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POLYNOMIALLY GROWING PLURIHARMONIC FUNCTIONSON SIEGEL DOMAINSBYMONIKA GIL�Y�SKA (Oªawa)Abstra
t. Let D be a symmetri
 type two Siegel domain over the 
one of positivede�nite Hermitian matri
es and let N(Φ)S be a solvable Lie group a
ting simply tran-sitively on D. We 
hara
terize polynomially growing pluriharmoni
 fun
tions on D bymeans of three N(Φ)S-invariant se
ond order ellipti
 degenerate operators.Introdu
tion. Let D be a type two symmetri
 Siegel domain and let
G be a solvable Lie group that a
ts simply transitively on D. By means of
G-invariant operators we study polynomially growing pluriharmoni
 fun
-tions on D. More pre
isely, we 
onsider se
ond order real ellipti
 degenerate
G-invariant operators whi
h annihilate holomorphi
 fun
tions and so theirreal and imaginary parts. Su
h operators are 
alled admissible and theyhave already been used to 
hara
terize pluriharmoni
 fun
tions by a num-ber of people: [B℄, [BBDHPT℄, [BBDR℄, [BDH℄, [BBDHJ℄, [DDHT℄, [DH2℄,[DHMP℄, [DHP℄, [T1℄, [T2℄. All the results, ex
ept those in [B℄, have 
on-
erned only bounded fun
tions. Only in the spe
i�
 
ase of Hua operatorsinvariant under the full group of isometries of the domain D, no growth
onditions have been imposed.In this paper we go a step further�we obtain an analogous 
hara
ter-ization of polynomially growing fun
tions on type two Siegel domains Dover 
ones of positive hermitian matri
es. In the 
ase when the 
one is thehalf-line, the domain is the Siegel half-spa
e biholomorphi
ally equivalent tothe 
omplex ball.The main result of the paper is:There are three admissible operators H, L, L on D su
h that if a fun
-tion F polynomially growing in the sense of (3.4) satis�es HF =LF =LF =0,then F is pluriharmoni
 modulo a polynomial. H+L+L is an ellipti
 operator.When the 
one is the half-line, the growth 
ondition (see (1.18)) is 
on-siderably weaker and the system of operators redu
es to L, H.2000 Mathemati
s Subje
t Classi�
ation: 32M10, 32M15, 43A65, 43A80, 22E27.Key words and phrases: symmetri
 Siegel domain, 
omplex ball, Heisenberg group,pluriharmoni
 fun
tions, se
ond order invariant operators.[31℄ 
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The 
hara
terization is 
onsiderably stronger than the one in [BDH℄,where boundedness has been assumed. Moreover, while in [BDH℄ the grouppi
ture was dominant, here we rather 
on
entrate on the domain and thea
tion of G on it, whi
h proves to be very fruitful. Unfortunately we havenot been able to obtain the result for all type two symmetri
 Siegel domains.The paper 
onsists of three se
tions. In the �rst one we 
onsider the Siegelhalf-spa
e, whi
h is identi�ed with a solvable Lie group H×R+, a semidire
tprodu
t of the Heisenberg group H and R+. Writing any point in H × R+as (ξ, x)a, where (ξ, x) ∈ H, a ∈ R+, we 
onsider a fun
tion F that satis�es

|F ((ξ, x)a)| ≤ Cη(a)(1 + |ξ| + |x|1/2)Nfor some N and a lo
ally integrable fun
tion η. Using a relative fundamentalsolution for the 
anoni
al sublapla
ian onH, we obtain additional di�erentialequations on F whi
h make it possible to remove step by step terms of type
wαwβ for su�
iently large |α| + |β| from the Taylor expansion of F , whi
hgives the 
on
lusion. The arguments are di�erent from the ones from [BDH℄and based on an idea 
ommuni
ated to us by Aline Bonami, with whom wehave dis
ussed the 
ase of dimH = 3, i.e. the 
omplex ball in C2.The existen
e of nonzero polynomials whi
h are annihilated by our sys-tem of operators L, H is not surprising. Indeed, it is easy to 
onstru
t ex-amples of su
h.In the third se
tion the domain D over the 
one of positive de�nite her-mitian matri
es is 
onsidered. We identify D with the group G = N(Φ)S, asemidire
t produ
t of a step two nilpotent Lie group N(Φ) and a solvable Liegroup S of lower triangular matri
es (see Se
tion 2.1). S a
ts on the 
enter
V of N(Φ) and the group VS a
ts simply transitively on a type one domainimmersed in D.The proof in [BDH℄, based on the spe
tral synthesis for H, is not appli-
able in the present situation, and a di�erent approa
h is needed. Following[BDH℄ the fun
tion F satisfying the assumptions of Theorem 3.18 is de
om-posed as

F = F1 + F2,where F1 is holomorphi
 and F2 antiholomorphi
 in tube dire
tion VS. Next,for ea
h of these fun
tions, the results of Se
tion 2 are applied.The se
ond se
tion is the most di�
ult and original part of this paper.We 
onsider the 
ase of a polynomially growing analyti
 fun
tion that isholomorphi
 in tube dire
tion VS, and satis�es one more equation generatedby a spe
ial Lapla
ian on a subgroup of N(Φ), whi
h is the Heisenberg group.This permits us to use the results of the �rst se
tion to obtain additionalequations.Later on the a
tion of a maximal nilpotent subgroup N0 in S on Denters into the pi
ture and gives rise to some more equations on fun
tions.
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This is an interesting phenomenon, already observed in previous papers.Indeed, the behavior of the group N0 was always 
ru
ial to 
hara
terizingpluriharmoni
ity by means of three invariant operators only [BDH℄, [DHMP℄.The present paper shows a new aspe
t of this.The author is grateful to Dariusz Bura
zewski and Ewa Damek for valu-able 
onversations on the paper as well as to Aline Bonami and PhilippeJaming for their �rst ideas in the H× R+ 
ase.1. Siegel half-spa
e1.1. The Heisenberg group and the Siegel half-spa
e. We 
onsider thegroup
H = C

n × R = {(ξ, x) : ξ ∈ C
n, x ∈ R}with multipli
ation given by(1.1) (ξ, x) ◦ (ζ, y) =

(
ξ + ζ, x+ y + 1

2 Im ξζ
)
,where

ξζ =
n∑

j=1

ξjζj .

H is 
alled the Heisenberg group. For j = 1, . . . , n let ξj = xj + iyj . Theleft-invariant ve
tor �elds
Xjf(ξ, t) =

((
∂xj

+ 1
2yj∂t

)
f
)
(ξ, t),(1.2)

Yjf(ξ, t) =
((
∂yj

− 1
2xj∂t

)
f
)
(ξ, t),(1.3)

T f(ξ, t) = (∂tf)(ξ, t)(1.4)form a basis of the Lie algebra of H.Consider the semidire
t produ
t S = H× R+ with multipli
ation(1.5) (ξ, u, a) · (ξ1, u1, a1) = ((ξ, u) ◦ (a1/2ξ1, au1), aa1).In this se
tion we study the so 
alled Siegel half-spa
e
U =

{
(ξ, z) : ξ ∈ C

n, z ∈ C, Im z > 1
4 |ξ|2

}
,whi
h is biholomorphi
ally equivalent to the unit 
omplex ball B in Cn+1.The group S a
ts on U in the following way:

(1.6) 



(0, x) ◦ (w, z) = (w, z + x),

(ξ, 0) ◦ (w, z) = (w + ξ, z + 2iφ(w, ξ) + iφ(ξ, xi)),

a ◦ (w, z) = (
√
aw, az),where
φ(ξ, w) =

1

4

n∑

j=1

ξjwj
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and the a
tion is simply transitive. Let θ : S → U be given by

θ(s) = s ◦ (0, i).Putting s = (ξ, t, a), we obtain(1.7) θ((ξ, t, a)) =
(
ξ, t+ i

(
a+ 1

4 |ξ|2
))
.Let Zj = Xj − iYj, Zj = Xj + iYj, where Xj and Yj are given in (1.2) and(1.3). Then an easy 
omputation shows that

Zj = 2∂ξj
+ 1

2 iξj∂t,(1.8)
Zj = 2∂ξj

− 1
2 iξj∂t.(1.9)We 
onsider the operator(1.10) Ln =

n∑

j=1

ZjZj =
n∑

j=1

(X 2
j + Y2

j ) − niT .The fun
tion(1.11) Φ(ξ, t) =
2n−2(n− 1)!

