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ON A PARTICULAR CLASS OF WARPED PRODUCTSWITH FIBRES LOCALLY ISOMETRICTO GENERALIZED CARTAN HYPERSURFACESBYRYSZARD DESZCZ (Wro
ªaw) and MIKE SCHERFNER (Berlin)Dedi
ated to Professor Marek Abramowi
z on his sixtieth birthdayAbstra
t. We prove that every generalized Cartan hypersurfa
e satis�es the so
alled Roter type equation. Using this fa
t, we 
onstru
t a parti
ular 
lass of general-ized Robertson�Walker spa
etimes.1. Introdu
tion. A

ording to [8℄ a semi-Riemannian manifold (M, g)with dimM = n ≥ 4 is said to be a Roter type manifold if
R =

φ

2
S ∧ S + µg ∧ S + ηG(1)holds on UC ∩ US ⊂ M , where φ, µ and η are some fun
tions on this set,

UC = {x ∈ M | C 6= 0 at x} and US =
{
x ∈ M | S − κ

ng 6= 0 at x}; here
C denotes the Weyl tensor and S the Ri

i tensor. For pre
ise de�nitionsof the symbols used here, we refer to Se
tion 2 of this paper (and also toSe
tions 2 and 3 of [13℄).Obviously, we 
onsider Roter type manifolds with UC ∩ US non-empty.We refer to [8℄ and [15℄ for a review of results on Roter type manifolds.In this paper we investigate warped produ
ts M ×F Ñ with dimM = 1and dim Ñ = n−1 ≥ 3 satisfying (1). We show that if they are of Roter typethen the �bres (Ñ , g̃) satisfy a spe
ial form of (1). We remark that manifolds
M ×F Ñ with dimM = p ≥ 2 and dim Ñ = n − p ≥ 2 satisfying (1) wereinvestigated in [13℄ and [16℄.In Se
tion 2 basi
 de�nitions are presented and we also give �rst results(see espe
ially Theorem 2.1) relating to 3-dimensional manifolds or 
onfor-mally �at quasi-Einstein manifolds, of dimension ≥ 4 satisfying (1). Thenext se
tion 
ontains preliminary results on warped produ
ts M ×F Ñ with2000 Mathemati
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14 R. DESZCZ AND M. SCHERFNER
dimM = n−1 ≥ 3 and dim Ñ = 1 satisfying (1). In Se
tion 4 we 
onsider so
alled generalized Cartan hypersurfa
es, i.e., tubular hypersurfa
es aroundminimal surfa
es, introdu
ed in [3℄. We prove that su
h hypersurfa
es sat-isfy spe
ial relations for the Ri

i tensor and the s
alar 
urvature. Manifoldswhi
h are lo
ally isometri
 to open subsets of su
h hypersurfa
es will be usedas �bres in the 
onstru
tion of Roter type warped produ
ts M ×F Ñ with
dimM = 1 and dim Ñ = n−1 ≥ 3, whi
h are generalized Robertson�Walkerspa
etimes. Se
tion 5 
ontains results relating to this 
onstru
tion. We re
allthat if n ≥ 4, p = 1, g11 = −1, and the �bre manifold (Ñ , g̃) is a Riemannianmanifold, then M ×F Ñ is 
alled a generalized Robertson�Walker spa
etime(see [1℄ and referen
es therein).The authors wish to express their sin
ere thanks to Professor Udo Simonand to the referee for their helpful 
omments and remarks.2. Preliminaries. Throughout this paper all manifolds are assumed tobe 
onne
ted para
ompa
t C∞-manifolds. Let (M, g) be an n-dimensionalsemi-Riemannian manifold, n ≥ 3, ∇ its Levi-Civita 
onne
tion and Ξ(M)the Lie algebra of ve
tor �elds on M . We de�ne the endomorphisms X ∧A Yand R(X,Y ) of Ξ(M) by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,respe
tively, where A is a symmetri
 (0, 2)-tensor onM andX,Y, Z ∈ Ξ(M).The Ri

i tensor S, the Ri

i operator S and the s
alar 
urvature κ of (M, g)are de�ned by
S(X,Y ) = tr{Z 7→ R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = trS.The endomorphism C(X,Y ) is de�ned by

