1, \ldots, n-1$, the equality

$$
\left(\sum_{j=1}^{i} A a_{j}\right) M:_{M} a_{i+1} a_{k}=\left(\sum_{j=1}^{i} A a_{j}\right) M:_{M} a_{k}
$$

holds for all $k \geq i+1$ (this is actually a slight weakening of Huneke's definition); it is an unconditioned strong d-sequence (u.s.d-sequence) for M if $a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}$ is a d-sequence in any order for all positive integers $\alpha_{1}, \ldots, \alpha_{n}$. d-sequences are closely related to filter regular sequences. It is easy to see that if a_{1}, \ldots, a_{n} is a d-sequence on M, then it is a $\sum_{i=1}^{n} A a_{i}$-filter regular sequence for M.

Remark 2.8. Let \mathfrak{a} be an ideal of R and $i \in \mathbb{N}_{0}$. For any prime ideal \mathfrak{p} of R we have
(i) $\left(\mathfrak{a} R_{\mathfrak{p}}\right)^{\mathrm{F}}=\left(\mathfrak{a}^{\mathrm{F}}\right) R_{\mathfrak{p}}$,
(ii) $\left(\mathfrak{a} R_{\mathfrak{p}}\right)^{\left[p^{i}\right]}=\left(\mathfrak{a}^{\left[p^{i}\right]}\right) R_{\mathfrak{p}}$,
(iii) if $\left(\mathfrak{a}^{\mathrm{F}}\right)^{\left[p^{i}\right]}=\mathfrak{a}^{\left[p^{i}\right]}$, then $\left(\mathfrak{a}^{\mathrm{F}}\right)^{\left[p^{i+j}\right]}=\mathfrak{a}^{\left[p^{i+j}\right]}$ for all $j \in \mathbb{N}$.

The proof of the following theorem relies heavily on ideas in M. Katzman and R. Y. Sharp's proof of [6, Theorem 4.2].

Theorem 2.9. Suppose that the ideal \mathfrak{a} of R is generated by an u.s.dsequence c_{1}, \ldots, c_{n} for R such that
(i) the map

$$
R / \sum_{j=1}^{n} R c_{j} \rightarrow R / \sum_{j=1}^{n} R c_{j}^{2}
$$

induced by multiplication by $c_{1} \ldots c_{n}$ is an R-monomorphism;
(ii) for all $\mathfrak{p} \in \operatorname{ass}\left(c_{1}^{j}, \ldots, c_{n}^{j}\right), c_{1} / 1, \ldots, c_{n} / 1$ is a $\mathfrak{p} R_{\mathfrak{p}}$-filter regular sequence for $R_{\mathfrak{p}}$ for $j \in\{1,2\}$.
Then there exists $e \in \mathbb{N}_{0}$ such that $\left(\left(\mathfrak{a}^{\left[p^{n}\right]}\right)^{\mathrm{F}}\right)^{\left[p^{e}\right]}=\left(\mathfrak{a}^{\left[p^{n}\right]}\right)^{\left[p^{e}\right]}$ for all $n \in \mathbb{N}_{0}$.
Proof. First of all note that we can assume $\mathfrak{a} \neq 0$. Let $\mathfrak{p} \in \operatorname{ass}\left(c_{1}, \ldots, c_{n}\right) \cup$ $\operatorname{ass}\left(c_{1}^{2}, \ldots, c_{n}^{2}\right)$. It is well known that the local cohomology module $H_{\mathfrak{p} R_{\mathfrak{p}}}^{n}\left(R_{\mathfrak{p}}\right)$ is an Artinian $R_{\mathfrak{p}}$-module (cf. [1, Theorem 7.1.3]). Now, in view of Proposition 2.7, let $e_{\mathfrak{p}}$ be the HSL-number of $H_{\mathfrak{p} R_{\mathfrak{p}}}^{n}\left(R_{\mathfrak{p}}\right)$. Let $\left\{\right.$ ht $\mathfrak{p}: \mathfrak{p} \in \operatorname{ass}\left(c_{1}, \ldots, c_{n}\right)$ $\left.\cup \operatorname{ass}\left(c_{1}^{2}, \ldots, c_{n}^{2}\right)\right\}=\left\{h_{1}, \ldots, h_{w}\right\}$, where $h_{1}<\cdots<h_{w}$. We define (for each $i=1, \ldots, w)$

$$
e_{i}=\max \left\{e_{\mathfrak{p}}: \mathfrak{p} \in \operatorname{ass}\left(c_{1}, \ldots, c_{n}\right) \cup \operatorname{ass}\left(c_{1}^{2}, \ldots, c_{n}^{2}\right) \text { and ht } \mathfrak{p}=h_{i}\right\}
$$

