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Abstract. We prove that every generalized Cartan hypersurface satisfies the so
called Roter type equation. Using this fact, we construct a particular class of general-
ized Robertson—Walker spacetimes.

1. Introduction. According to [8] a semi-Riemannian manifold (M, g)
with dim M = n > 4 is said to be a Roter type manifold if

(1) Rz%S/\S—i—ug/\S—i—nG

holds on Uo NUg C M, where ¢, p and 7 are some functions on this set,
Us={zeM|C#0atz}and Us={x e M |S—Lg+#0at z}; here
C denotes the Weyl tensor and S the Ricci tensor. For precise definitions
of the symbols used here, we refer to Section 2 of this paper (and also to
Sections 2 and 3 of [13]).

Obviously, we consider Roter type manifolds with Uos N Ug non-empty.
We refer to [8] and [15] for a review of results on Roter type manifolds.

In this paper we investigate warped products M xp N with dim M =1
and dim N = n—1 > 3 satisfying (1). We show that if they are of Roter type
then the fibres (N, §) satisfy a special form of (1). We remark that manifolds
M xp N with dimM = p > 2 and dim N = n — p > 2 satisfying (1) were
investigated in [13] and [16].

In Section 2 basic definitions are presented and we also give first results
(see especially Theorem 2.1) relating to 3-dimensional manifolds or confor-
mally flat quasi-Einstein manifolds, of dimension > 4 satisfying (1). The

next section contains preliminary results on warped products M xp N with
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dim M =n—1> 3 and dim N = 1 satisfying (1). In Section 4 we consider so
called generalized Cartan hypersurfaces, i.e., tubular hypersurfaces around
minimal surfaces, introduced in [3]. We prove that such hypersurfaces sat-
isfy special relations for the Ricci tensor and the scalar curvature. Manifolds
which are locally isometric to open subsets of such hypersurfaces will be used
as fibres in the construction of Roter type warped products M xp N with
dim M = 1 and dim N = n—1 > 3, which are generalized Robertson—Walker
spacetimes. Section 5 contains results relating to this construction. We recall
that if n > 4, p =1, g;; = —1, and the fibre manifold (N, g) is a Riemannian
manifold, then M xp N is called a generalized Robertson—Walker spacetime
(see [1] and references therein).

The authors wish to express their sincere thanks to Professor Udo Simon
and to the referee for their helpful comments and remarks.

2. Preliminaries. Throughout this paper all manifolds are assumed to
be connected paracompact C'°°-manifolds. Let (M, g) be an n-dimensional
semi-Riemannian manifold, n > 3, V its Levi-Civita connection and =(M)
the Lie algebra of vector fields on M. We define the endomorphisms X A4 Y
and R(X,Y) of =Z(M) by

(XMaY)Z =AY, 2)X — A(X, 2)Y,
R(X,Y)Z - VXVYZ — VYVXZ — V[X7y}Z,
respectively, where A is a symmetric (0, 2)-tensor on M and X,Y, Z € =(M).
The Ricci tensor S, the Ricci operator S and the scalar curvature k of (M, g)
are defined by
S(X,)Y)=tr{Z— R(Z,X)Y}, ¢g(SX,Y)=S(X,Y), r=trS.

The endomorphism C(X,Y") is defined by

1
C(X,Y)Z =R(X,Y)Z - — (X NgSY +SX N, Y — %X/\g Y>Z.
The (0,4)-tensor G, the Riemann-Christoffel curvature tensor R and the

Weyl conformal curvature tensor C' of (M, g) are defined by

G(X1, X2, X3, X4) = g((X1 Ay X2) X3, X4),
R(X1, X9, X3, X4) = g(R(X1, X2) X3, X4),
C(X1, X2, X3, X4) = g(C(X1, X2) X3, X4),

where X1, Xo,... € Z(M). Let B(X,Y) be a skew-symmetric endomorphism
of (M) and let B be the (0,4)-tensor associated with B(X,Y") by

(2) B(X1, X2, X3, Xy) = g(B(X1, X2) X3, X4).
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The tensor B is said to be a generalized curvature tensor if
B(X1, X2, X3, X4) + B(X2, X3, X1, X4) + B(X3, X1, Xo, X4) = 0,
B(X1, X2, X3, X4) = B(X3, X4, X1, Xo).