πn+1
log

( |ξ|2/4 − it

|ξ|2/4 + it

)
(|ξ|2/4 − it)−nis 
alled the relative fundamental solution for Ln, i.e.(1.12) f = Lnf ∗ Φ+ Cffor f being a S
hwartz fun
tion or distribution with 
ompa
t support in H.Here C is the Cau
hy�Szegö proje
tion ([S, Se
tion XIII, �4℄). Let I =

(I1, . . . , I2n+1) be a multiindex. De�ne
DI = X I1

1 . . .X In
n YIn+1

1 . . .YI2n
n T I2n+1 .In the next se
tion we will need the following 
hara
terization of polynomi-ally growing Ln-harmoni
 fun
tions.Theorem 1.13. Let F̃ be a C∞ fun
tion de�ned on H, satisfying

LnF̃ (ξ, t) = 0and su
h that
|F̃ (ξ, t)| ≤ c(1 + |ξ| + |t|1/2)Nfor a 
onstant N ≥ 0. Moreover , assume that for all multiindi
es I we have

|DIF̃ (ξ, t)| ≤ cI(1 + |ξ| + |t|1/2)N .Then for all α = (α1, . . . , αn) and |α| > N + 2 we have
ZαF̃ (ξ, t) = 0,where Zα denotes any operator Zj1 . . .Zj|α|

, Zjk
∈ {Z1, . . . ,Zn}, su
h that

Zj appears αj times.
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Proof. Let φ ∈ C∞
c (H) and

φ(ξ, t) =

{
1, τ(ξ, t) ≤ 1,

0, τ(ξ, t) > 2,where(1.14) τ(ξ, t) = |ξ| + |t|1/2.For m ≥ 1 de�ne φm(ξ, t) = φ(ξ/m, t/m2). By (1.12),
φmF̃ = C(φmF̃ ) + Ln(φmF̃ ) ∗ Φ,and

Zj(C(φmF̃ )) = 0.We also have
Zj(|ξ|2/4 − it) = 0, Zj(|ξ|2/4 + it) = ξj ,

Zj log(|ξ|2/4 + it) =
ξj

|ξ|2/4 + it
.Then

ZβΦ(ξ, t) = c(β)
ξβ1

1 . . . ξβn
n

(|ξ|2/4 + it)|β|(|ξ|2/4 − it)n
,So

|ZβΦ(ξ, t)| ≤ c(β)
τ(ξ, t)|β|

τ(ξ, t)2(|β|+n)
= c(β)τ(ξ, t)−|β|−2n.Fix (ξ, t). It is easy to noti
e that for m large enough we have

Zβ(φmF̃ (ξ, t)) = ZβF̃ (ξ, t).Moreover,
Zβ(φmF̃ (ξ, t)) =

\
Ln(φmF̃ )(w, s)ZβΦ((w, s)−1(ξ, t)) dw ds.Observe that

|Ln(φmF̃ )(w, s)| ≤ cmN , |ZβΦ((w, s)−1(ξ, t))| ≤ c(β, ξ, t)m−|β|−2nfor τ(w, s) ≤ 2m and m large enough. Therefore,
|ZβF̃ (ξ, t)| ≤ c

\
{(w,s) : τ(w,s)<2m}

mN−|β|−2n dw ds = c′mN+2−|β|.This proves the theorem.1.2. Holomorphi
 fun
tions on the Siegel half-spa
e. In this se
tion wewill 
hara
terize polynomially growing holomorphi
 fun
tions de�ned on U .In view of (1.7)�(1.9) we have
dθ(Zj) = 2∂ξj

+ iξj∂z,(1.15)
dθ(Zj) = 2∂ξj

− iξj∂z,(1.16)
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where (dθ(Zj)F ) ◦ θ = Zj(F ◦ θ). For a fun
tion F de�ned on U we 
onsider(1.17) F̃ ((ξ, t)a) = F (θ(ξ, t, a)).Suppose that there is a positive integer N and a lo
ally integrable fun
tion
ζ(a) su
h that(1.18) |F̃ ((ξ, t)a)| ≤ ζ(a)(1 + |ξ| + |t|1/2)N .Clearly by (1.7), if P is a polynomial de�ned on U , then there are 
onstants
c,M su
h that |P̃ ((ξ, t)a)| ≤ c(1 + a+ |ξ|+ |t|1/2)M , so the 
ondition (1.18)is satis�ed.Theorem 1.19. Suppose that for a fun
tion F satisfying (1.18) we have
(1.20) (∂t + i∂a)F̃ = 0,

(1.21) LnF̃ = (L − inT )F̃ = 0,where L =
∑n

j=1(X 2
j +Y2

j ). Then there is a polynomial W su
h that F −Wis a holomorphi
 fun
tion.Proof. Noti
e that from (1.20) and (1.21),
(L − n∂a)F̃ = (L− inT )F̃ = 0 and (∂2

t + ∂2
a)F̃ = 0.For a multiindex I = (I1, . . . , I2n+1) let

DI = (aX1)
I1 . . . (aXn)In(aY1)

In+1 . . . (aYn)I2n(a2T )I2n+1be a left-invariant di�erentiable operator de�ned on S. De�ne(1.22) L = a(L− n∂a) + a2(∂2
t + ∂2

a).Then L is an ellipti
 operator with real polynomial 
oe�
ients and it anni-hilates the real and imaginary parts of F̃ , so ℜF̃ and ℑF̃ are real analyti
([N, �3.8℄).Using the Harna
k inequality for L, denoting by B some neighborhoodin S of the unit element e we obtain
|DI F̃ ((ξ, t)a)| ≤ cI

\
B

|F̃ ((ξ, t, a)(w, s, b))| dm((w, s)b)(1.23)
≤ ζI(a)(1 + |ξ| + |t|1/2)N .De�ne

K = θ(L − n∂a) = 4
n∑

j=1

∂ξj
∂ξj

+ 2i
n∑

j=1

ξj∂z∂ξj
− 2i

n∑

j=1

ξj∂z∂ξj
+ |ξ|2∂z∂z.Then by (1.20) and (1.21) we have(1.24) KF (ξ, z) =

(
4

n∑

j=1

∂ξj
∂ξj

+ 2i

n∑

j=1

ξj∂z∂ξj

)
F (ξ, z) = 0.
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In view of Theorem 1.13, there is a number p su
h that for 1 ≤ j ≤ nwe have ZβF̃ (ξ, t) = 0 if |β| ≥ p. (We are going to skip dθ and write Zβ onboth U and S). Together with (1.16) and (1.20) this implies(1.25) ∂β

ξ
F (ξ, z) = 0.Put w = (ξ, z). In a neighborhood U of w0 = (0, i) ∈ U we write

F (w) =
∑

α,β

cα,β(w − w0)
α(w − w0)

β,where w = (ξ, z) and ξ = (ξ1, . . . , ξn), z, ξj ∈ C for 1 ≤ j ≤ n. Let β =

(β1, . . . , βn+1). In this notation wβ = ξβ1

1 . . . ξβn
n ·zβn+1 . Noti
e that if cα,β 6= 0then

n∑

j=1

βj ≤ p− 1, βn+1 = 0.Let β0 = (β1, . . . , βn+1) be su
h that ∑
j βj = p− 1. So by (1.24),(1.26) ∂z∂

β0

ξ
F = 0.Let

h(w) = ∂β0

ξ
F (w).It is easy to see that h(w) = h(ξ) is a holomorphi
 fun
tion whi
h does notdepend on z. Moreover,

|h(ξ)| = |h̃(ξ, 0, 1)| = |Zβ1

1 . . .Zβn
n F̃ (ξ, 0, 1)| ≤ c(1 + |ξ|)N .and so h is a polynomial, i.e.(1.27) h(w) = Wβ0

(w) = β0!
∑

α

cα,β0
(w − w0)

α.Moreover, Wβ0
does not depend on z.For smaller multiindi
es we need the following lemma:Lemma 1.28. Suppose that the fun
tion F satis�es the assumptions ofTheorem 1.19. If(1.29) ∂m

ξ
F (ξ, z) = g(ξ, z) +W (ξ, z),where g is a holomorphi
 fun
tion,W is a polynomial and m = (m1, . . . ,mn)

6= (0, . . . , 0), then g is a polynomial.Assuming that Lemma 1.28 holds, let us now �nish the proof. Considerthe fun
tion
g(w) = ∂β1

ξ1

. . . ∂
βj−1

ξj

. . . ∂βn

ξn

(
F (w) −

∑

α

cα,β0
(w − w0)

α(w − w0)
β0

)

= ∂β1

ξ1

. . . ∂
βj−1

ξj

. . . ∂βn

ξn

F (w) + cWβ0
(w)ξj ,
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where Wβ0

is as in (1.27). For w ∈ U we have
g(w) = c

∑

α

cα,β1,...,βj−1,...,βn,0(w − w0)
α.Hen
e g is holomorphi
. From Lemma 1.28 we see that g is a polynomial.Fix a multiindex m = (m1, . . . ,mn, 0) and assume that for all multiindi
es

r = (r1, . . . , rn, 0), r 6= m, mj ≤ rj ≤ pj − 1,
∑

α

cα,r(w − w0)
α(w − w0)

r

is a polynomial. Then
g(w) = ∂m

ξ

(
F (w) −

∑

α,r

cα,r(w − w0)
α(w − w0)

r
)

= ∂m
ξ
F (w) +Wm(w),where Wm is a polynomial. For w ∈ U we have

g(w) = c
∑

α

cα,m(w − w0)
α.So g is holomorphi
, and by Lemma 1.28 it is a polynomial. Finally, we
on
lude that