and we claim that $e=\sum_{i=1}^{w} e_{i}$ has the desired property.
Now, let m be a positive integer such that $\left(\left(\mathfrak{a}^{\left[p^{m}\right]}\right)^{\mathrm{F}}\right)^{\left[p^{e}\right]} \neq\left(\mathfrak{a}^{\left[p^{m}\right]}\right)^{\left[p^{e}\right]}$. Then choose $\mathfrak{q} \in \operatorname{Ass}\left(\left(\mathfrak{a}^{\left[p^{m}\right]}\right)^{\mathrm{F}}\right)^{\left[p^{e}\right]} /\left(\mathfrak{a}^{\left[p^{m}\right]}\right)^{\left[p^{e}\right]}$. Hence by Remark 2.8, $\left(\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{q}}\right)^{\mathrm{F}}\right)^{\left[p^{e}\right]}$ $\neq\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{q}}\right)^{\left[p^{e}\right]}$. Note that such a \mathfrak{q} has to be an associated prime of $\left(\mathfrak{a}^{\left[p^{m}\right]}\right)^{\left[p^{e}\right]}$. Since \mathfrak{a} can be generated by a u.s. d-sequence c_{1}, \ldots, c_{n}, in view of $[8$, Lemma 3], we have $\mathfrak{q} \in \operatorname{ass}\left(c_{1}, \ldots, c_{n}\right) \cup \operatorname{ass}\left(c_{1}^{2}, \ldots, c_{n}^{2}\right)$. By using this observation, in conjunction with Remark 2.8, in order to establish our claim that e has the desired property, it is enough to show that, for each $\mathfrak{p} \in \operatorname{ass}\left(c_{1}, \ldots, c_{n}\right) \cup$ $\operatorname{ass}\left(c_{1}^{2}, \ldots, c_{n}^{2}\right)$,

$$
\left(\left(\mathfrak{a}^{\left[p^{n}\right]} R_{\mathfrak{q}}\right)^{\mathrm{F}}\right)^{\left[p^{\left.e_{1}+\cdots+e_{i}\right]}\right.} /\left(\mathfrak{a}^{\left[p^{n}\right]} R_{\mathfrak{q}}\right)^{\left[p^{\left.e_{1}+\cdots+e_{i}\right]}\right.}=0
$$

for all $n \in \mathbb{N}$, where ht $\mathfrak{p}=h_{i}$. Suppose that this is not the case, and let \mathfrak{p} be a minimal counterexample. Set ht $\mathfrak{p}=h_{l}$; there must exist a positive integer m such that $\left(\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}\right)^{\left[p^{\left.e_{1}+\cdots+e_{l}\right]} /\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\left[p^{\left.e_{1}+\cdots+e_{l}\right]}\right.} \neq 0 \text {. Set } e^{\prime}:==\right.}$ $\sum_{\gamma=1}^{l-1} e_{\gamma}$ (interpreted as 0 if $l=1$). By choice of \mathfrak{p}, each of the $R_{\mathfrak{p}}$-modules $\left(\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}\right)^{\left[p^{\left.e^{\prime}\right]}\right]} /\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\left[p^{e^{\prime}}\right]}$ and $\left(\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}\right)^{\left[p^{\left.e^{\prime}+e_{l}\right]}\right.} /\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\left[p^{\left.e^{\prime}+e_{l}\right]}\right.}$ has $\mathfrak{p} R_{\mathfrak{p}}$ as its only possible associated prime, because a smaller associated prime would contradict the minimality of \mathfrak{p}. Therefore, both $R_{\mathfrak{p}}$-modules in the last display have finite length.

There exists $\varrho \in\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}$ such that $\varrho^{p^{p^{\prime}+e_{l}}} \notin\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\left[p^{\left.e^{\prime}+e_{l}\right]}\right.}$. Consider the element

$$
\begin{aligned}
& \alpha: \\
&=\Theta_{p^{m}}\left(\varrho+\left(c_{1}^{p^{m}} / 1, \ldots, c_{n}^{p^{m}} / 1\right)\right) \\
& \in \underset{k \in \mathbb{N}}{\lim } R_{\mathfrak{p}} /\left(c_{1}^{k} / 1, \ldots, c_{n}^{k} / 1\right) \cong H_{\left(c_{1} / 1, \ldots, c_{n} / 1\right)}^{n}\left(R_{\mathfrak{p}}\right)
\end{aligned}
$$

By using Lemma 2.5, we have

$$
\begin{aligned}
x^{e^{\prime}} \alpha & =x^{e^{\prime}} \Theta_{p^{m}}\left(\varrho+\left(c_{1}^{p^{m}} / 1, \ldots, c_{n}^{p^{m}} / 1\right)\right) \\
& =\Theta_{p^{e^{\prime}+m}}\left(\varrho^{p^{e^{\prime}}}+\left(c_{1}^{p^{e^{\prime}+m}} / 1, \ldots, c_{n}^{p^{e^{\prime}+m}} / 1\right)\right) .
\end{aligned}
$$