Let B(X,Y) be a skew-symmetric endomorphism of =(M) and let B be
the tensor defined by (2). We extend B(X,Y) to a derivation B(X,Y)- of the
algebra of tensor fields on M, assuming that it commutes with contractions
and B(X,Y) - f = 0 for every smooth function f on M. Now, for a (0, k)-
tensor field T', k > 1, we define the (0, k + 2)-tensor B - T by
(B-T)(X1,..., X X,¥) = (B(X,Y) - T)(Xy,. .., Xp)

=-T(B(X,Y)X1,Xp,..., Xp) =+ = T(Xy,..., X1, B(X,Y) Xp).
In addition, if A is a symmetric (0, 2)-tensor, we define the (0, k + 2)-tensor
Q(A,T) by
QUAT)(X1, ..., Xis X,Y) = (X Ag Y - T)(X1,..., X

= _T((X AA Y)Xla XQ) s 7Xk‘) - T(Xl7 s Xk‘—l? (X AA Y)Xk)
In this manner we obtain the (0,6)-tensors B - B and Q(A, B). Setting in
the above formulas B=Ror B=C,T=RorT=CorT=5 A=gor
A =S, we get the tensors R- R, Q(g, R), Q(S, R), Q(g,C) and Q(S, G). For

symmetric (0, 2)-tensors E and F' we define their Kulkarni-Nomizu product
E N F by

(E VAN F)(Xl, X, X3, X4) = E(Xl, X4)F(X2, X3) + E(XQ, Xg)F(Xl, X4)
— E(X1, X3)F (X2, X4) — E(Xo, X4)F (X1, X3).
Clearly, the tensors R, C', G and E A F are generalized curvature tensors. For

a symmetric (0,2)-tensor E we define the (0,4)-tensor E by E = $E A E.
Thus in particular we have g = G = %g A g and

1 K
3 C=R—-——gNS+ ————=G.
®) w2 T L Mo
We also have the following identity (see e.g. [9, Section 3]):

Let (M, g), n > 3, be a quasi-Finstein manifold, that is, a semi-Rieman-
nian manifold with the Ricci tensor S given by

(5) S=ag+pPwew

for every x € M, where w € Ty M, o, § € R. Quasi-Einstein manifolds arose
in the study of exact solutions of the Einstein field equations as well as in
considerations of quasi-umbilical hypersurfaces of conformally flat spaces.
We note that for every point of Ug C M the condition (5) is equivalent to

rank(S —ag) =1
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and this is equivalent to
(6) (S —ag) A (S —ag) =0.

Let now (M, g) be a quasi-Einstein manifold of dimension > 4. It is easy
to verify that if (1) is satisfied on Us C M then C' = 0 on this set. Also a
converse statement is true (see Theorem 2.1).

A semi-Riemannian manifold (M, g), n > 3, is said to be pseudosymmet-
ric (see e.g. [2]) if the (0, 6)-tensors R- R and Q(g, R) are linearly dependent
at every point of M. This is equivalent to

(7) R-R=LrQ(g,R)

on Up = {x €EM]|R- ﬁG # 0 at :13}, where Lp is some function
on Ug. It is easy to check that Lg is uniquely determined on Ug. According
to [17], if Lp is a constant on Ug, then the pseudosymmetric manifold (M, g)
is called of constant type. It is obvious that every semisymmetric manifold
(R - R = 0) is pseudosymmetric. The converse is not true (see [2]).

According to [8], (1) is called a Roter type equation and a semi-Rieman-
nian manifold (M, g) (with n > 4) such that (1) holds on Uc N Ug is called
a Roter type manifold. We mention that the decomposition of R on Uo NUg
in terms of SA S, g AS and G is unique ([12, Lemma 3.2]). It is easy to
check that (1) implies (7) on Uc N Ug with

(8) Lr=¢""((n—2)(u* — ¢n) — ).