F (w) =
∑

α

cα,0(w − w0)
α +W0(w),whi
h 
ompletes the proof of Theorem 1.19.Proof of Lemma 1.28. Noti
e that [∂ξ,K] = 2i∂z∂ξ. Therefore

0 = ∂m
ξ
KF (ξ, z) = K(∂m

ξ
F (ξ, z)) + 2i|m|∂z∂

m
ξ
F (ξ, z),where |m| =

∑n
j=1mj . From (1.29) we obtain

K(g(ξ, z)) + K(W (ξ, z)) + 2i|m|∂zg(ξ, z) + 2i|m|∂zW (ξ, z) = 0.Sin
e g is holomorphi
, ∂zg(ξ, z) is a polynomial. Moreover, we 
an �nd aholomorphi
 polynomial P su
h that ∂zP = ∂zg. Then we have
∂z(g − P )(ξ, z) = 0,

∂ξj
(g − P )(ξ, z) = 0, 1 ≤ j ≤ n,

∂z(g − P )(ξ, z) = 0.Therefore, the fun
tion h1(ξ) = (g−P )(ξ, z) is holomorphi
 and independentof z. Then by (1.29) we get
|h1(ξ)| = |h̃1(ξ, 0, 1)| = |ZmF̃ (ξ, 0, 1) − W̃ (ξ, 0, 1) − P̃ (ξ, 0, 1)|

≤ ζm(1)(1 + |ξ|)Mand so g is a polynomial.
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2. Type two Siegel domain over the 
one of Hermitian matri
es2.1. De�nition and the basi
 properties. Suppose we are given a 
one Ωin a Eu
lidean spa
e V, a 
omplex ve
tor spa
e Z and a Hermitian symmetri
bilinear mapping
Φ : Z × Z → VC = V + iVsu
h that
Φ(ξ, ξ) ∈ Ω for ξ ∈ Z,if Φ(ξ, ξ) = 0 then ξ = 0,

Φ(ξ, w) = Φ(w, ξ).The Siegel domain asso
iated with these data is the set
D = {(ξ, z) ∈ Z ⊕ VC : ℑz − Φ(ξ, ξ) ∈ Ω},where ℑ(x+iy) = y for x+iy ∈ VC. In this paper V is the spa
e of hermitian

n× n matri
es, 
onsidered as a linear spa
e over R. Then VC is the spa
e of
omplex-valued n× n matri
es. The spa
e Z 
onsists of the 
omplex-valued
n ×m matri
es and Ω is the 
one of positive de�nite matri
es in VC. Thebilinear mapping Φ is given by

Φ(ξ, w) = ξwt.The elements w ∈ Z, x ∈ V a
t on D in the following way:
(2.1) (ξ, z) 7→ w ◦ (ξ, z) = (ξ + w, z + 2iΦ(ξ, w) + iΦ(w,w)),

(2.2) (ξ, z) 7→ x ◦ (ξ, z) = (ξ, z + x).All the mappings of the form (2.1) and (2.2) form a group whi
h will bedenoted by N(Φ). The multipli
ation in N(Φ) is given by(2.3) (ξ, x)(ζ, y) = (ξ + ζ, x+ y + 2ℑΦ(ξ, ζ)).Clearly, Z ⊕ V is the Lie algebra of N(Φ). Let S be the group of lowertriangular 
omplex n× n matri
es with positive entries on the diagonal andlet
σ(s)ξ = sξ, s ∈ S, ξ ∈ Z.Noti
e that(2.4) Φ(σ(s)ξ, σ(s)w) = sΦ(ξ, w)st.Therefore, s a
ts on D as follows:(2.5) (ξ, z) 7→ s ◦ (ξ, z) = (σ(s)ξ, szst).

N(Φ) and S generate a solvable Lie group whi
h is their semidire
t produ
twith multipli
ation(2.6) (ξ, x, s) ◦ (ξ1, x1, s1) = ((ξ, x)(σ(s)ξ1, sx1s
t), ss1).
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Then the Lie algebra of N(Φ)S is Z⊕V⊕S, where S is the Lie algebra of S.Clearly the group N(Φ)S a
ts simply transitively on the domain D, and thefun
tion(2.7) θ(ξ, vs) = (ξ, vs) ◦ (0, i)is a di�eomorphism of N(Φ)S onto D. So we are going to identify the group
N(Φ)S with the domain D. If n = 1, then D is just the Siegel half-spa
e,so from now on we assume that n ≥ 2. Let |ξ| and |v| be Eu
lidean normsin Z and V respe
tively, and ‖s‖ the norm of the linear transformation
(ξ, v) 7→ (σ(s)ξ, sv).The Lie algebra Z ⊕ V ⊕ S is identi�ed with matri
es:

Z = {(ξij) : ξij ∈ C, i = 1, . . . , n, j = 1, . . . ,m}
V = {(vij) : vij ∈ C, vji = vij , i, j = 1, . . . , n}
S = {(wi,j) : wij ∈ C, wij = 0 for i < j, wjj ∈ R, i, j = 1, . . . , n.}We will need 
ommutation relations in the algebra Z ⊕ V ⊕ S. We 
onsiderthe following basis of it. For S we 
hoose the matri
es
Hk = (hpq)p,q=1,...,n , k = 1, . . . , n, where hpq = 1

2δpq,kk,and the matri
es
Y α

kj = (ypq)p,q=1,...,n, 1 ≤ k < j ≤ n, α ∈ {1, i}, where ypq =
α√
2
δpq,jk.A basis of V 
onsists of the matri
es

Xkk = (xpq)p,q=1,...,n, k = 1, . . . , n, where xpq = δpq,kk,and the matri
es
Xα

kl = (xpq)p,q=1,...,n, 1 ≤ k < l ≤ n, α ∈ {1, i},where xpq =
α√
2
δpq,lk +

α√
2
δpq,kl.On the other hand, it is 
onvenient to take in Z the matri
es

Xkl = (xpq) p=1,...,n
q=1,...,m

, k = 1, . . . , n, l = 1, . . . ,m, where xpq =
1

2
δpq,kl,

Ykl = (ypq) p=1,...,n
q=1,...,m

, k = 1, . . . , n, l = 1, . . . ,m, where ypq =
i

2
δpq,kl.Now we 
al
ulate bra
kets in the algebra S. It is easy to see that the onlynonzero 
ommutators in S are(2.8) [Hk, Y

α
kj] = −1

2Y
α
kj , [Hj, Y

α
kj ] = 1

2Y
α
kjfor α = 1, i, 1 ≤ k < j ≤ n.Noti
e that V is abelian so a 
ommutator in V ⊕ S is given by(2.9) [(x, s), (x1, s1)] = (sx1 + x1s

t − s1x− xst
1, [s, s1]).
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The only nonzero 
ommutators are given by

(2.10)

[Hk, X
α
jk] = 1

2X
α
jk, for 1 ≤ j < k ≤ n,

[Hk, X
α
kj ] = 1

2X
α
kj , for 1 ≤ k < j ≤ n,

[Hk, Xkk] = Xkk, for 1 ≤ k ≤ n,

[Y α
kj, Xkk] = Xα

kj , for 1 ≤ k < j ≤ n,

[Y α
kj, X

α
kj ] = Xjj, for 1 ≤ k < j ≤ n,

[Y α
kj, X

α
pk] =

α2

√
2
X1

pj, for 1 ≤ p < k < j ≤ n, α = 1, i,

[Y α
kj, X

β
pk] =

1√
2
X i

pj, for 1 ≤ p < k < j ≤ n, α 6= β.Noti
e that the bra
ket in N(Φ) is given by(2.11) [(ζ, x), (ζ1, x1)] = (0, 4ℑΦ(ζ, ζ1)).Using (2.11) we may easily �nd the nonzero 
ommutators in N(Φ):
(2.12)

[Xkl,Xpl] =
1√
2
X i

kp for 1 ≤ k < p ≤ n,

[Xkl,Ykl] = −Xkk for k = 1, . . . , n,

[Xkl,Ypl] = − 1√
2
X1

min(k,p),max(k,p) for k, p = 1, . . . , n, k 6= p,

[Ykl,Ypl] =
1√
2
X i

kp for 1 ≤ k < p ≤ n,where l = 1, . . . ,m.We do the same with 
ommutators in Z ⊕S. It is easy to see that in thisalgebra
[(0, s), (ξ, 0)] = sξ,where s ∈ S and ξ ∈ Z. Therefore the only nonzero 
ommutators are

(2.13)
[Y 1

kj,Xkl] =
1√
2
Xjl,

[Y i
kj,Xkl] =

1√
2
Yjl

[Y 1
kj,Ykl] =

1√
2
Yjl,

[Y i
kj,Ykl] = − 1√

2
Xjl,where 1 ≤ k < j ≤ n and l = 1, . . . ,m.We are left with the 
ommutators(2.14) [Hk,Xkl] = 1

2Xkl, [Hk,Ykl] = 1
2Ykl,where k = 1, . . . , n and l = 1, . . . ,m.Remark 2.15. The basis of the algebra Z⊕V⊕S just 
hosen is 
onsistentwith [BDH, Se
tion 2.2℄, the elements of V ⊕ S being denoted identi
ally. If
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we �x k then the ve
tor �elds