C(X,Y )Z = R(X,Y )Z −
1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.The (0, 4)-tensor G, the Riemann�Christo�el 
urvature tensor R and theWeyl 
onformal 
urvature tensor C of (M, g) are de�ned by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),where X1, X2, . . . ∈ Ξ(M). Let B(X,Y ) be a skew-symmetri
 endomorphismof Ξ(M) and let B be the (0, 4)-tensor asso
iated with B(X,Y ) by
B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).(2)
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The tensor B is said to be a generalized 
urvature tensor if
B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2).Let B(X,Y ) be a skew-symmetri
 endomorphism of Ξ(M) and let B bethe tensor de�ned by (2). We extend B(X,Y ) to a derivation B(X,Y )· of thealgebra of tensor �elds on M , assuming that it 
ommutes with 
ontra
tionsand B(X,Y ) · f = 0 for every smooth fun
tion f on M . Now, for a (0, k)-tensor �eld T , k ≥ 1, we de�ne the (0, k + 2)-tensor B · T by
(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).In addition, if A is a symmetri
 (0, 2)-tensor, we de�ne the (0, k+ 2)-tensor
Q(A, T ) by
Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Setting inthe above formulas B = R or B = C, T = R or T = C or T = S, A = g or
A = S, we get the tensors R ·R, Q(g,R), Q(S,R), Q(g, C) and Q(S,G). Forsymmetri
 (0, 2)-tensors E and F we de�ne their Kulkarni�Nomizu produ
t
E ∧ F by
(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

− E(X1, X3)F (X2, X4) − E(X2, X4)F (X1, X3).Clearly, the tensors R, C, G and E∧F are generalized 
urvature tensors. Fora symmetri
 (0, 2)-tensor E we de�ne the (0, 4)-tensor E by E = 1
2E ∧ E.Thus in parti
ular we have g = G = 1

2g ∧ g and
C = R−

1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.(3)We also have the following identity (see e.g. [9, Se
tion 3℄):

Q(E,E ∧ F ) = −Q(F,E).(4) Let (M, g), n ≥ 3, be a quasi-Einstein manifold, that is, a semi-Rieman-nian manifold with the Ri

i tensor S given by
S = αg + βw ⊗ w(5)for every x ∈M , where w ∈ T ∗

xM , α, β ∈ R. Quasi-Einstein manifolds arosein the study of exa
t solutions of the Einstein �eld equations as well as in
onsiderations of quasi-umbili
al hypersurfa
es of 
onformally �at spa
es.We note that for every point of US ⊂M the 
ondition (5) is equivalent to
rank(S − αg) = 1
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and this is equivalent to

(S − αg) ∧ (S − αg) = 0.(6) Let now (M, g) be a quasi-Einstein manifold of dimension ≥ 4. It is easyto verify that if (1) is satis�ed on US ⊂ M then C = 0 on this set. Also a
onverse statement is true (see Theorem 2.1).A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmet-ri
 (see e.g. [2℄) if the (0, 6)-tensors R ·R and Q(g,R) are linearly dependentat every point of M . This is equivalent to
R ·R = LRQ(g,R)(7)on UR =

{
x ∈ M | R − κ

(n−1)nG 6= 0 at x}, where LR is some fun
tionon UR. It is easy to 
he
k that LR is uniquely determined on UR. A

ordingto [17℄, if LR is a 
onstant on UR, then the pseudosymmetri
 manifold (M, g)is 
alled of 
onstant type. It is obvious that every semisymmetri
 manifold(R ·R = 0) is pseudosymmetri
. The 
onverse is not true (see [2℄).A

ording to [8℄, (1) is 
alled a Roter type equation and a semi-Rieman-nian manifold (M, g) (with n ≥ 4) su
h that (1) holds on UC ∩ US is 
alleda Roter type manifold. We mention that the de
omposition of R on UC ∩USin terms of S ∧ S, g ∧ S and G is unique ([12, Lemma 3.2℄). It is easy to
he
k that (1) implies (7) on UC ∩ US with
LR = φ−1((n− 2)(µ2 − φη) − µ).(8)Further, we note that (1) 
an be presented in the form

R+ φ−1(µ2 − φη)G =
φ

2
(S + φ−1µg) ∧ (S + φ−1µg).The equation (1) also implies (see e.g. [8℄)

R ·R−Q(S,R) = LQ(g, C),(9)with
L = LR + φ−1µ = (n− 2)φ−1(µ2 − φη).

Remark 2.1(i) In [5, Theorem 4.1℄ it was shown that every warped produ
tM×F Ñwith dimM = 1 and dim Ñ = 3 satis�es (9) with some fun
tion L. Inparti
ular, every 4-dimensional generalized Robertson�Walker spa
e-time has this property.(ii) From Theorem 6.1 of [5℄ it follows that the warped produ
t M ×F Ñof an (n − 1)-dimensional spa
e (M, g) of 
onstant 
urvature with
n ≥ 4 and a 1-dimensional manifold (Ñ , g̃) satis�es (9) with L =
−κ/(n− 1), where κ is the s
alar 
urvature of (M, g).
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We �nish this se
tion withTheorem 2.1. Let (M, g) be a 3-dimensional semi-Riemannian manifoldor a 
onformally �at semi-Riemannian manifold of dimension ≥ 4 and let
(6) hold on US ⊂M with α 6= κ/n at every point of this set.(i) If
(10) R− βG =