Further, we note that (1) can be presented in the form

R+ ¢y — ¢n)G = ? (S + ¢ tug) A (S + ¢ Lug).
The equation (1) also implies (see e.g. [8])
(9) R-R—-Q(S,R) = LQ(g,C),
with
L=Lp+¢"'u=(n-2)¢"" (1~ om).
REMARK 2.1

(i) In [5, Theorem 4.1] it was shown that every warped product M x p N
with dim M = 1 and dim N = 3 satisfies (9) with some function L. In
particular, every 4-dimensional generalized Robertson—Walker space-
time has this property. ~

(ii) From Theorem 6.1 of [5] it follows that the warped product M x p N
of an (n — 1)-dimensional space (M,g) of constant curvature with
n > 4 and a 1-dimensional manifold (N, ) satisfies (9) with L =
—%/(n — 1), where % is the scalar curvature of (M, 7).
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We finish this section with

THEOREM 2.1. Let (M, g) be a 3-dimensional semi-Riemannian manifold
or a conformally flat semi-Riemannian manifold of dimension > 4 and let
(6) hold on Us C M with o # k/n at every point of this set.

(i) If

(10) R—5G=2(5~(n—1)89) A (S~ (n— 1))
on Ug for some functions 8 and ¢ on Ug, then
K
(11) = n—1 - Q,
(12) = e (n-1p)"!

on this set.
(i1) If B and ¢ are defined by (11) and (12) then (10) holds on Usg.

Proof. (i) The relations (3) and (6) yield

(6o -18) - 15 )ans

_ n—1)23% — o2 K
— (o178 ) 154 )G

which implies

1
¢(a_(n_1)6):m7
2 252y _ K
P(ox _(n—l)ﬁ)—ﬁ‘i'm-
This immediately leads to (11) and (12).
(ii) Using (11) and (12) we obtain
1 1 o
(13) n—2_a¢:n—2(1+(n—1)6—a>
n—1 B o
K 1
(14) a%‘m—ﬁzaQ(ﬁ—m(ﬂ—ka)—ﬂ
1 n—1 n—1
— (a0 15 )a=tmg 0= (n-vago- "3

— (0= 1800 - =25 ) = (- 178%.

Furthermore, (3) and (6) give
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1 K
R—n_2<g/\S——n_1G>,

¢ 1 K
R - BG——S/\S+<—2—04¢>9/\S+< ¢ — m—ﬁ)G

But the last equation, by making use of (13) and (14), turns into (10), which
completes the proof.

EXAMPLE 2.1. Let M xp N be a Robertson—Walker spacetime, i.e. the
warped product of a line or a circle (M,3g), g;; = € = *1, and an (n — 1)-
dimensional Riemannian space (]V , ) of constant curvature with the warping
function F and n — 1 > 3. It is known that (5) holds on Ug C M x5 N,

with 8 = -5 — ng (see e.g. [6, Lemma 3.1]). In view of Theorem 2.1, if

B # k/n for every point of Ug, then (10) holds on Ug. We can easily prove
that 8 = k/n on Uy if and only if

2ek

2FF" + (n —2)(F')? - F=0

n—1
on this set, where k and « denote the scalar curvatures of (N ,g) and M x N ,
respectively.

3. Warped products satisfying (1). Let (M,g) and (N,g), with
dim M = p and dimN =n — p, 1 < p < n, be semi-Riemannian manifolds
covered by systems of charts {U; 2%} and {V y*}, respectively. Further, let
F : M — R* be a positive smooth function on M. The warped product
M xp N is the product manifold M x N with the metric g =9 XxXr g =
71 + (F o m1)mhg, where m @ M x N - Mand m : M x N — N are
the natural projections. Let {U x V,:v Lol Pt =yt g =y P}
be a product chart for M x N. The local components of the metric g with
respect to this chart read: gyr = Gup if h = a and k = b, gy = Fgop if
h = a and k = 3, and g, = 0 otherwise, where a,b,c,... € {1,...,p},
a,B,7,... € {p+1,...,n} and h,i,j,k,... € {1,...,n}. We will mark by
bars (resp., tildes) tensors formed from g (resp., g). The local components
Rp;ji of the curvature tensor R and the local components Sy, of the Ricci
tensor S of M xp N which generally do not vanish identically are the fol-
lowing (see e.g. [13], [14]):

