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POLYNOMIALLY GROWING PLURIHARMONIC FUNCTIONSON SIEGEL DOMAINSBYMONIKA GIL�Y�SKA (Oªawa)Abstrat. Let D be a symmetri type two Siegel domain over the one of positivede�nite Hermitian matries and let N(Φ)S be a solvable Lie group ating simply tran-sitively on D. We haraterize polynomially growing pluriharmoni funtions on D bymeans of three N(Φ)S-invariant seond order ellipti degenerate operators.Introdution. Let D be a type two symmetri Siegel domain and let
G be a solvable Lie group that ats simply transitively on D. By means of
G-invariant operators we study polynomially growing pluriharmoni fun-tions on D. More preisely, we onsider seond order real ellipti degenerate
G-invariant operators whih annihilate holomorphi funtions and so theirreal and imaginary parts. Suh operators are alled admissible and theyhave already been used to haraterize pluriharmoni funtions by a num-ber of people: [B℄, [BBDHPT℄, [BBDR℄, [BDH℄, [BBDHJ℄, [DDHT℄, [DH2℄,[DHMP℄, [DHP℄, [T1℄, [T2℄. All the results, exept those in [B℄, have on-erned only bounded funtions. Only in the spei� ase of Hua operatorsinvariant under the full group of isometries of the domain D, no growthonditions have been imposed.In this paper we go a step further�we obtain an analogous harater-ization of polynomially growing funtions on type two Siegel domains Dover ones of positive hermitian matries. In the ase when the one is thehalf-line, the domain is the Siegel half-spae biholomorphially equivalent tothe omplex ball.The main result of the paper is:There are three admissible operators H, L, L on D suh that if a fun-tion F polynomially growing in the sense of (3.4) satis�es HF =LF =LF =0,then F is pluriharmoni modulo a polynomial. H+L+L is an ellipti operator.When the one is the half-line, the growth ondition (see (1.18)) is on-siderably weaker and the system of operators redues to L, H.2000 Mathematis Subjet Classi�ation: 32M10, 32M15, 43A65, 43A80, 22E27.Key words and phrases: symmetri Siegel domain, omplex ball, Heisenberg group,pluriharmoni funtions, seond order invariant operators.[31℄ © Instytut Matematyzny PAN, 2007
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The haraterization is onsiderably stronger than the one in [BDH℄,where boundedness has been assumed. Moreover, while in [BDH℄ the grouppiture was dominant, here we rather onentrate on the domain and theation of G on it, whih proves to be very fruitful. Unfortunately we havenot been able to obtain the result for all type two symmetri Siegel domains.The paper onsists of three setions. In the �rst one we onsider the Siegelhalf-spae, whih is identi�ed with a solvable Lie group H×R+, a semidiretprodut of the Heisenberg group H and R+. Writing any point in H × R+as (ξ, x)a, where (ξ, x) ∈ H, a ∈ R+, we onsider a funtion F that satis�es

|F ((ξ, x)a)| ≤ Cη(a)(1 + |ξ| + |x|1/2)Nfor some N and a loally integrable funtion η. Using a relative fundamentalsolution for the anonial sublaplaian onH, we obtain additional di�erentialequations on F whih make it possible to remove step by step terms of type
wαwβ for su�iently large |α| + |β| from the Taylor expansion of F , whihgives the onlusion. The arguments are di�erent from the ones from [BDH℄and based on an idea ommuniated to us by Aline Bonami, with whom wehave disussed the ase of dimH = 3, i.e. the omplex ball in C2.The existene of nonzero polynomials whih are annihilated by our sys-tem of operators L, H is not surprising. Indeed, it is easy to onstrut ex-amples of suh.In the third setion the domain D over the one of positive de�nite her-mitian matries is onsidered. We identify D with the group G = N(Φ)S, asemidiret produt of a step two nilpotent Lie group N(Φ) and a solvable Liegroup S of lower triangular matries (see Setion 2.1). S ats on the enter
V of N(Φ) and the group VS ats simply transitively on a type one domainimmersed in D.The proof in [BDH℄, based on the spetral synthesis for H, is not appli-able in the present situation, and a di�erent approah is needed. Following[BDH℄ the funtion F satisfying the assumptions of Theorem 3.18 is deom-posed as

F = F1 + F2,where F1 is holomorphi and F2 antiholomorphi in tube diretion VS. Next,for eah of these funtions, the results of Setion 2 are applied.The seond setion is the most di�ult and original part of this paper.We onsider the ase of a polynomially growing analyti funtion that isholomorphi in tube diretion VS, and satis�es one more equation generatedby a speial Laplaian on a subgroup of N(Φ), whih is the Heisenberg group.This permits us to use the results of the �rst setion to obtain additionalequations.Later on the ation of a maximal nilpotent subgroup N0 in S on Denters into the piture and gives rise to some more equations on funtions.
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This is an interesting phenomenon, already observed in previous papers.Indeed, the behavior of the group N0 was always ruial to haraterizingpluriharmoniity by means of three invariant operators only [BDH℄, [DHMP℄.The present paper shows a new aspet of this.The author is grateful to Dariusz Burazewski and Ewa Damek for valu-able onversations on the paper as well as to Aline Bonami and PhilippeJaming for their �rst ideas in the H× R+ ase.1. Siegel half-spae1.1. The Heisenberg group and the Siegel half-spae. We onsider thegroup
H = C

n × R = {(ξ, x) : ξ ∈ C
n, x ∈ R}with multipliation given by(1.1) (ξ, x) ◦ (ζ, y) =

(
ξ + ζ, x+ y + 1

2 Im ξζ
)
,where

ξζ =
n∑

j=1

ξjζj .