φ

2
(S − (n− 1)βg) ∧ (S − (n− 1)βg)on US for some fun
tions β and φ on US , then

(11) β =
κ

n− 1
− α,

(12) φ =
1

n− 2
(α− (n− 1)β)−1on this set.(ii) If β and φ are de�ned by (11) and (12) then (10) holds on US.Proof. (i) The relations (3) and (6) yield

(
φ(α− (n− 1)β) −

1

n− 2

)
g ∧ S

=

(
φ((n− 1)2β2 − α2) + β +

κ

(n− 2)(n− 1)

)
G,whi
h implies

φ(α− (n− 1)β) =
1

n− 2
,

φ(α2 − (n− 1)2β2) = β +
κ

(n− 2)(n− 1)
.This immediately leads to (11) and (12).(ii) Using (11) and (12) we obtain

1

n− 2
− αφ =

1

n− 2

(
1 +

α

(n− 1)β − α

)(13)
=
n− 1

n− 2

β

(n− 1)β − α
= −(n− 1)βφ,

(14) α2φ−
κ

(n− 2)(n− 1)
− β = α2φ−

1

n− 2
(β + α) − β

=

(
αφ−

1

n− 2

)
α−

n− 1

n− 2
β = (n− 1)αβφ−

n− 1

n− 2
β

= (n− 1)β

(
αφ−

1

n− 2

)
= (n− 1)2β2φ.Furthermore, (3) and (6) give
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R =

1

n− 2

(
g ∧ S −

κ

n− 1
G

)
,

R− βG =
φ

2
S ∧ S +

(
1

n− 2
− αφ

)
g ∧ S +

(
α2φ−

κ

(n− 2)(n− 1)
− β

)
G.But the last equation, by making use of (13) and (14), turns into (10), whi
h
ompletes the proof.

Example 2.1. Let M ×F Ñ be a Robertson�Walker spa
etime, i.e. thewarped produ
t of a line or a 
ir
le (M, g), g11 = ε = ±1, and an (n − 1)-dimensional Riemannian spa
e (Ñ , g̃) of 
onstant 
urvature with the warpingfun
tion F and n − 1 ≥ 3. It is known that (5) holds on US ⊂ M ×F Ñ ,with β = κ
n−1 − ε(F ′)2

4F 2 (see e.g. [6, Lemma 3.1℄). In view of Theorem 2.1, if
β 6= κ/n for every point of US , then (10) holds on US . We 
an easily provethat β = κ/n on US if and only if

2FF ′′ + (n− 2)(F ′)2 −
2εκ̃

n− 1
F = 0on this set, where κ̃ and κ denote the s
alar 
urvatures of (Ñ , g̃) andM×F Ñ ,respe
tively.3. Warped produ
ts satisfying (1). Let (M, g) and (Ñ , g̃), with

dimM = p and dim Ñ = n − p, 1 ≤ p < n, be semi-Riemannian manifolds
overed by systems of 
harts {U ;xa} and {Ṽ ; yα}, respe
tively. Further, let
F : M → R

+ be a positive smooth fun
tion on M . The warped produ
t
M ×F Ñ is the produ
t manifold M × Ñ with the metri
 g = g ×F g̃ =

π∗1g + (F ◦ π1)π
∗

2 g̃, where π1 : M × Ñ → M and π2 : M × Ñ → Ñ arethe natural proje
tions. Let {U × Ṽ ;x1, . . . , xp, xp+1 = y1, . . . , xn = yn−p}be a produ
t 
hart for M × Ñ . The lo
al 
omponents of the metri
 g withrespe
t to this 
hart read: ghk = gab if h = a and k = b, ghk = F g̃αβ if
h = α and k = β, and ghk = 0 otherwise, where a, b, c, . . . ∈ {1, . . . , p},
α, β, γ, . . . ∈ {p + 1, . . . , n} and h, i, j, k, . . . ∈ {1, . . . , n}. We will mark bybars (resp., tildes) tensors formed from g (resp., g̃). The lo
al 
omponents
Rhijk of the 
urvature tensor R and the lo
al 
omponents Shk of the Ri

itensor S of M ×F Ñ whi
h generally do not vanish identi
ally are the fol-lowing (see e.g. [13℄, [14℄):
(15) Rabcd = Rabcd,

Rαbcβ = −
1

2
Tbcg̃αβ,

Rαβγδ = F

(
R̃αβγδ −

∆1F

4F
G̃αβγδ

)
,
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(16) Sab = Sab −
n− p

2F
Tab,

Sαβ = S̃αβ −

(
trT

2
+ (n− p− 1)

∆1F

4F

)
g̃αβ,(17) Tab = ∇bFa −

1

2F
FaFb, ∆1F = ∆1gF = gabFaFb,where T denotes the (0, 2)-tensor with lo
al 
omponents Tab and trT =

trg T = gabTab. The s
alar 
urvature κ of M ×F Ñ satis�es the relation
κ = κ+

κ̃

F
−
n− p

F

(
trT + (n− p− 1)