Rabcd = Rabcd ;

1
(15) Rabc/)’ = _5 Tbcga,8>

~ AMF ~
Roaﬁ'yé = F<Ro¢6'y<5 - F Gaﬁ'y&)
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n—p

Sab = gab - W Tabs
= — —_— n — —
afl af 2 p AL 9ap,
= 1
(17) Tuy = ViFo = o FaFy, - M F = AgF = g™ F, F,

where T' denotes the (0,2)-tensor with local components T, and tr7 =
trg T = G®T,,. The scalar curvature x of M X N satisfies the relation

K — A F
(18) K:E—Fi—u(trT—F(n—p—l) ! )

F F 4F

Using (15), (16) and (18), we find the following relations for the local com-
ponents Cp;j of the Weyl tensor C' of M xr N ([7]):

_ 1 _ _ _ _
(19) Cabcd = Rabcd - a5 (yadsbc - gacsbd + ?bcsad - gbdsac)

n—2
n—p _ _ _ _
+ n—2)F (GadTve = GacTvd + GoeTad — Goalac)
l‘{/ J—
— G
+ (Tl _ 2)(77, — 1) abed)y
1 p—2 —~ \- 1 _ =
(20) Capep = E— <TTab + FSab> Gop = 5 JabSap
1 . (n=2p+1)txrT
- - | F _
+<n—2><n—1>< nre 2
(p—Dn—p-1AF\_ _
+ 4F gabgaﬁ7
~ F _ - o~ - = o~
(21)  Capys = FRapys — n_9 (90858 = Gor'Sps + 8y Sas — 9p5Sar)
+ Fpéaﬂ'yéa
(22) Cabca = Labapg = Caaﬁ'y = 07
1 F (n —2p) A F
2 P = —_— T+-—F—7-—).
(23) n_2<n_1+tr + AP

We now consider the warped products M xp N with dim M = 1 and
dim N =n—1> 3. Then

Ty = G119 Ty = tr TGy,
1 tr T
(24) Hyy = 3 T + FLrgy, = <T + FLR)?H,

where T7; is defined by (17), i.e.
1

1
T =ViFL — —FF =0,F, — [}, — —
11 V112F11 o F1 I =55

FZ.



20 R. DESZCZ AND M. SCHERFNER

Using (18)—(24), we find

1 ~ K
2 « = T 5 ad — ~a 9115
(25)  Cang=—— (5 5= 19 5>911

2 1

~ 1 ~ [~ Kk
(26)  Capys = F(Capys + =3 m=2) <9a6 <Sﬁ7 — T 9[%)

- (3 [ - (= [
+ 95+ <5a5 l— ga5> — Jay <Sﬁ6 — 9ﬁ6>

n
e
— 985 (Sow - mgow))-

In particular, if n = 4, (25) and (26) reduce to

1/~ k. \_
(27) Cal15 = 5 (Sa5 -3 ga5> 911>
F(_ [~ R - (= K -
(28) Caﬂ'yé = 5 <ga6 <Sﬁ'y - g gﬁ'y) + 95~y <Soz5 - g ga6>

- [~ K- - = e
— Jary <SB<5 - g gﬁ(S) — 9ps (Soz'y - § goz'y>>7

respectively. Further, from Lemma 4 of [7], it follows that (7) holds on Ugz N
Us C M xp N, where dim M = 1 and dim N = n — 1 > 3, if and only if

~ AlF tr 7T\ ~
(29) Hyy (R(Saﬁ’y — <F — T>G6aﬁw> =0,
~ ~ A F o~
(30 (®- Barorn = (FLi+ S )@ Do

on this set. By suitable contractions, (29) yields

~ MAMEF trT\ o
H11<Saﬁ—(n—2)< 4}, _T>gaﬂ> =0,

H11<7<5— (n—2)(n— 1)<A41FF - %»

Substituting the last relation into (29) we obtain

0.