H is alled the Heisenberg group. For j = 1, . . . , n let ξj = xj + iyj . Theleft-invariant vetor �elds
Xjf(ξ, t) =

((
∂xj

+ 1
2yj∂t

)
f
)
(ξ, t),(1.2)

Yjf(ξ, t) =
((
∂yj

− 1
2xj∂t

)
f
)
(ξ, t),(1.3)

T f(ξ, t) = (∂tf)(ξ, t)(1.4)form a basis of the Lie algebra of H.Consider the semidiret produt S = H× R+ with multipliation(1.5) (ξ, u, a) · (ξ1, u1, a1) = ((ξ, u) ◦ (a1/2ξ1, au1), aa1).In this setion we study the so alled Siegel half-spae
U =

{
(ξ, z) : ξ ∈ C

n, z ∈ C, Im z > 1
4 |ξ|2

}
,whih is biholomorphially equivalent to the unit omplex ball B in Cn+1.The group S ats on U in the following way:

(1.6) 



(0, x) ◦ (w, z) = (w, z + x),

(ξ, 0) ◦ (w, z) = (w + ξ, z + 2iφ(w, ξ) + iφ(ξ, xi)),

a ◦ (w, z) = (
√
aw, az),where
φ(ξ, w) =

1

4

n∑

j=1

ξjwj
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and the ation is simply transitive. Let θ : S → U be given by

θ(s) = s ◦ (0, i).Putting s = (ξ, t, a), we obtain(1.7) θ((ξ, t, a)) =
(
ξ, t+ i

(
a+ 1

4 |ξ|2
))
.Let Zj = Xj − iYj, Zj = Xj + iYj, where Xj and Yj are given in (1.2) and(1.3). Then an easy omputation shows that

Zj = 2∂ξj
+ 1

2 iξj∂t,(1.8)
Zj = 2∂ξj

− 1
2 iξj∂t.(1.9)We onsider the operator(1.10) Ln =

n∑

j=1

ZjZj =
n∑

j=1

(X 2
j + Y2

j ) − niT .The funtion(1.11) Φ(ξ, t) =
2n−2(n− 1)!

πn+1
log

( |ξ|2/4 − it

|ξ|2/4 + it

)
(|ξ|2/4 − it)−nis alled the relative fundamental solution for Ln, i.e.(1.12) f = Lnf ∗ Φ+ Cffor f being a Shwartz funtion or distribution with ompat support in H.Here C is the Cauhy�Szegö projetion ([S, Setion XIII, �4℄). Let I =

(I1, . . . , I2n+1) be a multiindex. De�ne
DI = X I1

1 . . .X In
n YIn+1

1 . . .YI2n
n T I2n+1 .In the next setion we will need the following haraterization of polynomi-ally growing Ln-harmoni funtions.Theorem 1.13. Let F̃ be a C∞ funtion de�ned on H, satisfying

LnF̃ (ξ, t) = 0and suh that
|F̃ (ξ, t)| ≤ c(1 + |ξ| + |t|1/2)Nfor a onstant N ≥ 0. Moreover , assume that for all multiindies I we have

|DIF̃ (ξ, t)| ≤ cI(1 + |ξ| + |t|1/2)N .Then for all α = (α1, . . . , αn) and |α| > N + 2 we have
ZαF̃ (ξ, t) = 0,where Zα denotes any operator Zj1 . . .Zj|α|

, Zjk
∈ {Z1, . . . ,Zn}, suh that

Zj appears αj times.
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Proof. Let φ ∈ C∞
c (H) and

φ(ξ, t) =

{
1, τ(ξ, t) ≤ 1,

0, τ(ξ, t) > 2,where(1.14) τ(ξ, t) = |ξ| + |t|1/2.For m ≥ 1 de�ne φm(ξ, t) = φ(ξ/m, t/m2). By (1.12),
φmF̃ = C(φmF̃ ) + Ln(φmF̃ ) ∗ Φ,and

Zj(C(φmF̃ )) = 0.We also have
Zj(|ξ|2/4 − it) = 0, Zj(|ξ|2/4 + it) = ξj ,

Zj log(|ξ|2/4 + it) =
ξj

|ξ|2/4 + it
.Then

ZβΦ(ξ, t) = c(β)
ξβ1

1 . . . ξβn
n

(|ξ|2/4 + it)|β|(|ξ|2/4 − it)n
,So

|ZβΦ(ξ, t)| ≤ c(β)
τ(ξ, t)|β|

τ(ξ, t)2(|β|+n)
= c(β)τ(ξ, t)−|β|−2n.Fix (ξ, t). It is easy to notie that for m large enough we have

Zβ(φmF̃ (ξ, t)) = ZβF̃ (ξ, t).Moreover,
Zβ(φmF̃ (ξ, t)) =

\
Ln(φmF̃ )(w, s)ZβΦ((w, s)−1(ξ, t)) dw ds.Observe that

|Ln(φmF̃ )(w, s)| ≤ cmN , |ZβΦ((w, s)−1(ξ, t))| ≤ c(β, ξ, t)m−|β|−2nfor τ(w, s) ≤ 2m and m large enough. Therefore,
|ZβF̃ (ξ, t)| ≤ c

\
{(w,s) : τ(w,s)<2m}

mN−|β|−2n dw ds = c′mN+2−|β|.This proves the theorem.1.2. Holomorphi funtions on the Siegel half-spae. In this setion wewill haraterize polynomially growing holomorphi funtions de�ned on U .In view of (1.7)�(1.9) we have
dθ(Zj) = 2∂ξj