Xk1, . . . ,Xkm,Yk1, . . . ,Ykmform a basis of the root spa
e, denoted by Zk in [BDH℄, and they 
orrespondto the ve
tors X α
k ,Yα

k in [BDH℄. The stru
ture of a Jordan algebra in V isgiven by multipli
ation
x ◦ x1 = 1

2(xx1 + x1x)and the s
alar produ
t is
〈x, x1〉 = tr(xx1).2.2. Holomorphi
 fun
tions on D. On N(Φ)S we will 
onsider a numberof di�erential operators. Let

Wk = Xkk + iHk, k = 1, . . . , n,

Vα
jk = Xα

jk + iY α
jk, α = 1 and 1 ≤ j < k ≤ n,

Vβ
jk = Xβ

jk + iY β
jk, β = i and 1 ≤ j < k ≤ n,and
L1 =

m∑

k=1

ZkZk,where
Zk = X1k − iY1k, k = 1, . . . ,m.For a fun
tion F on D we de�ne(2.16) F̃ (ξ, z) = F ((ξ, xs) ◦ (0, i)) = F ◦ θ(ξ, xs).Suppose that F̃ has the following properties:(2.17) F̃ is annihilated by the operators L1,Wj and Vα

jk,and for a submultipli
ative fun
tion η,(2.18) |F̃ (ξ, xs)| ≤ cη(s)(1 + |ξ| + |x|1/2)M .A submultipli
ative fun
tion is a fun
tion bounded on 
ompa
t sets and sat-isfying η(s1s2) ≤ η(s1)η(s2). We have the following 
hara
terization of fun
-tions F̃ .Theorem 2.19. Let F̃ be an analyti
 fun
tion whi
h satis�es (2.17) and(2.18). Then there is a polynomial W su
h that F −W is holomorphi
. If Fis a family of fun
tions satisfying (2.18) for a given M , then the polynomials
W may be 
hosen to have degrees uniformly bounded.The rest of the se
tion is devoted to the proof of Theorem 2.19. Noti
ethat

L1 =
m∑

k=1

(X 2
1k + Y2

1k) −miX11.
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For a fun
tion satisfying (2.17) we also have
L1F̃ =

( m∑

k=1

(X 2
1k + Y2

1k) −mH1

)
F̃ .De�ne

∆j = WjWj = X2
jj +H2

j −Hj ,

∆α
jk = Vα

jkV
α
j = (Xα

kj)
2 + (Y α

jk)
2 −Hk,for α = 1, i and 1 ≤ j < k ≤ n. Let(2.20) M =

m∑

k=1

(X 2
1k + Y2

1k) −mH1 +

n∑

j=1

∆j +
∑

j<k,α

∆α
jk.Then MF̃ = 0. From (2.13) the ve
tor �elds X1k,Y1k for k = 1, . . . , n and

Xjj, Hj for j = 1, . . . , n, and Xα
jk, Y

α
jk for 1 ≤ j < k ≤ n and α = 1, igenerate the Lie algebra of the group N(Φ)S. This means that the operator

M satis�es the Hörmander 
ondition. We will use the Harna
k inequalityfor the operator M to estimate the derivatives
|DF̃ (ξ, vs)| ≤ cη(s)(1 + ‖s‖)M (1 + |ξ| + |v|1/2)M ,where D = P1 . . . Pr, r ∈ N, Pj ∈ {Xpq,Ypq, X

α
kl, Y

α
kl , X

β
kl, Y

β
kl, Xkk, Hk : 1 ≤

q ≤ m, 1 ≤ p ≤ n, 1 ≤ k < l ≤ n}, and ‖s‖ is the norm of s as a linear mapon VC.Indeed, by the Harna
k inequality for M ([VSC, Se
tion III℄) we have
|DF̃ (0, e)| ≤ c

\
B

|F̃ (χ,wr)| dχ dw dr,where B is a �xed bounded neighborhood of (0, e). Sin
e M is left-invariant,we may write
(2.21) |DF̃ (ξ, vs)| ≤ c

\
B

|F̃ ((ξ, vs) ◦ (χ,wr))| dχ dw dr

≤ cη(s)
\
B

η(r)(1 + |ξ + sχ| + |x+ swst + 2ℑΦ(ξ, sχ)|1/2)M dχ dw dr

≤ cη(s)(1 + ‖s‖)M (1 + |ξ| + |x|1/2)M
\
B

η(r)(1 + |χ| + |w|1/2)M dχ dw dr.Consider the Heisenberg group H generated by X1k,Y1k, k = 1, . . . ,m,and X11. The fun
tion F̃ restri
ted to H satis�es the assumptions of Theo-rem 1.13. Hen
e for m1 = |γ| = M + 3,(2.22) ZγF̃ = 0on the group H, where Zγ is as in Theorem 1.13. We will show that (2.22)is satis�ed on N(Φ)S. To prove that, we 
onsider
G(ξ, xs) = F̃ ((χ, vs1)(ξ, xs)).
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Condition (2.17) is satis�ed for G. Moreover, by (2.6),
|G(ξ, xs)| ≤ cη(s1)(1 + ‖s1‖)M (1 + |χ| + |v|1/2)Mη(s)(1 + |ξ| + |x|1/2)M

= C(χ, vs1)η(s)(1 + |ξ| + |x|1/2)M ,where C(χ, vs1) is a 
onstant depending on χ, v and s1. By Theorem 1.13,
ZγG(ξ, x) = 0for |γ| = M + 3 and (ξ, x) ∈ H. But

(ZγG)(ξ, x) = Zγ(F̃ ((η, vs1)(ξ, x))) = (ZγF̃ )((η, vs1)(ξ, x)),and (2.22) follows on N(Φ)S.We need to write Wj,Vα
jk for α = 1, i and Zk in 
oordinates on thedomain D. Introdu
e on VC the following 
oordinates:

Z = Zα + iZβ, (zkl) = (zα
kl) + i(zβ

kl)where zα
kl = (zkl + zlk)/2 and zβ

kl = (−zkl + zlk)/2i and 1 ≤ k < l ≤ n.Moreover, noti
e that the terms zα
kk and zβ

kk are the real and imaginary partsof zkk, respe
tively. We write every element ξ of Z as ξ = (ξij). The element
(ξ, z) ∈ D will always be written in 
oordinates as ξkl, z

α
kl, z

β
kl. Moreover, weassume that

ξkl = xkl + iykl, zα
kl = xα

kl + iyα
kl, zβ

kl = xβ
kl + iyβ

kl.Ea
h s ∈ S will be written as(2.23) s = wa,where w = [wkj] is a lower triangular matrix with wkk = 1 and a is a diagonalmatrix with stri
tly positive entries a1, . . . , an. In the theorem below writing
w,wkj , ak we mean w ◦ θ−1, wkj ◦ θ−1, ak ◦ θ−1.Theorem 2.24. Let θ be as in (2.7). Then(2.25) dθ(Xkk + iHk) = ak

(
2∂zkk

+
n∑

h=k

n∑

j=k

(cαhj(w)∂zα
hj

+ cβhj(w)∂
zβ

hj

)
)
,

where cαkk(w) = cβkk(w) = 0 and k = 1, . . . , n. For 1 ≤ k < l ≤ n,(2.26) dθ(Xα
kl+iY

α
kl) =

√
akal

(√
2 ∂zα

kl
+

n∑

h=k

n∑

j=l

(bαhj(w)∂zα
hj

+bβhj(w)∂
zβ

hj

)
)
,

where bαkl(w) = bβkl(w) = 0. For 1 ≤ k < l ≤ n,(2.27) dθ(Xβ
kl+iY

β
kl) =

√
akal

(√
2 ∂

zβ
kl

+
n∑

h=k

n∑

j=l

(dα
hj(w)∂zα

hj
+dβ

hj(w)∂
zβ

hj

)
)
,
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where dα
kl(w) = dβ

kl(w) = 0,(2.28) dθ(X1k + iY1k) =
√
a1

( n∑

l=1

wl1

(
∂ξlk

− 2i

n∑

j=1

ξjk∂zlj

))
,where w11 = 1,(2.29) wk1 ◦ θ−1 =

i(zk1 − z1k) + 2(ξ, ξt)1k

2(a1 ◦ θ−1)
,

(ξ, ξt)1k =
∑m

j=1 ξ1j · ξkj and a1 ◦ θ−1 = ℑz11 − |ξ1|2, where |ξ1|2 = (ξ, ξt)11.All the terms bαkl, b
β
lk, c

α
kl, c

β
kl, d

α
kl, d

β
kl are nonzero polynomials of degree 2 de-pending on w and w.The proof of this theorem is standard and it is left to the reader.The aim of this se
tion is to show that for every j, k, ∂ξjk