K

(31) Hyy <-§5a,8'y - m ééaﬁ«,) =0.

We note that at every point x € Ugs N Ug the tensor R - WG is

non-zero. In fact, if R = mé at z, then, by making use of (19)—(21)

we get C' = 0 at z, a contradiction. Thus, from (31) it follows that H;; =0
on Uc N Ug. This, by (24), yields
tr’T

(32) FLR+T:O’
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and using (30) we get

AN F
(33) FLp+ 4} =, C) = const,
on Uc N Ug. Evidently, (32) and (33) lead to
AlF trT
4 - — =0C1.
(34) Wa 5 Gy

Thus we have

LEMMA 3.1. The warped product ]\7_><Flv~with dim M =1 and dim N =
n — 1 > 3 satisfies (7) on Uc NUg C M xr N if and only if (30), (33) and
(34) hold on this set.

If g11 = g;; =€ = %1, then (34) yields

(35) (F')? —2F <V1F1 — % (F’)2> = 4eFCy,

where Fy = F' = 0F/dx!. Since V1Fy = 0F;/0z' = F", (35) now becomes
(36) FF" — (F")? +2¢C1F = 0.

We can easily check that the following functions are solutions of (36) (cf.
[11, Remark 3.7]):

2

F(zY) = ey (ml + E) , eCy >0,

Ch
2
n_¢ b 1\ 2eC b 4
(37) F(:U)—Q(exp<j:2x> P exp(I2x , ¢>0,b#0,
2
F(z!) = igl (1+sin(cz! +b)), eC;>0,c#0,

where b and ¢ are constants and z! belongs to a suitable non-empty open
interval of R.

Now let MXF]\Nf with dim M =1 and_dim]j\[ =n—1 > 3 be a Roter type
manifold. Thus (1) holds on UcNUg C M X N. In the local representation,
(1) reads

(38) Rpiji = P(SniSij — SnjSik) + nGhijk
+ 11(9nkSij + 9iShk — 9njSik — GikShj),

where Rpijk, Ghijk, Shk and gpy are the local components of the tensors R,
G, S and g, respectively. Since (7) holds on Uc N Usg, it follows that (34) is
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satisfied on this set. Now (15)—(16) and (18) become

(39) Raat = 5" Guias:

(40) Ropys = F<§aw - (% + 01> éaﬁ,ﬂ;),

(41) S = —% 911>

(42) Sap = Sag — (% +(n— z)cl)gaﬁ,

respectively. Using (38)-(42) we can prove

LEMMA 3.2. Let U C Uc N Ug be a_coordinate neighbourhood of x €
Uc N Ug in the warped product M xXp N with dimM = 1 and dim N =
n—12> 3. Then (38) holds on U if and only if
(43) Riap1t = #S115a5 + 11(9115a8 + S119a8) + 1911908
(44) Rogys = ¢(SasSay — SaySss) + 1Gapys

+ 1(9a858y + 97Sas = GaySps — 9p5Sar)
on this set.

In addition we have

LEMMA 3.3. If the warped product M xp N with dim M = Lgn=¢e=
+1, and dim N = n — 1 > 3 satisfies (1) on Uc NUs C M xpr N, then the
following relations hold on this set: (33), (34) and

n — r 2 r
@) @ue="T e =L - 0L
(46)  R-CiG = % (§—(n-2)C) A S — (n—2Ch7).

Proof. Let U C UoNUg be a coordinate neighbourhood of x € Us N Usg.
First of all we prove that (43) implies (45) on U. From (43), using (39), (41)
and (42), we obtain

(P e )3

_ ((trT L= 2)A1F> ((n— 1)trT¢_,u> .