Since $\varrho^{p^{e^{\prime}}} \in\left(\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}\right)^{\left[p^{\left.e^{\prime}\right]}\right]}$ and the R-module

$$
\left(\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}\right)^{\left[p^{e^{\prime}}\right]} /\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\left[p^{e^{\prime}}\right]}
$$

has finite length, it is routine to check that

$$
x^{e^{\prime}} \alpha \in \Gamma_{\mathfrak{p} R_{\mathfrak{p}}}\left(H_{\left(c_{1} / 1, \ldots, c_{n} / 1\right)}^{n}\left(R_{\mathfrak{p}}\right)\right)
$$

Also, by assumption (ii) in conjunction with Proposition 2.6, we have the isomorphism

$$
\Gamma_{\mathfrak{p} R_{\mathfrak{p}}}\left(H_{\left(c_{1} / 1, \ldots, c_{n} / 1\right)}^{n}\left(R_{\mathfrak{p}}\right)\right) \cong H_{\mathfrak{p} R_{\mathfrak{p}}}^{n}\left(R_{\mathfrak{p}}\right)
$$

Moreover $\alpha \in \Gamma_{x}\left(H_{\left(c_{1} / 1, \ldots, c_{n} / 1\right)}^{n}\left(R_{\mathfrak{p}}\right)\right)$ because $\varrho \in\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\mathrm{F}}$. Now, since by
assumption (i), the map

$$
R / \sum_{j=1}^{n} R c_{j} \rightarrow R / \sum_{j=1}^{n} R c_{j}^{2}
$$

induced by multiplication by $c_{1} \ldots c_{n}$ is an R-monomorphism and $\varrho^{p^{e^{\prime}+e_{l}}} \notin$ $\left(\mathfrak{a}^{\left[p^{m}\right]} R_{\mathfrak{p}}\right)^{\left[p^{\left.e^{\prime}+e_{l}\right]}\right.}$, in view of Lemma 2.5 , it is routine to check that $x^{e_{j}}\left(x^{e^{\prime}} \alpha\right)$ $\neq 0$, which is the required contradiction. So the theorem is proved.

Corollary 2.10 ([6, Corollary 4.3]). Suppose that the ideal \mathfrak{a} of R can be generated by a regular sequence. Then there exists $e \in \mathbb{N}_{0}$ such that $\left(\left(\mathfrak{a}^{\left[p^{n}\right]}\right)^{\mathrm{F}}\right)^{\left[p^{e}\right]}=\left(\mathfrak{a}^{\left[p^{n}\right]}\right)^{\left[p^{e}\right]}$ for all $n \in \mathbb{N}_{0}$.

REFERENCES

[1] M. Brodmann and R. Y. Sharp, Local Cohomology-An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math. 60, Cambridge Univ. Press, 1998.
[2] R. Hartshorne and R. Speiser, Local cohomology dimension in characteristic p, Ann. of Math. 105 (1977), 45-79.
[3] M. Hochster and C. Huneke, Tight closure, invariant theory, and the BriançonSkoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116.
[4] C. Huneke, Powers of ideals generated by weak d-sequences, J. Algebra 68 (1981), 471-509.
[5] -, Tight Closure and its Applications, CBMS Reg. Conf. Ser. Math. 88, Amer. Math. Soc., Providence, RI, 1996.
[6] M. Katzman and R. Y. Sharp, Uniform behaviour of the Frobenius closures of ideals generated by regular sequences, J. Algebra 295 (2006), 231-246.
[7] K. Khashyarmanesh and Sh. Salarian, Filter regular sequences and the finiteness of local cohomology modules, Comm. Algebra 26 (1998), 2483-2490.
[8] -, —, On the associated primes of local cohomology modules, ibid. 27 (1999), 61916198.
[9] G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997), 65-130.
[10] P. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen-MacaulayModuln, Math. Nachr. 85 (1978), 57-73.
[11] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika 29 (1982), 32-41.
[12] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Deutscher Verlag Wiss., Berlin, 1986.

Department of Mathematics
Ferdowsi University of Mashhad
P.O. Box 1159-91775, Mashhad, Iran

E-mail: khashyar@ipm.ir

Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746, Tehran, Iran

[^0]: 2000 Mathematics Subject Classification: 13A35, 13A15, 13E05.
 Key words and phrases: commutative Noetherian ring, prime characteristic, Frobenius homomorphism, Frobenius closure, skew polynomial ring, local cohomology module, Koszul homology, u.s. d-sequence, filter regular sequence.

 The author was partially supported by a grant from Institute for Studies in Theoretical Physics and Mathematics (IPM), Iran (No. 85130023).