+ iξj∂z,(1.15)
dθ(Zj) = 2∂ξj

− iξj∂z,(1.16)
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where (dθ(Zj)F ) ◦ θ = Zj(F ◦ θ). For a funtion F de�ned on U we onsider(1.17) F̃ ((ξ, t)a) = F (θ(ξ, t, a)).Suppose that there is a positive integer N and a loally integrable funtion
ζ(a) suh that(1.18) |F̃ ((ξ, t)a)| ≤ ζ(a)(1 + |ξ| + |t|1/2)N .Clearly by (1.7), if P is a polynomial de�ned on U , then there are onstants
c,M suh that |P̃ ((ξ, t)a)| ≤ c(1 + a+ |ξ|+ |t|1/2)M , so the ondition (1.18)is satis�ed.Theorem 1.19. Suppose that for a funtion F satisfying (1.18) we have
(1.20) (∂t + i∂a)F̃ = 0,

(1.21) LnF̃ = (L − inT )F̃ = 0,where L =
∑n

j=1(X 2
j +Y2

j ). Then there is a polynomial W suh that F −Wis a holomorphi funtion.Proof. Notie that from (1.20) and (1.21),
(L − n∂a)F̃ = (L− inT )F̃ = 0 and (∂2

t + ∂2
a)F̃ = 0.For a multiindex I = (I1, . . . , I2n+1) let

DI = (aX1)
I1 . . . (aXn)In(aY1)

In+1 . . . (aYn)I2n(a2T )I2n+1be a left-invariant di�erentiable operator de�ned on S. De�ne(1.22) L = a(L− n∂a) + a2(∂2
t + ∂2

a).Then L is an ellipti operator with real polynomial oe�ients and it anni-hilates the real and imaginary parts of F̃ , so ℜF̃ and ℑF̃ are real analyti([N, �3.8℄).Using the Harnak inequality for L, denoting by B some neighborhoodin S of the unit element e we obtain
|DI F̃ ((ξ, t)a)| ≤ cI

\
B

|F̃ ((ξ, t, a)(w, s, b))| dm((w, s)b)(1.23)
≤ ζI(a)(1 + |ξ| + |t|1/2)N .De�ne

K = θ(L − n∂a) = 4
n∑

j=1

∂ξj
∂ξj

+ 2i
n∑

j=1

ξj∂z∂ξj
− 2i

n∑

j=1

ξj∂z∂ξj
+ |ξ|2∂z∂z.Then by (1.20) and (1.21) we have(1.24) KF (ξ, z) =

(
4

n∑

j=1

∂ξj
∂ξj

+ 2i

n∑

j=1

ξj∂z∂ξj

)
F (ξ, z) = 0.
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In view of Theorem 1.13, there is a number p suh that for 1 ≤ j ≤ nwe have ZβF̃ (ξ, t) = 0 if |β| ≥ p. (We are going to skip dθ and write Zβ onboth U and S). Together with (1.16) and (1.20) this implies(1.25) ∂β

ξ
F (ξ, z) = 0.Put w = (ξ, z). In a neighborhood U of w0 = (0, i) ∈ U we write

F (w) =
∑

α,β

cα,β(w − w0)
α(w − w0)

β,where w = (ξ, z) and ξ = (ξ1, . . . , ξn), z, ξj ∈ C for 1 ≤ j ≤ n. Let β =

(β1, . . . , βn+1). In this notation wβ = ξβ1

1 . . . ξβn
n ·zβn+1 . Notie that if cα,β 6= 0then

n∑

j=1

βj ≤ p− 1, βn+1 = 0.Let β0 = (β1, . . . , βn+1) be suh that ∑
j βj = p− 1. So by (1.24),(1.26) ∂z∂

β0

ξ
F = 0.Let

h(w) = ∂β0

ξ
F (w).It is easy to see that h(w) = h(ξ) is a holomorphi funtion whih does notdepend on z. Moreover,

|h(ξ)| = |h̃(ξ, 0, 1)| = |Zβ1

1 . . .Zβn
n F̃ (ξ, 0, 1)| ≤ c(1 + |ξ|)N .and so h is a polynomial, i.e.(1.27) h(w) = Wβ0

(w) = β0!
∑

α

cα,β0
(w − w0)

α.Moreover, Wβ0
does not depend on z.For smaller multiindies we need the following lemma:Lemma 1.28. Suppose that the funtion F satis�es the assumptions ofTheorem 1.19. If(1.29) ∂m

ξ
F (ξ, z) = g(ξ, z) +W (ξ, z),where g is a holomorphi funtion,W is a polynomial and m = (m1, . . . ,mn)

6= (0, . . . , 0), then g is a polynomial.Assuming that Lemma 1.28 holds, let us now �nish the proof. Considerthe funtion
g(w) = ∂β1

ξ1

. . . ∂
βj−1

ξj

. . . ∂βn

ξn

(
F (w) −

∑

α

cα,β0
(w − w0)

α(w − w0)
β0

)

= ∂β1

ξ1

. . . ∂
βj−1

ξj

. . . ∂βn

ξn

F (w) + cWβ0
(w)ξj ,
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where Wβ0

is as in (1.27). For w ∈ U we have
g(w) = c

∑

α

cα,β1,...,βj−1,...,βn,0(w − w0)
α.Hene g is holomorphi. From Lemma 1.28 we see that g is a polynomial.Fix a multiindex m = (m1, . . . ,mn, 0) and assume that for all multiindies

r = (r1, . . . , rn, 0), r 6= m, mj ≤ rj ≤ pj − 1,
∑

α

cα,r(w − w0)
α(w − w0)

r

is a polynomial. Then
g(w) = ∂m

ξ

(
F (w) −

∑

α,r

cα,r(w − w0)
α(w − w0)

r
)

