THE LJUNGGREN EQUATION REVISITED

BY

KONSTANTINOS A. DRAZIOTIS (Thessaloniki)

Abstract. We study the Ljunggren equation $Y^2 + 1 = 2X^4$ using the “multiplication by 2” method of Chabauty.

1. Introduction. In [5], Ljunggren proved that the only positive integral solutions of the diophantine equation

$$L_2 : \quad Y^2 + 1 = 2X^4$$

are $(X, Y) = (1, 1), (13, 239)$. Since the proof was quite complicated, Mordell asked if one could find a simpler proof.

In [8] Tzanakis and Steiner gave a proof using the theory of Baker. Another proof was given by Chen [3], using the Thue–Siegel method combined with Padé approximation of algebraic functions.

In this paper we solve this equation with another method. Our approach is inspired by Chabauty [2] and uses the group structure of an elliptic curve and the multiplication by 2 map. This method was used by Poulakis [6] and later by Bugeaud [1] to obtain an upper bound for the height of integral points. This method eventually also uses Baker’s theory since we need to solve a unit equation.

2. The integral solutions of L_2. The proof consists of two parts. The first uses the group structure of the elliptic curve and the second is a reduction to a unit equation in a certain quartic number field.

To solve the equation L_2 it is enough to solve E_2, where

$$E_2 : \quad F(X, Y) = Y^2 - (X^3 - 2X) = 0.$$

Let $(x, y) \in L_2(\mathbb{Z})$, and set $a = 2x^2$, $b = 2xy$. Then $P = (a, b) \in E_2(\mathbb{Z})$. We assume that $|a| \geq 2$. Let $R = (s, t)$ be a point of E_2 over the algebraic...
closure \(\bar{\mathbb{Q}} \) of \(\mathbb{Q} \) such that \(2R = P \). By [7, Chapter 3, p. 59], we have

\[
a = \frac{(s^2 + 2)^2}{4s(s^2 - 2)}
\]

and so \(s \) is a root of the polynomial

\[
\Theta_a(S) = S^4 - 4aS^3 + 4S^2 + 8aS + 4.
\]

The roots of \(\Theta_a(S) \) are

\[
a \pm \sqrt{a^2 - 2} \pm \sqrt{2a^2 \pm 2a\sqrt{a^2 - 2}},
\]

where the first \(\pm \) coincides with the third. Put \(L = \mathbb{Q}(s) \). Since \(a = 2x^2 \), we have \(a^2 - 2 = 4x^4 - 2 = 2y^2 \) and so \(L = \mathbb{Q}(\sqrt{2x^2 \pm y\sqrt{2}}) \). Also, \(\mathbb{Q}(\sqrt{2}) \subset L \) and \(N_K(2x^2 \pm y\sqrt{2}) = 2 \). It follows that the only prime dividing the discriminant of \(L \) is 2. So the only prime ramified in \(L \) is 2. Furthermore, from [4, Chapter 9, Proposition 9.4.1, p. 461], \(L \) is a totally real quartic extension of \(\mathbb{Q} \). So from Jones’ list (1) or the database (2) of Jürgen Klüners and Gunter Malle, we conclude that \(L = \mathbb{Q}(\sqrt{2} + \sqrt{2}) \).

The element \(s_\pm = (s \pm \sqrt{2})/2 \) is a root of the polynomial with integer coefficients:

\[
\lambda(S) = (1/256) \text{res}_W(\Theta_a(2S \mp W), W^2 - 2) = S^8 - 4aS^7 + \cdots + 1,
\]

where \(\text{res}_W(\cdot, \cdot) \) denotes the resultant of two polynomials with respect to \(W \). Thus \(s_\pm \) is a unit in \(L \). So \(u = (s + \sqrt{2})/2 \) and \(v = (\sqrt{2} - s)/2 \) satisfy the unit equation \(u + v = \sqrt{2} \) in \(L \). The algorithm of Wildanger [9], which is implemented in the computer algebra system Magma (3) V2.10-22, gives the solutions of this unit equation in \(L \), which are listed in Table 1 where we have put

\[
[a_1, a_2, a_3, a_4] = a_0 + a_1 \theta + a_2 \theta^2 + a_3 \theta^3,
\]

with \(\theta = \sqrt{2 + \sqrt{2}} \). We substitute to (1) each solution of the unit equation and we check if it gives an integer. Thus, it follows that \(a = 2,338 \). So, for \(|a| \geq 2 \), the solutions of \(E_2 \) are \((X, Y) = (2, \pm 2), (338, \pm 6214)\), and for \(|a| < 2 \), they are \((X, Y) = (0, 0), (-1, \pm 1)\). So \(L_2(\mathbb{Z}) = \{ (\pm 1, \pm 1), (\pm 13, \pm 239) \} \).