∆1F

4F

)
.(18)Using (15), (16) and (18), we �nd the following relations for the lo
al 
om-ponents Chijk of the Weyl tensor C of M ×F Ñ ([7℄):

Cabcd = Rabcd −
1

n− 2
(gadSbc − gacSbd + gbcSad − gbdSac)(19)

+
n− p

2(n− 2)F
(gadTbc − gacTbd + gbcTad − gbdTac)

+
κ

(n− 2)(n− 1)
Gabcd,

Cαbcβ = −
1

n− 2

(
p− 2

2
Tab + FSab

)
g̃αβ −

1

n− 2
gabS̃αβ(20)

+
1

(n− 2)(n− 1)

(
Fκ+ κ̃−

(n− 2p+ 1) trT

2

+
(p− 1)(n− p− 1)∆1F

4F

)
gabg̃αβ,

Cαβγδ = FR̃αβγδ −
F

n− 2
(g̃αδS̃βγ − g̃αγS̃βδ + g̃βγS̃αδ − g̃βδS̃αγ)(21)

+ FPG̃αβγδ,

Cabcα = Cabαβ = Caαβγ = 0,(22)
P =

1

n− 2

(
F

n− 1
+ trT +

(n− 2p)∆1F

4F

)
.(23)We now 
onsider the warped produ
ts M ×F Ñ with dimM = 1 and

dim Ñ = n− 1 ≥ 3. Then
T11 = g11g

11T11 = trTg11,

H11 =
1

2
T11 + FLRg11 =

(
trT

2
+ FLR

)
g11,(24)where T11 is de�ned by (17), i.e.

T11 = ∇1F1 −
1

2F
F1F1 = ∂1F1 − F1Γ

1
11 −

1

2F
F 2

1 .
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Using (18)�(24), we �nd

Cα11δ = −
1

n− 2

(
S̃αδ −

κ̃

n− 1
g̃αδ

)
g11,(25)

Cαβγδ = F (C̃αβγδ +
1

(n− 3)(n− 2)

(
g̃αδ

(
S̃βγ −

κ̃

n− 1
g̃βγ

)(26)
+ g̃βγ

(
S̃αδ −

κ̃

n− 1
g̃αδ

)
− g̃αγ

(
S̃βδ −

κ̃

n− 1
g̃βδ

)

− g̃βδ

(
S̃αγ −

κ̃

n− 1
g̃αγ

))
.In parti
ular, if n = 4, (25) and (26) redu
e to

Cα11δ = −
1

2

(
S̃αδ −

κ̃

3
g̃αδ

)
g11,(27)

Cαβγδ =
F

2

(
g̃αδ

(
S̃βγ −

κ̃

3
g̃βγ

)
+ g̃βγ

(
S̃αδ −

κ̃

3
g̃αδ

)(28)
− g̃αγ

(
S̃βδ −

κ̃

3
g̃βδ

)
− g̃βδ

(
S̃αγ −

κ̃

3
g̃αγ

))
,respe
tively. Further, from Lemma 4 of [7℄, it follows that (7) holds on UC ∩

US ⊂M ×F Ñ , where dimM = 1 and dim Ñ = n− 1 ≥ 3, if and only if
H11

(
R̃δαβγ −

(
∆1F

4F
−

trT

2

)
G̃δαβγ

)
= 0,(29)

(R̃ · R̃)αβγδλµ =

(
FLR +

∆1F

4F

)
Q(g̃, R̃)αβγδλµ(30)on this set. By suitable 
ontra
tions, (29) yields

H11

(
S̃αβ − (n− 2)

(
∆1F

4F
−

trT

2

)
g̃αβ

)
= 0,

H11

(
κ̃− (n− 2)(n− 1)

(
∆1F

4F
−

trT

2

))
= 0.Substituting the last relation into (29) we obtain

H11

(
R̃δαβγ −

κ̃

(n− 2)(n− 1)
G̃δαβγ

)
= 0.(31)We note that at every point x ∈ UC ∩ US the tensor R̃ − κ̃

(n−2)(n−1)G̃ isnon-zero. In fa
t, if R̃ = κ̃
(n−2)(n−1)G̃ at x, then, by making use of (19)�(21)we get C = 0 at x, a 
ontradi
tion. Thus, from (31) it follows that H11 = 0on UC ∩ US . This, by (24), yields

FLR +
trT

2
= 0,(32)
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and using (30) we get
FLR +

∆1F

4F
= C1, C1 = const,(33)on UC ∩ US . Evidently, (32) and (33) lead to

∆1F

4F
−

trT

2
= C1.(34)Thus we haveLemma 3.1. The warped produ
t M×F Ñ with dimM = 1 and dim Ñ =

n− 1 ≥ 3 satis�es (7) on UC ∩ US ⊂ M ×F Ñ if and only if (30), (33) and(34) hold on this set.If g11 = g11 = ε = ±1, then (34) yields
(F ′)2 − 2F