F is a poly-nomial. We start with the following observations. Noti
e that for every
1 ≤ j < k ≤ n and l = 1, . . . ,m we have Z l(aj) = 0, Zl(aj) = 0 and
Z l(wjk) = 0, Zl(wjk) = 0. This means that the fa
tors aj are not importantin our 
ase. So we have the analogous equalities on the domain. For example
dθ(Z l)(aj ◦ θ−1) = 0. To simplify notation we will identify the ve
tor �eldsand fun
tions on the group and on the domain denoting them identi
ally,i.e. if we write ZkF , we mean dθ(Zk)F. This will not lead to 
onfusion. For
k = 1, . . . ,m set w = (1, w21, . . . , wn1) and ηk = (ξ1k, . . . , ξnk). Then(2.30) wα = wα2

21 . . . w
αn

n1and
∂α

ηk
= ∂α1

ξ1k

. . . ∂αn

ξnk

.Theorem 2.31. Suppose that the fun
tion F̃ satis�es 
onditions (2.17)and (2.18), and m1 = m(M + 3). Then(a) ∂zkl
F = 0 for k, l = 1, . . . , n,(b) Zq

kF = a
q/2
1 (

∑
|α|=q cαw

α∂α
ηk

)F, where cα > 0.(
) ∂γ

ξ
F (ξ, z) = 0 for every multiindex γ with |γ| = m1.For every 
ompa
t subset K ⊂ V ⊕ S and every multiindex γ there are 
on-stants c(γ),M(γ) su
h that if (ξ, z) ∈ θ(Z ×K), then(d) |∂γ

ξ
F (ξ, z)| ≤ c(γ)(1 + |ξ|)M(γ).Proof. (a) will be proved by indu
tion on k+l. Noti
e that for k = l = n,from (2.25) and (2.17) we obtain

0 = dθ(Wn)F (ξ, z) = 2an∂znnF (ξ, z).Therefore ∂znnF (ξ, z) = 0.
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Assume that the formula holds for 2n ≥ k + l > t. Then for k + l = tfrom (2.17) we have

0 = dθ(Xα
kl + iY α

kl)F (ξ, z)

=
√
akal

(√
2 ∂zα

kl
+

n∑

p=k+1

(bαpl(w)∂zα
pl

+ bβpl(w)∂
zβ

pl

)

+
n∑

q=l+1

(bαkq(w)∂zα
kq

+ bβkq(w)∂
zβ

kq

)

+
n∑

p=k+1

n∑

q=l+1

(bαpq(w)∂zα
pq

+ bβpq(w)∂
zβ

pq
)
)
F (ξ, z).Noti
e that we 
an apply the indu
tive assumption to the terms 
ontainingsums. Therefore we obtain

∂zα
kl
F (ξ, z) = 0.By the same method we prove the rest of (a).Now we prove (b) by indu
tion on q. For q = 1, by (a) we get

ZkF =
√
a1

( n∑

l=1

wl1

(
∂ξlk

− 2i
n∑

j=1

ξjk∂zlj

))
F(2.32)

=
√
a1

( n∑

l=1

wl1∂ξlk

)
F.Assume now that the formula holds for q. Then

Zq+1
k F = a

q/2
1 Zk

( ∑

|α|=q

cαw
α∂α

ηk

)
F.

Noti
e that Zkw
α = 0 and ∂zlj

F = 0 by (a). Therefore(2.33) Zq+1
k F = a

(q+1)/2
1

( ∑

|α|=q+1

cαw
α∂α

ηk

)
F

and cα are stri
tly positive, whi
h �nishes the proof of (b).For (
), by (b) we get
0 = Zm1

k F =
∑

|α|=m1

cαw
α∂α

ηk
F.

Noti
e that if α 6= β then wα 6= wβ. So, if we di�erentiate the equation m1times with respe
t to zn1, we obtain ∂m1

ξnk

F = 0. Indu
tion gives ∂β
ηk
F = 0,if we apply ∂β

z , where z = (1, z21, . . . , zn1), |β| = M + 3 and j = 1, . . . ,m.Noti
e that for |α| = m1 we will just have ∂α
ξ
F = 0.
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Now, we show (d). Let s = wa be as in (2.23). Noti
e that
∂α

ξ
=

∑

α,β

Wα,β(ξ, vwa)Dβ,

where Wα,β is a polynomial in ξ, v, w, a1, . . . , an, a
−1
1 , . . . , a−1

n . If vs is in the
ompa
t set K, then from (2.21),
(2.34) |∂α

ξ
F̃ (ξ, vs)| ≤ cK(1+ |ξ|)M(α)

∑

γ

|DγF̃ (ξ, vs)| ≤ c(1+ |ξ|)M(α)+M .

Be
ause of (2.7) the image of ∂ξkl
on the domain is ∂ξkl

+
∑

p,q Wpq(ξ)∂zpqand so we obtain
∂ξkl

F̃ (ξ, vs) =
((
∂ξkl

+
∑

pq

Wpq(ξ)∂zpq

)
F

)
(θ(ξ, vs)) = ∂ξkl

F (ξ, z).

Therefore, on θ(Z ×K) we have
|∂α

ξ
F (ξ, z)| ≤ c(1 + |ξ|)M(α)+M ,whi
h �nishes the proof of Theorem 2.31.Every polynomially growing fun
tion whi
h is holomorphi
 in Cn is poly-nomial. We will need the following generalization of this fa
t to our situation.Lemma 2.35. Suppose that a fun
tion f is analyti
 on D and satis�esthe following 
onditions:(1) For all k, l, we have ∂zkl

f(ξ, z) = 0.(2) For every k, l there is βkl su
h that ∂βkl
zkl
f(ξ, z) = 0.(3) There is p su
h that for all |γ| = p, we have ∂γ

ξ
f(ξ, z) = 0.(4) There is a nonpositive integer N su
h that for every 
ompa
t set

K there is a 
onstant c su
h that |f(ξ, z)| ≤ c(1 + |ξ|)N if (ξ, z) ∈
θ(Z ×K).(5) There is a nonpositive integer N su
h that for every |γ| ≤ p and every
ompa
t set K there is a 
onstant c su
h that |∂γ

ξ
f(ξ, z)| ≤ c(1+|ξ|)Nif (ξ, z) ∈ θ(Z ×K).Then f is a polynomial.Let F be a family of fun
tions whi
h satisfy the above 
onditions for given

p,N, βkl. Then the degrees of the polynomials in F have a 
ommon bound.The proof of Lemma 2.35 is an elementary 
al
ulation.In the next step we will try to get some more equations satis�ed bythe fun
tion F . We know that ZαF = 0 for |α| = m1. We will need someformulas for Zα for |α| < m1. To do this we will use 
ommutators.
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Noti
e that for k = 1, . . . ,m the ve
tor �elds Zk have the properties

(2.36) [Zk,Zj ] = 0, k 6= j,

(2.37) [Zk,Zk]F = [Z1,Z1]F = −ia1

( n∑

j=1

wj1

( n∑

l=1

wl1∂zjl

))
F,where w11 = 1, and F is as in (a) of Theorem 2.31. Indeed,

[Zk,Zj ] = [X1k − iY1k,X1j + iY1j]

= [X1k,X1j] + [Y1k,Y1j] − i([Y1k,X1j] − [X1k,Y1j]) = 0by (2.12). On the other hand, if k = j, then [X1k,Y1k] = −X11. Therefore(2.38) [Zk,Zk] = −2iX11 = −i(W1 + W1).Using the fa
t that W1F = 0, we obtain
[Zk,Zk]F = −iW1F.A dire
t 
omputation using the a
tion of (ξ, vs) ∈ N(Φ)S on D given by(2.39) (ξ, vs) ◦ (χ, u) = (ξ + sχ, v + sust + 2iΦ(sχ, ξ) + iΦ(ξ, ξ)).shows that

W1 = a1

n∑

j=1

wj1

( n∑

l=1

wl1∂zjl

)
,and so we get (2.37).Lemma 2.40.