= ∂m
ξ
F (w) +Wm(w),where Wm is a polynomial. For w ∈ U we have

g(w) = c
∑

α

cα,m(w − w0)
α.So g is holomorphi, and by Lemma 1.28 it is a polynomial. Finally, weonlude that

F (w) =
∑

α

cα,0(w − w0)
α +W0(w),whih ompletes the proof of Theorem 1.19.Proof of Lemma 1.28. Notie that [∂ξ,K] = 2i∂z∂ξ. Therefore

0 = ∂m
ξ
KF (ξ, z) = K(∂m

ξ
F (ξ, z)) + 2i|m|∂z∂

m
ξ
F (ξ, z),where |m| =

∑n
j=1mj . From (1.29) we obtain

K(g(ξ, z)) + K(W (ξ, z)) + 2i|m|∂zg(ξ, z) + 2i|m|∂zW (ξ, z) = 0.Sine g is holomorphi, ∂zg(ξ, z) is a polynomial. Moreover, we an �nd aholomorphi polynomial P suh that ∂zP = ∂zg. Then we have
∂z(g − P )(ξ, z) = 0,

∂ξj
(g − P )(ξ, z) = 0, 1 ≤ j ≤ n,

∂z(g − P )(ξ, z) = 0.Therefore, the funtion h1(ξ) = (g−P )(ξ, z) is holomorphi and independentof z. Then by (1.29) we get
|h1(ξ)| = |h̃1(ξ, 0, 1)| = |ZmF̃ (ξ, 0, 1) − W̃ (ξ, 0, 1) − P̃ (ξ, 0, 1)|

≤ ζm(1)(1 + |ξ|)Mand so g is a polynomial.
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2. Type two Siegel domain over the one of Hermitian matries2.1. De�nition and the basi properties. Suppose we are given a one Ωin a Eulidean spae V, a omplex vetor spae Z and a Hermitian symmetribilinear mapping
Φ : Z × Z → VC = V + iVsuh that
Φ(ξ, ξ) ∈ Ω for ξ ∈ Z,if Φ(ξ, ξ) = 0 then ξ = 0,

Φ(ξ, w) = Φ(w, ξ).The Siegel domain assoiated with these data is the set
D = {(ξ, z) ∈ Z ⊕ VC : ℑz − Φ(ξ, ξ) ∈ Ω},where ℑ(x+iy) = y for x+iy ∈ VC. In this paper V is the spae of hermitian

n× n matries, onsidered as a linear spae over R. Then VC is the spae ofomplex-valued n× n matries. The spae Z onsists of the omplex-valued
n ×m matries and Ω is the one of positive de�nite matries in VC. Thebilinear mapping Φ is given by

Φ(ξ, w) = ξwt.The elements w ∈ Z, x ∈ V at on D in the following way:
(2.1) (ξ, z) 7→ w ◦ (ξ, z) = (ξ + w, z + 2iΦ(ξ, w) + iΦ(w,w)),

(2.2) (ξ, z) 7→ x ◦ (ξ, z) = (ξ, z + x).All the mappings of the form (2.1) and (2.2) form a group whih will bedenoted by N(Φ). The multipliation in N(Φ) is given by(2.3) (ξ, x)(ζ, y) = (ξ + ζ, x+ y + 2ℑΦ(ξ, ζ)).Clearly, Z ⊕ V is the Lie algebra of N(Φ). Let S be the group of lowertriangular omplex n× n matries with positive entries on the diagonal andlet
σ(s)ξ = sξ, s ∈ S, ξ ∈ Z.Notie that(2.4) Φ(σ(s)ξ, σ(s)w) = sΦ(ξ, w)st.Therefore, s ats on D as follows:(2.5) (ξ, z) 7→ s ◦ (ξ, z) = (σ(s)ξ, szst).

N(Φ) and S generate a solvable Lie group whih is their semidiret produtwith multipliation(2.6) (ξ, x, s) ◦ (ξ1, x1, s1) = ((ξ, x)(σ(s)ξ1, sx1s
t), ss1).
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Then the Lie algebra of N(Φ)S is Z⊕V⊕S, where S is the Lie algebra of S.Clearly the group N(Φ)S ats simply transitively on the domain D, and thefuntion(2.7) θ(ξ, vs) = (ξ, vs) ◦ (0, i)is a di�eomorphism of N(Φ)S onto D. So we are going to identify the group
N(Φ)S with the domain D. If n = 1, then D is just the Siegel half-spae,so from now on we assume that n ≥ 2. Let |ξ| and |v| be Eulidean normsin Z and V respetively, and ‖s‖ the norm of the linear transformation
(ξ, v) 7→ (σ(s)ξ, sv).The Lie algebra Z ⊕ V ⊕ S is identi�ed with matries:

Z = {(ξij) : ξij ∈ C, i = 1, . . . , n, j = 1, . . . ,m}
V = {(vij) : vij ∈ C, vji = vij , i, j = 1, . . . , n}
S = {(wi,j) : wij ∈ C, wij = 0 for i < j, wjj ∈ R, i, j = 1, . . . , n.}We will need ommutation relations in the algebra Z ⊕ V ⊕ S. We onsiderthe following basis of it. For S we hoose the matries
Hk = (hpq)p,q=1,...,n , k = 1, . . . , n, where hpq = 1