(
∇1F1 −

1

2F
(F ′)2

)
= 4εFC1,(35)where F1 = F ′ = ∂F/∂x1. Sin
e ∇1F1 = ∂F1/∂x
1 = F ′′, (35) now be
omes

FF ′′ − (F ′)2 + 2εC1F = 0.(36)We 
an easily 
he
k that the following fun
tions are solutions of (36) (
f.[11, Remark 3.7℄):
F (x1) = εC1

(
x1 +

εc

C1

)2

, εC1 > 0,

F (x1) =
c

2

(
exp

(
±
b

2
x1

)
−

2εC1

b2c
exp

(
∓
b

2
x1

))2

, c > 0, b 6= 0,(37)
F (x1) =

2εC1

c2
(1 + sin(cx1 + b)), εC1 > 0, c 6= 0,where b and c are 
onstants and x1 belongs to a suitable non-empty openinterval of R.Now letM×F Ñ with dimM = 1 and dim Ñ = n−1 ≥ 3 be a Roter typemanifold. Thus (1) holds on UC ∩US ⊂M×F Ñ . In the lo
al representation,(1) reads

Rhijk = Φ(ShkSij − ShjSik) + ηGhijk(38)
+ µ(ghkSij + gijShk − ghjSik − gikShj),where Rhijk, Ghijk, Shk and ghk are the lo
al 
omponents of the tensors R,

G, S and g, respe
tively. Sin
e (7) holds on UC ∩ US , it follows that (34) is
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satis�ed on this set. Now (15)�(16) and (18) be
ome

Rα11β = −
trT

2
g11g̃αβ,(39)

Rαβγδ = F

(
R̃αβγδ −

(
trT

2
+ C1

)
G̃αβγδ

)
,(40)

S11 = −
(n− 1) trT

2F
g11,(41)

Sαβ = S̃αβ −

(
(n− 1) trT

2
+ (n− 2)C1

)
g̃αβ,(42)respe
tively. Using (38)�(42) we 
an proveLemma 3.2. Let U ⊂ UC ∩ US be a 
oordinate neighbourhood of x ∈

UC ∩ US in the warped produ
t M ×F Ñ with dimM = 1 and dim Ñ =
n− 1 ≥ 3. Then (38) holds on U if and only if

R1αβ1 = φS11Sαβ + µ(g11Sαβ + S11gαβ) + ηg11gαβ,(43)
Rαβγδ = φ(SαδSβγ − SαγSβδ) + ηGαβγδ(44)

+ µ(gαδSβγ + gβγSαδ − gαγSβδ − gβδSαγ)on this set.In addition we haveLemma 3.3. If the warped produ
t M ×F Ñ with dimM = 1, g11 = ε =

±1, and dim Ñ = n − 1 ≥ 3 satis�es (1) on UC ∩ US ⊂ M ×F Ñ , then thefollowing relations hold on this set : (33), (34) and
(a) µ =

(n− 1) trT

2F
φ, (b) η =

µ2

φ
−

trT

2F
,(45)

R̃− C1G̃ =
φ

2F
(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃).(46)Proof. Let U ⊂ UC ∩US be a 
oordinate neighbourhood of x ∈ UC ∩US .First of all we prove that (43) implies (45) on U . From (43), using (39), (41)and (42), we obtain

(47)

(
(n− 1) trT

2F
φ− µ

)
S̃αβ

=

((
trT

2
+

(n− 2)∆1F

4F

)(
(n− 1) trT

2F
φ− µ

)
+ Fη

+ (1 − (n− 1)µ)
trT

2

)
g̃αβ.We suppose that S̃ − κ̃

n−1 g̃ = 0 at x. Then (41) and (42) lead to
S11 = ̺1g11, Sαβ = ̺2gαβ,(48)
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for some ̺1, ̺2 ∈ R. From (48) we have
Sij = ̺2gij + (̺1 − ̺2)εwiwj ,(49)where w1 = 1 and w2 = · · · = wn = 0. Substituting (49) into (38), aftersome standard tensor 
al
ulations, we �nd Chijk = 0, i.e. C = 0 at x, a 
on-tradi
tion. Therefore S̃− κ̃

n−1 g̃ 6= 0 at x, and 
onsequently, (47) implies (45).Applying (40) and (42) to (44), we obtain
(50) R̃αβγδ =

φ

F
(S̃αδS̃βγ − S̃αγS̃βδ)

+

(
µ−

φ

F

(
trT

2
+ (n− 2)

∆1F

4F

))
(g̃αδS̃βγ + g̃βγS̃αδ − g̃αγS̃βδ − g̃βδS̃αγ)

+

(
ηF +

∆1F

4F
− 2µ

(
trT

2
+ (n− 2)