2 4F 2F

e

We suppose that S — %~ =0 at . Then (41) and (42) lead to
(48) S11= 01911,  Sap = 02908
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for some g1, 02 € R. From (48) we have
(49) Sij = 020ij + (01 — 02)ewiwy,

where w; = 1 and wy = -+ = w, = 0. Substituting (49) into (38), after
some standard tensor calculations, we find Chi, = 0, i.e. C =0 at x, a con-

tradiction. Therefore S — %@“ # 0 at x, and consequently, (47) implies (45).
Applying (40) and (42) to (44), we obtain

b~ ~ =
(50) Roéﬁ’WS = F (Saésﬁ’y - SafySﬁ&)
¢ (trT A F o~ - L o
" <H F <T +(n=2) 7= | ) (906587 + 987 Sas — JaySas — asSar)

AlF trT AlF
+<”F+ AF _2“<T+(”_2) 4F>

¢ (trT AF\? ~
+F<T+(n—2) A Ga,B’YzS.

According to (34) and (45) we conclude that
trT A F tr T AF
(51)  p— ?<r—+(n—2)L> = (n—2)<r— - #>%

F\ 2 AF 2 4F
:—(n—z)q%
A F tr T AF\ 6 (T A F\?
9) nF —ou S (-2 P(EL f (-2
AT “<2+(n )4F>+F(2+(n )4F>

. AlF trT ) AlF trT
_<4F ‘T><1+<”‘2> <4F _T>

=e <1 + (n —2)%Cy %)

Applying (51) and (52) to (50) we immediately get (46).
REMARK 3.1. The relations (8) and (45) yield (32).

4. Generalized Cartan hypersurfaces. In this section we show that
every generalized Cartan hypersurface is a Riemannian manifold satisfying
(46). Thus, such manifolds are examples of fiber manifolds of dimension > 3
satisfying (46).

Let NI'(c), n > 4, be a semi-Riemannian space of constant curvature

¢ = ——< with signature (s,n — s), where 7 is its scalar curvature. In
(n—1)n ’ ’

addition let M be a hypersurface isometrically immersed in NI (c). The
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Gauss equation of M in N7(c) reads (see e.g. [10] or [12])

~ ’7— ~
(53)  Rpijr = ex(HppHyj — HpjHyg) + n Ghijk, €1 = %1,

(n—1
where hayka thk and H;; denote the local components of the curvature

tensor R the tensor G and the second fundamental tensor H of M respec-
tively. Contracting (53) with g% and g*", respectively, we obtain

(54) Shk = e1(tr HHyy, — Hiy) + % Jhk;
(55) R=c1((tr H)? — tr(H?)) + @

where H}fk = g'thlHk]7 tr H = gthhk, tr(H?) = Nhk‘H,%k, Spr are the local
components of the Ricci tensor S’ and 7 is the scalar curvature of M. We
recall that the following condition of pseudosymmetry type is fulfilled on M
(see e.g. [10] or [12]):

~ S =37 =
(56) R-B-Q8.R) =~ (=57 0.0),
where C is the Weyl conformal tensor of M. By making use of (3), (56) turns
into

(n—=3)1 . ~ T
(n—1)n Q. R)+ (n—1)n

and from (4) we get Q(3,5 A S) = —Q(S, G). Applying this to the relation
above, we find

(57) E-E:Q(iﬁ—%é) —%Q(’gﬂfi—ﬁ@).

(n—1)n (n

ﬁﬁ_@<§7é):_ Q(§,§A§),

In addition, we assume that

(58) ReR= 5 Q0 R)

0{)1 Us C U C M. Comparing the right hand sides of (57) and (58) we
obtain

~ (n—2)1 _ T =\
(59) Q(S—WQ,R—WG) =0.

If we set C; = W, then (59) becomes
(60) Q(S — (n—2)C1g, R — C1G) = 0.
Further, we assume that

(61) rank(S — (n — 2)C1g) > 1
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on Ug. Now from (60), in view of Proposition 4.1 of [4], it follows that

(62) Ro0G = % (S (n—2C19) A (S — (n—2)C19),
where ¥ only takes positive or negative values on Ug. Thus we have

PROPOSITION 4.1. Let M be a hypersurface in NZI(c) withn > 4. If (58)
and (61) hold on Uz C M then (62) is satisfied on this set.