2δpq,kk,and the matries
Y α

kj = (ypq)p,q=1,...,n, 1 ≤ k < j ≤ n, α ∈ {1, i}, where ypq =
α√
2
δpq,jk.A basis of V onsists of the matries

Xkk = (xpq)p,q=1,...,n, k = 1, . . . , n, where xpq = δpq,kk,and the matries
Xα

kl = (xpq)p,q=1,...,n, 1 ≤ k < l ≤ n, α ∈ {1, i},where xpq =
α√
2
δpq,lk +

α√
2
δpq,kl.On the other hand, it is onvenient to take in Z the matries

Xkl = (xpq) p=1,...,n
q=1,...,m

, k = 1, . . . , n, l = 1, . . . ,m, where xpq =
1

2
δpq,kl,

Ykl = (ypq) p=1,...,n
q=1,...,m

, k = 1, . . . , n, l = 1, . . . ,m, where ypq =
i

2
δpq,kl.Now we alulate brakets in the algebra S. It is easy to see that the onlynonzero ommutators in S are(2.8) [Hk, Y

α
kj] = −1

2Y
α
kj , [Hj, Y

α
kj ] = 1

2Y
α
kjfor α = 1, i, 1 ≤ k < j ≤ n.Notie that V is abelian so a ommutator in V ⊕ S is given by(2.9) [(x, s), (x1, s1)] = (sx1 + x1s

t − s1x− xst
1, [s, s1]).



PLURIHARMONIC FUNCTIONS ON SIEGEL DOMAINS 41

The only nonzero ommutators are given by

(2.10)

[Hk, X
α
jk] = 1

2X
α
jk, for 1 ≤ j < k ≤ n,

[Hk, X
α
kj ] = 1

2X
α
kj , for 1 ≤ k < j ≤ n,

[Hk, Xkk] = Xkk, for 1 ≤ k ≤ n,

[Y α
kj, Xkk] = Xα

kj , for 1 ≤ k < j ≤ n,

[Y α
kj, X

α
kj ] = Xjj, for 1 ≤ k < j ≤ n,

[Y α
kj, X

α
pk] =

α2

√
2
X1

pj, for 1 ≤ p < k < j ≤ n, α = 1, i,

[Y α
kj, X

β
pk] =

1√
2
X i

pj, for 1 ≤ p < k < j ≤ n, α 6= β.Notie that the braket in N(Φ) is given by(2.11) [(ζ, x), (ζ1, x1)] = (0, 4ℑΦ(ζ, ζ1)).Using (2.11) we may easily �nd the nonzero ommutators in N(Φ):
(2.12)

[Xkl,Xpl] =
1√
2
X i

kp for 1 ≤ k < p ≤ n,

[Xkl,Ykl] = −Xkk for k = 1, . . . , n,

[Xkl,Ypl] = − 1√
2
X1

min(k,p),max(k,p) for k, p = 1, . . . , n, k 6= p,

[Ykl,Ypl] =
1√
2
X i

kp for 1 ≤ k < p ≤ n,where l = 1, . . . ,m.We do the same with ommutators in Z ⊕S. It is easy to see that in thisalgebra
[(0, s), (ξ, 0)] = sξ,where s ∈ S and ξ ∈ Z. Therefore the only nonzero ommutators are

(2.13)
[Y 1

kj,Xkl] =
1√
2
Xjl,

[Y i
kj,Xkl] =

1√
2
Yjl

[Y 1
kj,Ykl] =

1√
2
Yjl,

[Y i
kj,Ykl] = − 1√

2
Xjl,where 1 ≤ k < j ≤ n and l = 1, . . . ,m.We are left with the ommutators(2.14) [Hk,Xkl] = 1

2Xkl, [Hk,Ykl] = 1
2Ykl,where k = 1, . . . , n and l = 1, . . . ,m.Remark 2.15. The basis of the algebra Z⊕V⊕S just hosen is onsistentwith [BDH, Setion 2.2℄, the elements of V ⊕ S being denoted identially. If
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we �x k then the vetor �elds

Xk1, . . . ,Xkm,Yk1, . . . ,Ykmform a basis of the root spae, denoted by Zk in [BDH℄, and they orrespondto the vetors X α
k ,Yα

k in [BDH℄. The struture of a Jordan algebra in V isgiven by multipliation
x ◦ x1 = 1

2(xx1 + x1x)and the salar produt is
〈x, x1〉 = tr(xx1).2.2. Holomorphi funtions on D. On N(Φ)S we will onsider a numberof di�erential operators. Let

Wk = Xkk + iHk, k = 1, . . . , n,

Vα
jk = Xα

jk + iY α
jk, α = 1 and 1 ≤ j < k ≤ n,

Vβ
jk = Xβ

jk + iY β
jk, β = i and 1 ≤ j < k ≤ n,and
L1 =

m∑

k=1

ZkZk,where
Zk = X1k − iY1k, k = 1, . . . ,m.For a funtion F on D we de�ne(2.16) F̃ (ξ, z) = F ((ξ, xs) ◦ (0, i)) = F ◦ θ(ξ, xs).Suppose that F̃ has the following properties:(2.17) F̃ is annihilated by the operators L1,Wj and Vα

jk,and for a submultipliative funtion η,(2.18) |F̃ (ξ, xs)| ≤ cη(s)(1 + |ξ| + |x|1/2)M .A submultipliative funtion is a funtion bounded on ompat sets and sat-isfying η(s1s2) ≤ η(s1)η(s2). We have the following haraterization of fun-tions F̃ .Theorem 2.19. Let F̃ be an analyti funtion whih satis�es (2.17) and(2.18). Then there is a polynomial W suh that F −W is holomorphi. If Fis a family of funtions satisfying (2.18) for a given M , then the polynomials
W may be hosen to have degrees uniformly bounded.The rest of the setion is devoted to the proof of Theorem 2.19. Notiethat