∆1F

4F

)

+
φ

F

(
trT

2
+ (n− 2)

∆1F

4F

)2)
G̃αβγδ.A

ording to (34) and (45) we 
on
lude that

(51) µ−
φ

F

(
trT

2
+ (n− 2)

∆1F

4F

)
= (n− 2)

(
trT

2
−
∆1F

4F

)
φ

F

= −(n− 2)C1
φ

F
,

(52) ηF +
∆1F

4F
− 2µ

(
trT

2
+ (n− 2)

∆1F

4F

)
+
φ

F

(
trT

2
+ (n− 2)

∆1F

4F

)2

=

(
∆1F

4F
−

trT

2

)(
1 + (n− 2)2

(
∆1F

4F
−

trT

2

)
φ

F

)

= C1

(
1 + (n− 2)2C1

φ

F

)
.Applying (51) and (52) to (50) we immediately get (46).

Remark 3.1. The relations (8) and (45) yield (32).4. Generalized Cartan hypersurfa
es. In this se
tion we show thatevery generalized Cartan hypersurfa
e is a Riemannian manifold satisfying(46). Thus, su
h manifolds are examples of �ber manifolds of dimension ≥ 3satisfying (46).Let Nn
s (c), n ≥ 4, be a semi-Riemannian spa
e of 
onstant 
urvature

c = τ
(n−1)n with signature (s, n − s), where τ is its s
alar 
urvature. Inaddition let M̃ be a hypersurfa
e isometri
ally immersed in Nn

s (c). The
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Gauss equation of M̃ in Nn

s (c) reads (see e.g. [10℄ or [12℄)
R̃hijk = ε1(HhkHij −HhjHik) +

τ

(n− 1)n
G̃hijk, ε1 = ±1,(53)where R̃hijk, G̃hijk and Hij denote the lo
al 
omponents of the 
urvaturetensor R̃, the tensor G̃ and the se
ond fundamental tensor H of M̃ , respe
-tively. Contra
ting (53) with g̃ij and g̃kh, respe
tively, we obtain

S̃hk = ε1(trHHhk −H2
hk) +

(n− 2)τ

(n− 1)n
g̃hk,(54)

κ̃ = ε1((trH)2 − tr(H2)) +
(n− 2)τ

n
,(55)where H2

hk = g̃ijHhiHkj , trH = g̃hkHhk, tr(H2) = g̃hkH2
hk, S̃hk are the lo
al
omponents of the Ri

i tensor S̃, and κ̃ is the s
alar 
urvature of M̃ . Were
all that the following 
ondition of pseudosymmetry type is ful�lled on M̃(see e.g. [10℄ or [12℄):

R̃ · R̃−Q(S̃, R̃) = −
(n− 3)τ

(n− 1)n
Q(g̃, C̃),(56)where C̃ is the Weyl 
onformal tensor of M̃ . By making use of (3), (56) turnsinto

R̃ · R̃−Q(S̃, R̃) = −
(n− 3)τ

(n− 1)n
Q(g̃, R̃) +

τ

(n− 1)n
Q(g̃, g̃ ∧ S̃),and from (4) we get Q(g̃, g̃ ∧ S̃) = −Q(S̃, G̃). Applying this to the relationabove, we �nd

R̃ · R̃ = Q

(
S̃, R̃−

τ

(n− 1)n
G̃

)
−

(n− 3)τ

(n− 1)n
Q

(
g̃, R̃−

τ

(n− 1)n
G̃

)
.(57)In addition, we assume that

R̃ · R̃ =
τ

(n− 1)n
Q(g̃, R̃)(58)on U

S̃
⊂ U

R̃
⊂ M̃ . Comparing the right hand sides of (57) and (58) weobtain
Q

(
S̃ −

(n− 2)τ

(n− 1)n
g̃, R̃−

τ

(n− 1)n
G̃

)
= 0.(59)If we set C1 = τ

(n−1)n , then (59) be
omes
Q(S̃ − (n− 2)C1g̃, R̃− C1G̃) = 0.(60)Further, we assume that

rank(S̃ − (n− 2)C1g̃) > 1(61)
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on U
S̃
. Now from (60), in view of Proposition 4.1 of [4℄, it follows that

R̃− C1G̃ =
ψ̃

2
(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃),(62)where Ψ̃ only takes positive or negative values on U

S̃
. Thus we haveProposition 4.1. Let M̃ be a hypersurfa
e in Nn

s (c) with n ≥ 4. If (58)and (61) hold on U
S̃
⊂ M̃ then (62) is satis�ed on this set.Let N2(c1) be a minimal surfa
e with non-zero 
onstant 
urvature c1in the standard unit n-sphere Sn(1) of E

n+1, n ≥ 4. We denote by M̃ thetubular hypersurfa
e Tπ/2(N
2(c1)) with radius π/2 around N2(c1). Su
ha hypersurfa
e is 
alled a generalized Cartan hypersurfa
e ([3, Se
tion 6℄).Clearly, M̃ is an (n − 1)-dimensional hypersurfa
e in Sn(1), ε1 = 1, and