Z l
kZkZkF = (l[Zk,Zk]Z l

k + ZkZ l+1
k )F.Proof. The proof is by indu
tion. For l = 1 we have

ZkZkZkF = (ZkZ2
k + [Zk,Zk]Zk)F.Assume that (2.40) holds for l. Then

Z l+1
k ZkZkF = Zk(l[Zk,Zk]Z l

k + ZkZ l+1
k )F.Noti
e that

[[Zk,Zk],Zk] = [[Zk,Zk],Zk] = 0.Therefore,
Z l+1

k ZkZkF = (l[Zk,Zk]Z l+1
k + [Zk,Zk]Z l+1

k + ZkZ l+2
k )F

= ((l + 1)[Zk,Zk]Z l+1
k + ZkZ l+2

k )F,whi
h �nishes the proof.From Lemma 2.40, (2.36) and (2.37) we obtain(2.41) ZαL1F = Zα
m∑

k=1

ZkZkF = |α|[Z1,Z1]ZαF +
m∑

k=1

ZkZβkF,
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where βk = α + ek and ek = (0, . . . , 1, . . . , 0), with 1 in the kth pla
e.Moreover, noti
e that if |α| = m1 − 1, then Zβk

k = 0 for every k = 1, . . . ,m.Therefore we get an additional equation(2.42) [Z1,Z1]ZαF = 0.Sin
e [[Z1,Z1],Zk]F = 0, (2.38) gives(2.43) Zα
( n∑

j=1

wj1

( n∑

k=1

wk1∂zjk

))
F = 0.Hen
e(2.44) n∑

j=1

wj1Zα
( n∑

k=1

wk1∂zjk

)
F = 0.Noti
e that for j = 2, . . . , n and k = 1, . . . , n from (2.29) and (2.28) we have

∂z1j
wk1 = 0 for j 6= k,

∂z1j
wj1 =

−i
2a1

6= 0,

[∂z1j
,Z l] = 0 for l = 1, . . . ,m,

∂z1j
wk1 = 0.Applying ∂z1j

to both sides of (2.44), for a fun
tion F that satis�es (a) fromTheorem 2.31 we have
0 =

n∑

l=1

(∂z1j
wl1)Zα

( n∑

k=1

wk1∂zlk

)
F +

n∑

l=1

wl1Zα
( n∑

k=1

wk1∂zlk

)
∂z1j

F

=
i

2a1
Zα

( n∑

k=1

wk1∂zjk

)
F,For |α| = m1 − 1 we get the equation(2.45) Zα

( n∑

k=1

wk1∂zjk

)
F = 0 for 1 ≤ j ≤ n.We will 
onsider the 
ase when j = 1 (for other indi
es the proof is thesame). The equation (2.45) for |α| = m1 − 1 gives(2.46) Zα

( n∑

k=1

wk1∂z1k

)
F =

n∑

k=1

wk1Zα
∂z1k

F = 0.We will need an expression for Zα, similar to (2.33). We will show by indu
-tion that if ∂zkl
F = 0 and k, l = 1, . . . , n, then(2.47) ZαF = a|α|/2

∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γ∂
γ

ξ
F

)
,
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where wβ is as in (2.30), and γ is a multiindex related to partial derivativesgiven by ξ = (ξpq) 1≤p≤n

1≤q≤m

. Noti
e that some cα,β,γ may vanish and for |α| = 1we simply have (2.32).Indeed, from (2.28),
Zk(ZαF ) = a|α|/2

∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γZk∂
γ

ξ
F

)

= a|α|/2
∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γ

( n∑

l=1

wl1∂ξlk

)
∂γ

ξ
F

)
.

Rearranging terms we will get (2.47). Let(2.48) fα,β =
∑

|γ|=|α|

cα,β,γ∂
γ

ξ
F.

If |α| = 1, Zα = Zk and wβ = wj1 then by (2.32),(2.49) fα,β = ∂ξjk
F.Noti
e that if ∂zkl

F = 0, then also ∂zkl
∂z1k

F = 0. Hen
e
Zα∂z1k

F = a|α|/2
∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γ∂
γ

ξ
∂z1k

F
)

= a|α|/2
∑

|β|=|α|

wβ∂z1k
fα,β.The equation (2.46) gives(2.50) n∑

k=1

∑

|β|=|α|

wk1w
β∂z1k

fα,β = 0.

Analogously for j = 2, . . . , n,
n∑

k=1

∑

|β|=|α|

wk1w
β∂zjk

fα,β = 0.

We will show that for every α the fun
tions fα,β are polynomials in ξ and z.In view of Lemma 2.35 it is enough to prove that for every zjk there is
γjk su
h that ∂γjk

zjk
fα,β = 0. We start with |α| = m1 − 1 and then pro
eedby downward indu
tion on the length of α, �nally getting the 
on
lusion for

|α| = 1. Then Theorem 2.19 follows immediately by (2.49).Now we prove that the fα,β are polynomials.Lemma 2.51. For |α| = m1 − 1, fα,β is a polynomial. If F is a family offun
tions F̃ satisfying 
ondition (2.18) for �xed M , then the degrees of the
orresponding polynomials fα,β have a 
ommon bound.To prove this we need the following lemma:
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Lemma 2.52. Let |α| = m1 − 1. For every |β| = |α| and every j,(2.53) ∂|α|−j+1
z11

fα,β = 0.Proof. We pro
eed by indu
tion on β1 = j. As before for k = 2, . . . , nwe apply ∂zk1
∂β2

z21
. . . ∂βn

zn1
to (2.50) to get n equations(2.54) ∂z1k

fα,(β1,...,βn)+
∑

j 6=k

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn) = 0, 1≤ k≤ n,with the 
onvention that if some βl = 0, then

∂z1l
fα,(β1,...,βl−1,...,βk+1,...,βn) = 0.For j = |α| by (2.54) we have
∂z11

fα,(|α|,0,...,0) = 0.Assume that (2.53) is true for every β su
h that β1 = j. We will show thatit is true for j − 1. By (2.54) for k = 1 and β1 = j − 1 we obtain
∂z11

fα,(j−1,β2,...,βn) +
∑

l>1

∂z1l
fα,(j,β2,...,βl−1,...,βn) = 0.

Applying ∂|α|−j+1
z11

to both sides of the above equality and using the indu
tiveassumption we get
∂|α|−(j−1)+1

z11
fα,(j−1,β2,...,βn) = 0.This �nishes the proof of Lemma 2.52.Proof of Lemma 2.51. Noti
e that the same method may be used for theother equations, and we get the same result as for the variable z11, i.e. for

|α| = m1 − 1, every β and every k there is l ≤ |α| + 1 su
h that(2.55) ∂l
z1k
fα,β = 0.Moreover, noti
e that by (2.45), we may use the same argument for othervariables zjk, j = 2, . . . , n. Therefore by (2.35) for |α| = m1 − 1 and every

β, fα,β is a polynomial.Noti
e that if F is a family of fun
tions F̃ satisfying 
ondition (2.18) for�xed M , then the 
orresponding polynomials fα,β satisfy the assumptions ofLemma 2.35 with the same p,M and βkl. Therefore the degrees of the fα,βhave a 
ommon bound.We want to get a similar 
on
lusion for 0 < |α| < m1 − 1.Theorem 2.56. For 0 < |α| ≤ m1−1 and |β| = |α|, fα,β is a polynomial.If F is a family of fun
tions F satisfying 
ondition (2.18) for �xed M , thenthe degrees of the 
orresponding polynomials fα,β have a 
ommon bound.Proof. The proof is by indu
tion on |α|. By Lemma 2.51, a|α|/2
1 ZαF is apolynomial in ξ, z. Assume that the assertion is true for |α| = K+1 ≤ m1−1.



52 M. GIL�Y�SKA
We want to show that (2.56) is true for |α| = K. By (2.41) we have

0 = cα[Z1,Z1]ZαF +
m∑

k=1

ZkZδkF,

where δk = |α| + 1. By the indu
tive assumption, a(|α|+2)/2
1 ZkZδkF is apolynomial W (ξ, z). Indeed, for |δ| = |α| + 2, a|α|+2

1 wδ is a polynomial in
ξ, z, i.e.(2.57) a

(|α|+2)/2
1 [Z1,Z1]ZαF = W (ξ, z).By (2.38) and the fa
t that W1F = 0 we obtain

a
(|α|+4)/2
1 Zα

( n∑

j=1

wj1

( n∑

k=1

wk1∂zjk

))
F (ξ, z) = W (ξ, z).As before this equation is equivalent to(2.58) a

(|α|+2)/2
1 Zα

( n∑

k=1

wk1∂zjk

)
F (ξ, z) = Wj(ξ, z), 1 ≤ j ≤ n,where Wj is a polynomial in ξ, z.Assume now j = 1 (for other j's the proof is analogous). First by (2.58)and (2.47) we get, for |α| = K,

a
|α|+1
1

( n∑

k=1

∑

|β|=K

wk1w
β∂z1k

fα,β

)
= W1,

where ZαF = a
|α|/2
1

∑
|β|=K wβfα,β.Applying ∂zk1

∂β2

z21
. . . ∂βn

zn1
for 1 < k ≤ n, we get for 1 ≤ k ≤ n theequations(2.59) aQ

1

(
∂z1k

fα,(β1,β2,...,βn) +
∑

j 6=k

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn)

)
= W̃1,β,where Q is a positive integer ≤ |α| + 1 and if βj = 0 for some j, then

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn) is meant to be zero. Applying ∂

zQ
11

, we get(2.60) (
∂z1k

fα,(β1,β2,...,βn) +
∑

j 6=k

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn)

)
= W1,βand if βj = 0 for some j, then ∂z1j

fα,(β1,...,βj−1,...,βk+1,...,βn) is meant to vanish.Lemma 2.61. For |β| = |α| = K there is γ su
h that
∂γ

z11
fα,β = 0.Proof. We use indu
tion on β1. Noti
e that for β1 = K and k = 1, by(2.60), we get