Let N?(c1) be a minimal surface with non-zero constant curvature ci
in the standard unit n-sphere S™(1) of E"*!, n > 4. We denote by M the
tubular hypersurface T} /5(N?(c1)) with radius 7/2 around N?(c;). Such
a hypersurface is called a generalized Cartan hypersurface (|3, Section 6]).
Clearly, M is an (n — 1)-dimensional hypersurface in S"(1), &1 = 1, and

Ch = m = 1 on M. It is known that the second fundamental tensor

H of M has three distinct eigenvalues (i.e. principal curvatures): A\ = A,
A= =M\ A3 =-=A,—1 =0, and A # 0 at every point Therefore the
tensor H 2 has two distinct eigenvalues at every point of M: Bl = fo = )\2
p3 == lp—1 =0, trH—OandrankH—2 i.e. the type 1 number ofM
is 2. The last fact implies (58) on M,ie R-R= Q(7,R) on M (see e.g. [12,
Section 5]). Ev1dently, Misa pseudosymmetric manifold of constant type.

The Ricci tensor S and the scalar curvature % of M by making use of (54),
(55), and the relations above, can be expressed by

(63)  §=—H"+(n-2)
(64) = —tr(H)+ (n—=2)(n—1) = =2X2 + (n = 2)(n — 1).

Now, we consider the case where the hypersurface M is of dimension
> 4, i.e. the ambient space is of dimension n > 5. We suppose that (5) holds
at a point of M. Comparing the right hand sides of (5) and (63) we get
H? = (n—2—a)§ — Bw @ w. It follows that n — 2 — « is an eigenvalue
of H? of multiplicity n — 2, a contradiction. Thus, a relation of the form
(5) cannot be satisfied for any point of M, and (61) holds on M. Finally,
in view of Proposition 4.1, every generalized Cartan hypersurface satisfies
(62). At every point of such a hypersurface there are three distinct principal
curvatures and therefore its Weyl conformal curvature tensor C is non-zero
everywhere. We note that (25) and (26) imply that every warped product
of a line or a circle and a manifold of dimension n — 1 > 4, isometric to
an open part of a generalized Cartan hypersurface, is a non-conformally flat
manifold.

Now, let M be a 3-dimensional generalized Cartan hypersurface. Then
(63) and (64) turn into
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. (H2)
S—§ G40,

= —tr(H*) 4+ 6= 2(3 —\?),

g=-H+—~

respectively. It follows from our considerations that the Ricci tensor S of M
has two distinct elgenvalues o1 =2and oo = 03 = 2-X2=%k/2—1at t every
point. Therefore rank(S — (2 — A2)g) = 1 on M. For every point of M, the
last relation is equivalent to (cf. (6))

(S—2- )P A (S—(2-1)7) =0,
which yields

1

) -5

( SAS-— @—VEA§+@—X¥6):0
Furthermore, C = 0, which by (3), gives R=GAS— (%/Q)CNTY The last
relation, by making use of (65), turns into

~ 1 ~ ~

ie. (10)with 3=C1=1,5/2-C1=2- X =aand ¢ = (o —207)"! =
—A~2. Finally, we note that (27) and (28) imply that every warped product
of a line or a circle and a 3-dimensional manifold isometric to an open part
of generalized Cartan hypersurface is a non-conformally flat manifold. Thus
we have

THEOREM 4.1.

(i) For every generalized Cartan hypersurface M of dimension > 4, the
relation (62) with C1 =1 holds on Ug N Ug = M
(ii) For every 3-dimensional generalized Cartan hypersurface M the re-
lation (62) with C1 = 1 holds on Ug = M
(iii) Every warped product of a 1-dimensional manifold and an (n — 1)-
dimensional manifold, n > 4, isometric to an open part of a gener-
alized Cartan hypersurface is a non-conformally flat manifold.