C1 = τ
(n−1)n = 1 on M̃ . It is known that the se
ond fundamental tensor

H of M̃ has three distin
t eigenvalues (i.e. prin
ipal 
urvatures): λ1 = λ,
λ2 = −λ, λ3 = · · · = λn−1 = 0, and λ 6= 0 at every point. Therefore thetensor H2 has two distin
t eigenvalues at every point of M̃ : µ1 = µ2 = λ2,
µ3 = · · · = µn−1 = 0, trH = 0 and rankH = 2, i.e. the type number of M̃is 2. The last fa
t implies (58) on M̃ , i.e. R̃ · R̃ = Q(g̃, R̃) on M̃ (see e.g. [12,Se
tion 5℄). Evidently, M̃ is a pseudosymmetri
 manifold of 
onstant type.The Ri

i tensor S̃ and the s
alar 
urvature κ̃ of M̃ , by making use of (54),(55), and the relations above, 
an be expressed by

S̃ = −H2 + (n− 2)g̃,(63)
κ̃ = − tr(H2) + (n− 2)(n− 1) = −2λ2 + (n− 2)(n− 1).(64)Now, we 
onsider the 
ase where the hypersurfa
e M̃ is of dimension

≥ 4, i.e. the ambient spa
e is of dimension n ≥ 5. We suppose that (5) holdsat a point of M̃ . Comparing the right hand sides of (5) and (63) we get
H2 = (n − 2 − α)g̃ − βw ⊗ w. It follows that n − 2 − α is an eigenvalueof H2 of multipli
ity n − 2, a 
ontradi
tion. Thus, a relation of the form(5) 
annot be satis�ed for any point of M̃ , and (61) holds on M̃ . Finally,in view of Proposition 4.1, every generalized Cartan hypersurfa
e satis�es(62). At every point of su
h a hypersurfa
e there are three distin
t prin
ipal
urvatures and therefore its Weyl 
onformal 
urvature tensor C̃ is non-zeroeverywhere. We note that (25) and (26) imply that every warped produ
tof a line or a 
ir
le and a manifold of dimension n − 1 ≥ 4, isometri
 toan open part of a generalized Cartan hypersurfa
e, is a non-
onformally �atmanifold.Now, let M̃ be a 3-dimensional generalized Cartan hypersurfa
e. Then(63) and (64) turn into
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S̃ −

κ̃

3
g̃ = −H2 +

tr(H2)

3
g̃ 6= 0,

κ̃ = − tr(H2) + 6 = 2(3 − λ2),respe
tively. It follows from our 
onsiderations that the Ri

i tensor S̃ of M̃has two distin
t eigenvalues ̺1 = 2 and ̺2 = ̺3 = 2−λ2 = κ̃/2− 1 at everypoint. Therefore rank(S̃ − (2 − λ2)g̃) = 1 on M̃ . For every point of M̃ , thelast relation is equivalent to (
f. (6))
(S̃ − (2 − λ2)g̃) ∧ (S̃ − (2 − λ2)g̃) = 0,whi
h yields

−
1

λ2

(
1

2
S̃ ∧ S̃ − (2 − λ2)g̃ ∧ S̃ + (2 − λ2)2G̃

)
= 0.(65)

Furthermore, C̃ = 0, whi
h by (3), gives R̃ = g̃ ∧ S̃ − (κ̃/2)G̃. The lastrelation, by making use of (65), turns into
R̃− G̃ = −

1

2λ2
(S̃ − 2g̃) ∧ (S̃ − 2g̃),i.e. (10) with β = C1 = 1, κ̃/2 − C1 = 2 − λ2 = α and φ = (α − 2C1)

−1 =
−λ−2. Finally, we note that (27) and (28) imply that every warped produ
tof a line or a 
ir
le and a 3-dimensional manifold isometri
 to an open partof generalized Cartan hypersurfa
e is a non-
onformally �at manifold. Thuswe haveTheorem 4.1.(i) For every generalized Cartan hypersurfa
e M̃ of dimension ≥ 4, therelation (62) with C1 = 1 holds on US̃ ∩ UC̃ = M̃ .(ii) For every 3-dimensional generalized Cartan hypersurfa
e M̃ the re-lation (62) with C1 = 1 holds on U

S̃
= M̃ .(iii) Every warped produ
t of a 1-dimensional manifold and an (n − 1)-dimensional manifold , n ≥ 4, isometri
 to an open part of a gener-alized Cartan hypersurfa
e is a non-
onformally �at manifold.We �nish this se
tion with another example of a hypersurfa
e satisfy-ing (62). Let M̃ be a hypersurfa
e in Nn

s (c), n ≥ 4, satisfying
H2 = αH + βg(66)on U

S̃
⊂ M̃ , where α and β are some fun
tions on U

S̃
. Using (53)�(55) and(66) we obtain (
f. [15, Proposition 3.3℄)
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R̃− C1G̃ = ε(trH − α)−2