∂z11
fα,(K,0,...,0) = W1,(K,0,...,0).
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Therefore there is γ1 su
h that ∂γ1
z11
fα,(K,0,...,0) = 0. Now, assume that the
on
lusion is true for every β su
h that β1 = j + 1, i.e. there is γj+1 su
hthat ∂γj+1

z11
fα,β = 0. In view of (2.60) for k = 1 we have
∂z11

fα,(j,β2,...,βn) +
∑

l>j

∂z1l
fα,(j+1,β2,...,βj−1,...,βn) = W1,β,

where W1,β are polynomials. Apply ∂
γj+1

z11
to this equation. Then by theindu
tive assumption we obtain

∂
γj+1+1
z11

fα,(j,β2,...,βn) = V1,βfor some polynomials V1,β . Then there is γj su
h that ∂γj
z11
fα,β = 0, whi
h�nishes the proof of Lemma 2.61.Noti
e that an analogous argument gives a similar result for other 
oef-�
ients, i.e. for |β| = K and all j, k, there is δjk su
h that

∂
δjk
zjk
fα,β = 0.Moreover, noti
e that if F is a family of fun
tions F̃ satisfying (2.18) forthe same M , then the degrees of the polynomials W in (2.57) will have a
ommon bound, so the δjk will be uniformly bounded. Therefore, the fα,βsatisfy the assumptions of Lemma 2.35 uniformly and so their degrees havea 
ommon bound.3. Pluriharmoni
 fun
tions on D. Our purpose is to 
hara
terizepolynomially growing pluriharmoni
 fun
tions by three invariant di�erentialoperators (Theorem 3.19). On N(Φ)S we 
onsider the operators

∆j = X2
jj +H2

j −Hj , j ≤ n,

Lkl = X 2
kl + Y2

kl −Hk, k ≤ n, l ≤ m,

∆α
kl = (Xα

kl)
2 + (Y α

kl)
2 −Hl, k < l ≤ n, α = 1, i,

(3.1) L =
n∑

j=1

γjLj , γj > 0,

where Lj =
∑m

k=1 Ljk,

HF̃ =
∑

j

αj∆j , where αj > 0.

and(3.2) L =

n∑

j=1

dj∆j +

n∑

k<l

cαkl∆
α
kl,



54 M. GIL�Y�SKA
where dj , c

α
kl > 0. As L a
ts on the right, it is well de�ned also on VS. One
an 
hoose the 
oe�
ients dj, c

α
k,l in su
h a way that the maximal boundaryis V ([BDH℄), whi
h means that every bounded L-harmoni
 fun
tion G̃ on

VS is the Poisson integral(3.3) G̃(xs) =
\
V

g(x+ syst)PL(y) =: g ∗ P s
L,where g ∈ L∞(V), PL is the Poisson kernel for L, and P s
L is given by a proper
hange of variables ([BDH℄, [DH1℄).

PL is a smooth, positive fun
tion on V with integral 1, and G̃ ↔ g is aone-one mapping of L∞(V) onto the spa
e of bounded fun
tions L-harmoni
on VS. Moreover,
lim
a→0

G̃(xwa) = g(x)in the weak sense and
‖G̃‖L∞ = ‖g‖L∞ .Writing a→ 0 we mean that aj → 0 for every j = 1, . . . , n.Assume that for a real smooth fun
tion F̃ de�ned on N(Φ)S we have

(3.4) |F̃ ((ξ, x)s)| ≤ c(1 + |ξ|)M ,

(3.5) LF̃ = 0.Then for every ξ there exists fξ ∈ L∞(V) su
h that(3.6) F̃ ((ξ, x)s) =
\
V

fξ(x+ syst)PL(y) dy.

fξ is 
alled the boundary value of F̃ ((ξ, ·)·).Moreover, assume for a while that there exists ε su
h that for every ξ,(3.7) supp f̂ξ ⊂ {λ : ε ≤ |λ| ≤ ε−1}.Later on we will get rid of this assumption.Set F = F̃ ◦ θ−1. The �rst approximation of Theorem 3.19 isLemma 3.8. If F̃ ∈ C∞(N(Φ)S) satis�es assumptions (3.4), (3.5), (3.7),and is annihilated by H, L, L1, then there is a polynomialW su
h that F−Wis pluriharmoni
.Proof. Noti
e that for every ξ, F̃ ((ξ, ·)·) is a bounded fun
tion on VS,annihilated by L and H, so by Theorem 5.1 and Corollary 5.9 of [BDH℄,
supp f̂ξ(·) ⊂ Ω ∪ −Ω,where Ω is the 
one of positive hermitian matri
es.Let ϕ1 be a S
hwartz fun
tion de�ned on V su
h that ϕ̂1 ∈ C∞

c (V) isreal-valued. Moreover, assume that ϕ̂1 ≡ 1 on a neighborhood of supp fξ ∩Ω
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and suppϕ1 ∩ −Ω = ∅. Then
F̃1((ξ, x)s) =

\
V

ϕ1(v)F̃ ((ξ, x− v)s) dv =
\
V

ϕ1(v)F̃ ((0,−v) · (ξ, x)s) dvsatis�es the assumptions of the present lemma. Set f1,ξ = ϕ1 ∗V fξ. Then
f1,ξ is the boundary value of F̃1 and supp f̂1,ξ ⊂ Ω.Using the same arguments as in Se
tion 5 of [BDH℄, we prove that F̃1◦θ−1is holomorphi
, and so(3.9) (Xjj + iHj)F̃1 = 0, (Xα

kl + iY α
kl)F̃1 = 0for j = 1, . . . , n and 1 ≤ k < l ≤ n, α = 1, i. Moreover, LjF̃1 = 0 for

j = 1, . . . , n.Let ϕ̂2(λ) = ϕ̂1(−λ). Analogously, we de�ne F̃2 = ϕ2 ∗V F̃ . Then, of
ourse, F̃ = F̃1+F̃2, and we prove that F̃2◦θ−1 is antiholomorphi
, therefore
(Xjj − iHj)F̃1 = 0, (Xα

kl − iY α
kl)F̃1 = 0for j = 1, . . . , n, 1 ≤ k < l ≤ n, α = 1, i. Moreover L1F̃2 = 0. Set F1 =

F̃1 ◦ θ−1 and F2 = F̃2 ◦ θ−1. Then in view of (1.19) there are polynomials
W1,W2 su
h that F1 − W1 = H1 is holomorphi
 and F2 − W2 = H2 isantiholomorphi
. Then

F = F1 + F2 = H1 +H2 +W1 +W2 = H1 +H2 +W,where W is a polynomial, whi
h �nishes the proof.The above lemma 
an be made 
onsiderably stronger.Lemma 3.10. Suppose that F̃ ∈ C∞(N(Φ)S) satis�es (3.5), (3.6), (3.7)and is annihilated by H and L. Then there is a polynomial W su
h that
F −W is pluriharmoni
.Proof. As in the proof of Lemma 3.8 we disintegrate F̃ as F̃ = F̃1 + F̃2,where(3.11) (Xj + iHj)F̃1 = 0 and (Xα

kl + iY α
kl)F̃1 = 0for j = 1, . . . , n, 1 ≤ k < l ≤ n and α = 1, i, and(3.12) LF̃1 = 0.We will show that (3.12) gives LjF̃ = 0 for every j = 1, . . . , n. Weuse the left-invariant ve
tor �elds on N(Φ), whi
h are identi�ed with ∂xjj

,
∂xα

jk
, ∂xkl

, ∂ykl
at e. For 1 ≤ j < k ≤ n and l = 1, . . . ,m denote them by

X̃jj, X̃
α
jk, X̃kl, Ỹkl. Noti
e that(3.13) XF̃1((ξ, x)s) = (Ads X̃)F̃ s

1 (ξ, x),
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where for a �xed s, F̃ s

1 (ξ, x) = F̃1((ξ, x)s). If we write s = wa, then
∆jF̃1((ξ, x)wa) = a2

j ((Adw X̃j)
2 + ∂2

aj
)F̃ s

1 (ξ, x),

LjkF̃1((ξ, x)wa) = aj((Adw X̃jk)
2 + (Adw Ỹjk)

2 − ∂aj
)F̃ s

1 (ξ, x).From (3.11) and (3.13) we obtain
∂aj

F̃1((ξ, x)wa) = iAdw(X̃jj)F̃
s
1 (ξ, x).Using the fa
t that LF̃ = 0 we have(3.14) ( n∑

j=1

γjaj

( m∑

k=1

(Adw(X̃jk))
2 + (Adw(Ỹjk))

2−ℑ(Adw(X̃jj))
))
F̃ s

1 = 0.Now, we let aj go to zero. To do this, we have to ensure some regularity ofthe boundary value f1 of F̃ s
1 . Instead of F̃ s

1 
onsider
̺ ∗ F̃ s

1 (ξ, x) =
\

N(Φ)

̺((ξ, x)(η, u)−1)F̃ s
1 (η, u) dη du

for ̺ ∈ C∞
c (N(Φ)). Then

( n∑

j=1

γjaj

( m∑

k=1

(Adw(X̃jk))
2 + (Adw(Ỹjk))

2 −ℑ(Adw(X̃jj))
))