L1 =
m∑

k=1

(X 2
1k + Y2

1k) −miX11.
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For a funtion satisfying (2.17) we also have
L1F̃ =

( m∑

k=1

(X 2
1k + Y2

1k) −mH1

)
F̃ .De�ne

∆j = WjWj = X2
jj +H2

j −Hj ,

∆α
jk = Vα

jkV
α
j = (Xα

kj)
2 + (Y α

jk)
2 −Hk,for α = 1, i and 1 ≤ j < k ≤ n. Let(2.20) M =

m∑

k=1

(X 2
1k + Y2

1k) −mH1 +

n∑

j=1

∆j +
∑

j<k,α

∆α
jk.Then MF̃ = 0. From (2.13) the vetor �elds X1k,Y1k for k = 1, . . . , n and

Xjj, Hj for j = 1, . . . , n, and Xα
jk, Y

α
jk for 1 ≤ j < k ≤ n and α = 1, igenerate the Lie algebra of the group N(Φ)S. This means that the operator

M satis�es the Hörmander ondition. We will use the Harnak inequalityfor the operator M to estimate the derivatives
|DF̃ (ξ, vs)| ≤ cη(s)(1 + ‖s‖)M (1 + |ξ| + |v|1/2)M ,where D = P1 . . . Pr, r ∈ N, Pj ∈ {Xpq,Ypq, X

α
kl, Y

α
kl , X

β
kl, Y

β
kl, Xkk, Hk : 1 ≤

q ≤ m, 1 ≤ p ≤ n, 1 ≤ k < l ≤ n}, and ‖s‖ is the norm of s as a linear mapon VC.Indeed, by the Harnak inequality for M ([VSC, Setion III℄) we have
|DF̃ (0, e)| ≤ c

\
B

|F̃ (χ,wr)| dχ dw dr,where B is a �xed bounded neighborhood of (0, e). Sine M is left-invariant,we may write
(2.21) |DF̃ (ξ, vs)| ≤ c

\
B

|F̃ ((ξ, vs) ◦ (χ,wr))| dχ dw dr

≤ cη(s)
\
B

η(r)(1 + |ξ + sχ| + |x+ swst + 2ℑΦ(ξ, sχ)|1/2)M dχ dw dr

≤ cη(s)(1 + ‖s‖)M (1 + |ξ| + |x|1/2)M
\
B

η(r)(1 + |χ| + |w|1/2)M dχ dw dr.Consider the Heisenberg group H generated by X1k,Y1k, k = 1, . . . ,m,and X11. The funtion F̃ restrited to H satis�es the assumptions of Theo-rem 1.13. Hene for m1 = |γ| = M + 3,(2.22) ZγF̃ = 0on the group H, where Zγ is as in Theorem 1.13. We will show that (2.22)is satis�ed on N(Φ)S. To prove that, we onsider
G(ξ, xs) = F̃ ((χ, vs1)(ξ, xs)).
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Condition (2.17) is satis�ed for G. Moreover, by (2.6),
|G(ξ, xs)| ≤ cη(s1)(1 + ‖s1‖)M (1 + |χ| + |v|1/2)Mη(s)(1 + |ξ| + |x|1/2)M

= C(χ, vs1)η(s)(1 + |ξ| + |x|1/2)M ,where C(χ, vs1) is a onstant depending on χ, v and s1. By Theorem 1.13,
ZγG(ξ, x) = 0for |γ| = M + 3 and (ξ, x) ∈ H. But

(ZγG)(ξ, x) = Zγ(F̃ ((η, vs1)(ξ, x))) = (ZγF̃ )((η, vs1)(ξ, x)),and (2.22) follows on N(Φ)S.We need to write Wj,Vα
jk for α = 1, i and Zk in oordinates on thedomain D. Introdue on VC the following oordinates:

Z = Zα + iZβ, (zkl) = (zα
kl) + i(zβ

kl)where zα
kl = (zkl + zlk)/2 and zβ

kl = (−zkl + zlk)/2i and 1 ≤ k < l ≤ n.Moreover, notie that the terms zα
kk and zβ

kk are the real and imaginary partsof zkk, respetively. We write every element ξ of Z as ξ = (ξij). The element
(ξ, z) ∈ D will always be written in oordinates as ξkl, z

α
kl, z

β
kl. Moreover, weassume that

ξkl = xkl + iykl, zα
kl = xα

kl + iyα
kl, zβ

kl = xβ
kl + iyβ

kl.Eah s ∈ S will be written as(2.23) s = wa,where w = [wkj] is a lower triangular matrix with wkk = 1 and a is a diagonalmatrix with stritly positive entries a1, . . . , an. In the theorem below writing
w,wkj , ak we mean w ◦ θ−1, wkj ◦ θ−1, ak ◦ θ−1.Theorem 2.24. Let θ be as in (2.7). Then(2.25) dθ(Xkk + iHk) = ak

(
2∂zkk

+
n∑

h=k

n∑

j=k

(cαhj(w)∂zα
hj

+ cβhj(w)∂
zβ

hj

)
)
,

where cαkk(w) = cβkk(w) = 0 and k = 1, . . . , n. For 1 ≤ k < l ≤ n,(2.26) dθ(Xα
kl+iY