(
1

2
S̃ ∧ S̃ − ((n− 2)C1 − εβ)g̃ ∧ S̃(67)

+ ((n− 2)C1 − εβ)2G̃

)
,where C1 = τ

(n−1)n and τ is the s
alar 
urvature of the ambient spa
e.Clearly, if β = 0 on U
S̃
, then (67) redu
es to

R̃− C1G̃ =
ε

2
(trH − α)−2(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃).(68)Thus we haveTheorem 4.2. If M̃ is a hypersurfa
e in Nn

s (c), n ≥ 4, satisfying
H2 = αH(69)on U

S̃
⊂ M̃ for some fun
tion α on U

S̃
, then (68) holds on this set.An example of a hypersurfa
e in a semi-Eu
lidean spa
e E

n
s , n ≥ 4,satisfying (69) is given in [15, Example 3.1℄. In addition, the hypersurfa
e

M̃ = Sp × E
n−1−p in E

n, 2 ≤ p ≤ n− 2, also satis�es (69).5. Main resultsTheorem 5.1. Let M ×F Ñ be the warped produ
t of a line or a 
ir
le
(M, g), with g11 = ε = ±1, and an (n − 1)-dimensional semi-Riemannianmanifold (Ñ , g̃), n− 1 ≥ 3, satisfying

R̃− C1G̃ =
φ̃

2
(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃)(70)on U

S̃
⊂ Ñ , where φ̃ is some fun
tion on U

S̃
⊂ Ñ and C1 is a 
onstant ,with F de�ned by one of the three equalities in (37). Then (1) holds on

UC ∩ US ⊂M ×F Ñ .Proof. It follows from our assumptions that (34)�(36) hold on UC ∩ US .Further, we set LR = − tr T
2F . Thus (33) is satis�ed. Now (15)�(16) turn into(39)�(42). Next we set φ = Fφ̃. Thus (70) turns into (46). We now de�ne thefun
tions µ and η by (45). It is easy to verify that (43) and (44) are satis�ed.Thus, in view of Lemma 3.2, we have (38), i.e. (1), whi
h 
ompletes the proof.Theorem 5.1, together with Proposition 4.1, leads toTheorem 5.2. Let (M, g) be a line or a 
ir
le, with g11 = ε = ±1, andlet (Ñ , g̃) with dim Ñ = n−1 ≥ 3 be a semi-Riemannian manifold isometri
to an open part of a hypersurfa
e M̃ in an n-dimensional spa
e of 
onstant
urvature Nn

s (c), n ≥ 4, satisfying (70) and C1 = τ
(n−1)n on US̃ ⊂ M̃ . Then
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the warped produ
t M ×F Ñ with F de�ned by one of the three equalities in
(37) satis�es (1) on UC ∩ US ⊂M ×F Ñ .Now Theorem 4.1, together with Theorem 5.2, impliesTheorem 5.3. Let (M, g) be a line or a 
ir
le, with g11 = ε = ±1, andlet (Ñ , g̃) with dim Ñ = n − 1 ≥ 3 be a Riemannian manifold isometri
 toan open part of a generalized Cartan hypersurfa
e M̃ in Sn(1), n ≥ 4. Thenthe warped produ
t M ×F Ñ with F de�ned by one of the three equalities in
(37) satis�es (1) on UC ∩ US ⊂M ×F Ñ .We �nish our paper with the following remarks:
Remark 5.1. Our investigations on semi-Riemannian manifolds (M, g),

n ≥ 3, satisfying (1) on US ⊂ M lead to a parti
ular sub
lass of manifolds
onsisting of all manifolds (M, g), n ≥ 3, for whi
h (10) holds on US ⊂M .
Remark 5.2. Consider the warped produ
t M ×F Ñ of a line or a 
ir
le

(M, g), with g11 = ±1, the warping fun
tion F and an (n− 1)-dimensionalsemi-Riemannian manifold (Ñ , g̃), n − 1 ≥ 3, lo
ally isometri
 to an openpart of a hypersurfa
e in Nn
s (c). Thus (56) holds on Ñ . Moreover, let Fsatisfy (37) with C1 = τ

(n−1)n . Then (34) reads
trT

2
−
∆1F

4F
= −

τ

(n− 1)n
.In addition we set L = n−2

2
tr T
F . Using the last two equations, (56) be
omes

R̃ · R̃−Q(S̃, R̃) = (n− 3)

(
LF

n− 2
−
∆1F

4F

)
Q(g̃, C̃).Now, in view of Theorem 4.2 of [5℄, we see that M ×F Ñ satis�es (9).
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