(̺ ∗ F̃ s
1 ) = 0,

and the boundary value for ̺ ∗ F̃ s
1 is ̺ ∗ f1.Fix w and j. Let aj = t, and ak = t2 for j 6= k. If we divide (3.14) by tand let t→ 0, we obtain

(3.15) Dj,w(̺ ∗ f1)

=
( m∑

k=1

((Adw(X̃jk))
2 + (Adw(Ỹjk))

2) −ℑ(Adw(X̃jj))
)
(̺ ∗ f1) = 0.We do this for every j. Dj,w is a left-invariant operator on N(Φ). We willshow that (3.15) implies(3.16) Dj,wF̃

s
1 = 0,If s := wa in (3.15) then we get the assertion of Lemma 3.10.Let

G((ξ, x)s) = ̺ ∗ F̃ s
1 (ξ, x), g(ξ, x) = ̺ ∗ f1(ξ, x) = gξ(x).Then LG = 0 and

Gs(ξ, x) = G((ξ, x)s) = gξ ∗V P s
L(x).We only need to show the following property: If D is a left-invariant operatorde�ned on N(Φ), then

DGs(ξ, x) =
\
V

(Dg)(ξ, x− v)P s
L(v) dv =

\
V

(Dg)((0,−v)(ξ, x))P s
L(v) dv.
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This equality holds be
ause we 
an 
hange the order of integration anddi�erentiation. This is allowed be
ause
Dg(ξ, x) = D(̺ ∗ f1)(ξ, x)is dominated by c(1 + |ξ|)N for some N . So if Dj,w(̺ ∗ F̃ s

1 ) = 0 for every ̺and s, then the equality (3.16) is proved.The 
lass of operators whi
h 
hara
terize the polynomially pluriharmoni
fun
tions 
an be extended even more. We repla
e the operator L by a moregeneral one. Namely, let(3.17) L′ =
n∑

j=1

dj∆j +
n∑

k<l

cαkl∆
α
kl,where dj , c

α
kl > 0.Theorem 3.18. Assume that F̃ satis�es (3.4) and L′F̃ = HF̃ = LF̃ = 0.Then there is a well de�ned boundary value f ∈ L∞(N(Φ)) of F̃ . Moreover ,assume that f satis�es (3.7). Then there is a polynomial W su
h that F −Wis pluriharmoni
.Proof. If L′F̃ = 0, HF̃ = 0 and (3.4) holds, then the arguments ofSe
tion 3 of [BDH℄ show that ∆̃jF = 0 for every j, and adding to L′ a suitablelinear 
ombination ∑n

j=1 ηj∆j , ηj ≥ 0, we 
an get the operator L = L′ +∑n
j=1 ηj∆j (see Proposition 3.5 in [BDH℄ and Lemma 2.1 in [DHMP℄). Then,as before, there is f ∈ L∞(N(Φ)) su
h that (3.6) holds for fξ(x) = f(ξ, x).Now the theorem follows from Lemma 3.10.Our purpose is to remove the 
ondition (3.7), i.e. we want to prove thefollowing main theorem:Theorem 3.19. Suppose that F̃ satis�es (3.4) and L′F̃ = 0, HF̃ = 0 and

LF̃ = 0. Then there is a polynomial W su
h that F −W is pluriharmoni
.Proof. Let ϕ be a S
hwartz fun
tion on V with
ϕ̂(−λ) = ϕ̂(λ), ϕ̂(λ) =

{
1, |λ| ≤ 1,

0, |λ| ≥ 2.Consider the family of fun
tions p−nϕ(x/p), p ∈ N. For every boundedfun
tion g we may 
hoose a subsequen
e pk su
h that the limit
lim

pk→∞

\
V

p−n
k ϕ(x/pk)g(x) dxexists. Let {ξj} be a dense 
ountable subset in Z. By the diagonal methodwe 
hoose pk su
h that the limit(3.20) lim

pk→∞

\
V

p−n
k ϕ(x/pk)fξj

(x) dx = H(ξj)
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exists for every ξj. De�ne

ψk(x) = p−n
k ϕ(x/pk), ϕk(x) = pn

kϕ(pkx),and 
onsider
F̃ 1

k ((ξ, x)s) =
\
V

ϕk(v)F̃ ((0,−v)(ξ, x)s) dv =
\
V

ϕk(v)F̃ ((ξ, x− v)s) dv,

F̃ 2
k ((ξ, x)s) =

\
V

ψk(v)F̃ ((0,−v)(ξ, x)s) dv =
\
V

ψk(v)F̃ ((ξ, x− v)s) dv.The 
ondition (3.4) guarantees that F 1
k and F 2

k are well de�ned and uniformlybounded on every 
ompa
t set in N(Φ)S. Moreover, for j = 1, 2,

HF̃ j
k = 0, L′F̃ j

k = 0, LF̃ j
k = 0and limk→∞ F̃ 1

k = F̃ uniformly on 
ompa
t sets in N(Φ)S.Noti
e that the boundary values for F̃ 1
k and F̃ 2

k are ϕk ∗ fξ and ψk ∗ fξ,respe
tively, where fξ(x) = f(ξ, x) is the boundary value for F̃ .Sin
e ϕ̂(λ/pk) − ψ̂(pkλ) = 0 if |λ| ≤ 1/pk or |λ| ≥ 2pk, we have
ϕ̂k ∗ fξ − ψ̂k ∗ fξ = 0there. This means that F̃ 1

k − F̃ 2
k satis�es the assumptions of Theorem 3.18.So, we have a family of fun
tions F 1

k − F 2
k and a family of polynomials Wk(see Theorem 2.19) with degrees bounded by the same 
onstant M1 su
hthat F 1

k − F 2
k −Wk are pluriharmoni
 fun
tions. As usual F j

k = F̃ j
k ◦ θ−1.Let w = (ξ, z) and for k = nm + n2 let w1, . . . , wk be 
oordinates in

Z ⊕ VC . If |α| ≥M1, then for all k and j we have
(3.21)

0 = ∂wj
∂α

w(F 1
k − F 2

k −Wk) = ∂wj
∂α

w(F 1
k − F 2

k ),

0 = ∂wj
∂α

w(F 1
k − F 2

k −Wk) = ∂wj
∂α

w(F 1
k − F 2

k ).Now assume that
lim

k→∞
F̃ 2

k ((ξ, xs)) = H(ξ)exists and is a polynomial, hen
e limk→∞(F̃ 1
k − F̃ 2

k ) = F̃ − H. Then we
an take the limit of both sides of (3.21), and if α, β 6= 0, and |α| + |β| >
max(M1, degH), then

∂α
wj
∂β

wj
(F ) = ∂α

wj
∂β

wj
(F −H) = lim

k→∞
∂α

wj
∂β

wj
(F 1

k − F 2
k ) = 0.This means that there exists a polynomial W su
h that F −W is plurihar-moni
. To �nish the proof of Theorem 3.19 we have to show the followingLemma 3.22. The limit

lim
k→∞

F̃ 2
k ((ξ, xs)) = H(ξ)exists, is independent of x, s, and it is a polynomial in ξ, ξ.
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Proof. Changing variables syst = u, we write (3.6) as
F̃ ((ξ, x)s) =

\
V

fξ(x− u)P s
L(u) du.Sin
e ϕk is even, we have

F̃ 2
k ((ξj, x)s) =

\
V

ϕk(v)
\
V

fξj
(x− v − y)P s

L(y) dy dv

=
\
V

ϕk(v)
\
V

fξj
(y)P s

L(x− v − y) dy dv

=
\
V

ϕk(v)
\
V

fξj
(y)P s

L(x+ v − y) dy dv.

Let γ(y) = P s
L(x+ y). Then

F̃ 2
k ((ξj, x)s) =

\
V

ϕk(v)fξj
∗ γ(v) dv.

From Lemma 4.3 of [BDH℄ and (3.20),
lim

k→∞
F̃ 2

k ((ξj, x)s) = H(ξj)
\
V

γ(v) dv = H(ξj).For every (ξ, x)s we 
hoose a sequen
e ξj → ξ. Fix a bounded neighbor-hood U of (ξ, x)s su
h that (ξj , x)s ∈ U . By (3.4) and the Harna
k inequalitythe �rst derivatives of F 2
k are bounded on U by the same 
onstant, so thereexists a 
onstant C su
h that

|F̃ 2
k ((ξ, x)s) − F̃ 2

k ((ξj, x)s)| ≤ C|ξ − ξj|.The density of ξj in Z implies that
lim

k→∞
F̃ 2

k ((ξ, x)s) = H(ξ)exists and is independent of x, s. Moreover, on 
ompa
t sets, the fun
tions
F̃ 2

k are bounded by the same 
onstant, so the 
onvergen
e is in the sense ofdistributions. Then we have
LH = lim

k→∞
LF̃ 2

k = 0.Be
ause H is independent of x, s we have
n∑

j=1

γj

( m∑

k=1

∂2
xjk

+ ∂2
yjk

)
H(ξ) = 0,

whi
h shows that H is a polynomial.Finally, the proof of Theorem 3.19 is 
omplete.
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