α
kl) =

√
akal

(√
2 ∂zα

kl
+

n∑

h=k

n∑

j=l

(bαhj(w)∂zα
hj

+bβhj(w)∂
zβ

hj

)
)
,

where bαkl(w) = bβkl(w) = 0. For 1 ≤ k < l ≤ n,(2.27) dθ(Xβ
kl+iY

β
kl) =

√
akal

(√
2 ∂

zβ
kl

+
n∑

h=k

n∑

j=l

(dα
hj(w)∂zα

hj
+dβ

hj(w)∂
zβ

hj

)
)
,
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where dα
kl(w) = dβ

kl(w) = 0,(2.28) dθ(X1k + iY1k) =
√
a1

( n∑

l=1

wl1

(
∂ξlk

− 2i

n∑

j=1

ξjk∂zlj

))
,where w11 = 1,(2.29) wk1 ◦ θ−1 =

i(zk1 − z1k) + 2(ξ, ξt)1k

2(a1 ◦ θ−1)
,

(ξ, ξt)1k =
∑m

j=1 ξ1j · ξkj and a1 ◦ θ−1 = ℑz11 − |ξ1|2, where |ξ1|2 = (ξ, ξt)11.All the terms bαkl, b
β
lk, c

α
kl, c

β
kl, d

α
kl, d

β
kl are nonzero polynomials of degree 2 de-pending on w and w.The proof of this theorem is standard and it is left to the reader.The aim of this setion is to show that for every j, k, ∂ξjk

F is a poly-nomial. We start with the following observations. Notie that for every
1 ≤ j < k ≤ n and l = 1, . . . ,m we have Z l(aj) = 0, Zl(aj) = 0 and
Z l(wjk) = 0, Zl(wjk) = 0. This means that the fators aj are not importantin our ase. So we have the analogous equalities on the domain. For example
dθ(Z l)(aj ◦ θ−1) = 0. To simplify notation we will identify the vetor �eldsand funtions on the group and on the domain denoting them identially,i.e. if we write ZkF , we mean dθ(Zk)F. This will not lead to onfusion. For
k = 1, . . . ,m set w = (1, w21, . . . , wn1) and ηk = (ξ1k, . . . , ξnk). Then(2.30) wα = wα2

21 . . . w
αn

n1and
∂α

ηk
= ∂α1

ξ1k

. . . ∂αn

ξnk

.Theorem 2.31. Suppose that the funtion F̃ satis�es onditions (2.17)and (2.18), and m1 = m(M + 3). Then(a) ∂zkl
F = 0 for k, l = 1, . . . , n,(b) Zq

kF = a
q/2
1 (

∑
|α|=q cαw

α∂α
ηk

)F, where cα > 0.() ∂γ

ξ
F (ξ, z) = 0 for every multiindex γ with |γ| = m1.For every ompat subset K ⊂ V ⊕ S and every multiindex γ there are on-stants c(γ),M(γ) suh that if (ξ, z) ∈ θ(Z ×K), then(d) |∂γ

ξ
F (ξ, z)| ≤ c(γ)(1 + |ξ|)M(γ).Proof. (a) will be proved by indution on k+l. Notie that for k = l = n,from (2.25) and (2.17) we obtain

0 = dθ(Wn)F (ξ, z) = 2an∂znnF (ξ, z).Therefore ∂znnF (ξ, z) = 0.
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Assume that the formula holds for 2n ≥ k + l > t. Then for k + l = tfrom (2.17) we have

0 = dθ(Xα
kl + iY α

kl)F (ξ, z)

=
√
akal

(√
2 ∂zα

kl
+

n∑

p=k+1

(bαpl(w)∂zα
pl

+ bβpl(w)∂
zβ

pl

)

+
n∑

q=l+1

(bαkq(w)∂zα
kq

+ bβkq(w)∂
zβ

kq

)

+
n∑

p=k+1

n∑

q=l+1

(bαpq(w)∂zα
pq

+ bβpq(w)∂
zβ

pq
)
)
F (ξ, z).Notie that we an apply the indutive assumption to the terms ontainingsums. Therefore we obtain

∂zα
kl
F (ξ, z) = 0.By the same method we prove the rest of (a).Now we prove (b) by indution on q. For q = 1, by (a) we get

ZkF =
√
a1

( n∑

l=1

wl1

(
∂ξlk

− 2i
n∑

j=1

ξjk∂zlj

))
F(2.32)

=
√
a1

( n∑

l=1

wl1∂ξlk

)
F.Assume now that the formula holds for q. Then

Zq+1
k F = a

q/2
1 Zk

( ∑

|α|=q

cαw
α∂α

ηk

)
F.

Notie that Zkw
α = 0 and ∂zlj

F = 0 by (a). Therefore(2.33) Zq+1
k F = a

(q+1)/2
1

( ∑

|α|=q+1

cαw
α∂α

ηk

)
F

and cα are stritly positive, whih �nishes the proof of (b).For (), by (b) we get
0 = Zm1

k F =
∑

|α|=m1

cαw
α∂α

ηk
F.