Acknowledgments. The author is indebted to Professor D. Poulakis for his valuable remarks. Also the author thanks the referee for his/her suggestions and comments.

(2) http://www.mathematik.uni-kassel.de/~klueners/minimum/minimum.html.

(3) http://magma.maths.usyd.edu.au/magma/.
Table 1. The solutions of the unit equation

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-1, 0, 0, 0][-1, 0, 1, 0]$</td>
<td>$[1, 0, 0, 0][-30, 1, 0]$</td>
<td>$[-1, -1, 0, 0][-1, -1, 1, 0]$</td>
</tr>
<tr>
<td>$[-1, 1, 0, 0][-1, -1, 1, 0]$</td>
<td>$[-1, -1, 1, 0][-1, -1, 0, 0]$</td>
<td>$[-3, 0, 1, 0][1, 0, 0, 0]$</td>
</tr>
<tr>
<td>$[407, 533, -119, -156][-409, -533, 120, 156]$</td>
<td>$[-1, 1, 1, 0][-1, -1, 0, 0]$</td>
<td>$[-1, 0, 1, 0][-1, 0, 0, 0]$</td>
</tr>
<tr>
<td>$[-409, 533, 120, -156][407, -533, -119, 156]$</td>
<td>$[5, 7, -1, -2][-7, -7, 2, 2]$</td>
<td>$[1, 4, 0, -1][-3, -4, 1, 1]$</td>
</tr>
<tr>
<td>$[-71, 39, 120, -65][69, -39, -119, 65]$</td>
<td>$[-1, -1, -1, 1][-1, 1, 2, -1]$</td>
<td>$[1, 2, -3, -2][-3, -2, 4, 2]$</td>
</tr>
<tr>
<td>$[69, 39, -119, -65][-71, -39, 120, 65]$</td>
<td>$[-7, 7, 2, -2][5, -7, -1, 2]$</td>
<td>$[-3, 2, 4, -2][1, -2, -3, 2]$</td>
</tr>
<tr>
<td>$[-71, -39, 120, 65][69, 39, -119, -65]$</td>
<td>$[-1, 2, 0, -1][-1, -2, 1, 1]$</td>
<td>$[1, 3, 0, -1][-3, -3, 1, 1]$</td>
</tr>
<tr>
<td>$[11, 14, -3, -4][-13, -14, 4, 4]$</td>
<td>$[-1, 2, 1, -1][-1, -2, 0, 1]$</td>
<td>$[-3, 3, 1, -1][1, -3, 0, 1]$</td>
</tr>
<tr>
<td>$[-1, 1, -1, -1][-1, -1, 2, 1]$</td>
<td>$[-1, 1, 2, -1][-1, -1, -1, 1]$</td>
<td>$[-3, -4, 1, 1][1, 4, 0, -1]$</td>
</tr>
<tr>
<td>$[11, -14, -3, -4][-13, 14, 4, -4]$</td>
<td>$[1, -3, 0, 1][-3, 3, 1, -1]$</td>
<td>$[-1, -2, 0, 1][-1, 2, 1, -1]$</td>
</tr>
<tr>
<td>$[-13, 14, 4, -4][11, -14, -3, 4]$</td>
<td>$[-3, -3, 1, 1][1, 3, 0, -1]$</td>
<td>$[-1, -2, 1, 1][-1, 2, 0, -1]$</td>
</tr>
<tr>
<td>$[-409, -533, 120, 156][407, 533, -119, -156]$</td>
<td>$[1, -2, -3, 2][-3, 2, 4, -2]$</td>
<td>$[5, -7, -1, 2][-7, -7, 2, -2]$</td>
</tr>
<tr>
<td>$[69, -39, -119, 65][-71, 39, 120, -65]$</td>
<td>$[-1, -1, 2, 1][-1, 1, -1, -1]$</td>
<td>$[1, -4, 0, 1][-3, 4, 1, -1]$</td>
</tr>
<tr>
<td>$[-13, -14, 4, 4][11, 14, -3, -4]$</td>
<td>$[-3, -2, 4, 2][1, 2, -3, -2]$</td>
<td>$[-3, 4, 1, -1][1, -4, 0, 1]$</td>
</tr>
<tr>
<td>$[407, -533, -119, 156][409, 533, 120, -156]$</td>
<td>$[-7, -7, 2, 2][5, 7, -1, -2]$</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

G. Passalidi 42
54 453 Thessaloniki, Greece
E-mail: drazioti@gmail.com

Received 6 June 2006