We finish this section with another example of a hypersurface satisfy-
ing (62). Let M be a hypersurface in N!'(c), n > 4, satisfying

(66) H? = aH + g

on Ug C M, where a and 3 are some functions on Usg. Using (53)—(55) and
(66) we obtain (cf. [15, Proposition 3.3])
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(67) R—C\G=c(trH — a)_Q(% SAS—((n—2)C1—eB)GAS

T ((n—2)C sm?é),

where C7 = m and 7 is the scalar curvature of the ambient space.

Clearly, if 3 = 0 on Ug, then (67) reduces to
68) R—CiG = % (tr H — ) %(S — (n — 2)C1g) A (S — (n — 2)C13).
Thus we have

THEOREM 4.2. If M isa hypersurface in NI'(c), n > 4, satisfying
(69) H?=oH
on Ug C M for some function o on Us, then (68) holds on this set.

An example of a hypersurface in a semi-Euclidean space EI, n > 4,
satisfying (69) is given in [15, Example 3.1]. In addition, the hypersurface
M = SP x E""17P in E", 2 < p < n — 2, also satisfies (69).

5. Main results

_ THEOREM 5.1. Let M xp N be the warped product of a line or a circle
(M,7q), with g, = ¢ = £1, and an (n — 1)-dimensional semi-Riemannian
manifold (N,g), n — 1 > 3, satisfying

(70) R—CiG=2(S—(n—2)C1g) A (S — (n—2)C17)

\CERSW)

on Ug C N, where ¢~5 is some function on Ug C N and C4 is a constant,
with F defined by one of the three equalities in (37). Then (1) holds on

UcNUs C M xp N.

Proof. 1t follows from our assumptions that (34)-(36) hold on Uc N Us.

Further, we set Lg = —2L. Thus (33) is satisfied. Now (15)—(16) turn into

(39)—(42). Next we set ¢ = F¢. Thus (70) turns into (46). We now define the
functions p and 1 by (45). It is easy to verify that (43) and (44) are satisfied.
Thus, in view of Lemma 3.2, we have (38), i.e. (1), which completes the proof.

Theorem 5.1, together with Proposition 4.1, leads to

THEOREM 5.2. Let (M,g) be a line or a circle, with §;; = € = +1, and
let (N,g) with dim N = n—1 > 3 be a semi-Riemannian manifold isometric

to an open part of a hypersurface M in an n-dimensional space of constant
curvature NI'(c), n > 4, satisfying (70) and C; = m onUg C M. Then
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the warped product M x p N with F defined by one of the three equalities in
(37) satisfies (1) on UcNUg C M xp N.

Now Theorem 4.1, together with Theorem 5.2, implies

THEOREM 5.3. Let (M,g) be a line or a circle, with g, = ¢ = +1, and
let (N,g) with dim N =n —1 > 3 be a Riemannian manifold isometric to
an open part of a generalized Cartan hypersurface M in S™(1), n > 4. Then

the warped product M xp N with F defined by one of the three equalities in
(37) satisfies (1) on Uc NUg C M xp N.

We finish our paper with the following remarks:

REMARK 5.1. Our investigations on semi-Riemannian manifolds (M, g),
n > 3, satisfying (1) on Ug C M lead to a particular subclass of manifolds
consisting of all manifolds (M, g), n > 3, for which (10) holds on Us C M.

REMARK 5.2. Consider the warped product M x g N of aline or a circle
(M,g), with g;; = %1, the warping function F and an (n — 1)-dimensional
semi-Riemannian manifold (]\7’ ,g), n —1 > 3, locally isometric to an open
part of a hypersurface in N?(c). Thus (56) holds on N. Moreover, let F
satisfy (37) with C1 = —45-. Then (34) reads

(n—1)n"*
tr T B A F B T
2 4F  (n—1)n’
In addition we set L = ”7_2% Using the last two equations, (56) becomes
~ o~ ~ ~ LF AF ~ =
RR- QBB = -3 (5 - G5 )@@.0)

Now, in view of Theorem 4.2 of [5], we see that M xp N satisfies (9).
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