Notie that if α 6= β then wα 6= wβ. So, if we di�erentiate the equation m1times with respet to zn1, we obtain ∂m1

ξnk

F = 0. Indution gives ∂β
ηk
F = 0,if we apply ∂β

z , where z = (1, z21, . . . , zn1), |β| = M + 3 and j = 1, . . . ,m.Notie that for |α| = m1 we will just have ∂α
ξ
F = 0.
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Now, we show (d). Let s = wa be as in (2.23). Notie that
∂α

ξ
=

∑

α,β

Wα,β(ξ, vwa)Dβ,

where Wα,β is a polynomial in ξ, v, w, a1, . . . , an, a
−1
1 , . . . , a−1

n . If vs is in theompat set K, then from (2.21),
(2.34) |∂α

ξ
F̃ (ξ, vs)| ≤ cK(1+ |ξ|)M(α)

∑

γ

|DγF̃ (ξ, vs)| ≤ c(1+ |ξ|)M(α)+M .

Beause of (2.7) the image of ∂ξkl
on the domain is ∂ξkl

+
∑

p,q Wpq(ξ)∂zpqand so we obtain
∂ξkl

F̃ (ξ, vs) =
((
∂ξkl

+
∑

pq

Wpq(ξ)∂zpq

)
F

)
(θ(ξ, vs)) = ∂ξkl

F (ξ, z).

Therefore, on θ(Z ×K) we have
|∂α

ξ
F (ξ, z)| ≤ c(1 + |ξ|)M(α)+M ,whih �nishes the proof of Theorem 2.31.Every polynomially growing funtion whih is holomorphi in Cn is poly-nomial. We will need the following generalization of this fat to our situation.Lemma 2.35. Suppose that a funtion f is analyti on D and satis�esthe following onditions:(1) For all k, l, we have ∂zkl

f(ξ, z) = 0.(2) For every k, l there is βkl suh that ∂βkl
zkl
f(ξ, z) = 0.(3) There is p suh that for all |γ| = p, we have ∂γ

ξ
f(ξ, z) = 0.(4) There is a nonpositive integer N suh that for every ompat set

K there is a onstant c suh that |f(ξ, z)| ≤ c(1 + |ξ|)N if (ξ, z) ∈
θ(Z ×K).(5) There is a nonpositive integer N suh that for every |γ| ≤ p and everyompat set K there is a onstant c suh that |∂γ

ξ
f(ξ, z)| ≤ c(1+|ξ|)Nif (ξ, z) ∈ θ(Z ×K).Then f is a polynomial.Let F be a family of funtions whih satisfy the above onditions for given

p,N, βkl. Then the degrees of the polynomials in F have a ommon bound.The proof of Lemma 2.35 is an elementary alulation.In the next step we will try to get some more equations satis�ed bythe funtion F . We know that ZαF = 0 for |α| = m1. We will need someformulas for Zα for |α| < m1. To do this we will use ommutators.
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Notie that for k = 1, . . . ,m the vetor �elds Zk have the properties

(2.36) [Zk,Zj ] = 0, k 6= j,

(2.37) [Zk,Zk]F = [Z1,Z1]F = −ia1

( n∑

j=1

wj1

( n∑

l=1

wl1∂zjl

))
F,where w11 = 1, and F is as in (a) of Theorem 2.31. Indeed,

[Zk,Zj ] = [X1k − iY1k,X1j + iY1j]

= [X1k,X1j] + [Y1k,Y1j] − i([Y1k,X1j] − [X1k,Y1j]) = 0by (2.12). On the other hand, if k = j, then [X1k,Y1k] = −X11. Therefore(2.38) [Zk,Zk] = −2iX11 = −i(W1 + W1).Using the fat that W1F = 0, we obtain
[Zk,Zk]F = −iW1F.A diret omputation using the ation of (ξ, vs) ∈ N(Φ)S on D given by(2.39) (ξ, vs) ◦ (χ, u) = (ξ + sχ, v + sust + 2iΦ(sχ, ξ) + iΦ(ξ, ξ)).shows that

W1 = a1

n∑

j=1

wj1

( n∑

l=1

wl1∂zjl

)
,and so we get (2.37).Lemma 2.40.

Z l
kZkZkF = (l[Zk,Zk]Z l

k + ZkZ l+1
k )F.Proof. The proof is by indution. For l = 1 we have

ZkZkZkF = (ZkZ2
k + [Zk,Zk]Zk)F.Assume that (2.40) holds for l. Then

Z l+1
k ZkZkF = Zk(l[Zk,Zk]Z l

k + ZkZ l+1
k )F.Notie that

[[Zk,Zk],Zk] = [[Zk,Zk],Zk] = 0.Therefore,
Z l+1

k ZkZkF = (l[Zk,Zk]Z l+1
k + [Zk,Zk]Z l+1

k + ZkZ l+2
k )F

= ((l + 1)[Zk,Zk]Z l+1
k + ZkZ l+2

k )F,whih �nishes the proof.From Lemma 2.40, (2.36) and (2.37) we obtain(2.41) ZαL1F = Zα
m∑

k=1

ZkZkF = |α|[Z1,Z1]ZαF +
m∑

k=1

ZkZβkF,



PLURIHARMONIC FUNCTIONS ON SIEGEL DOMAINS 49

where βk = α + ek and ek = (0, . . . , 1, . . . , 0), with 1 in the kth plae.Moreover, notie that if |α| = m1 − 1, then Zβk

k = 0 for every k = 1, . . . ,m.Therefore we get an additional equation(2.42) [Z1,Z1]ZαF = 0.Sine [[Z1,Z1],Zk]F = 0, (2.38) gives(2.43) Zα
( n∑

j=1

wj1

( n∑

k=1

wk1∂zjk

))
F = 0.Hene(2.44) n∑

j=1

wj1Zα
( n∑

k=1

wk1∂zjk

)
F = 0.Notie that for j = 2, . . . , n and k = 1, . . . , n from (2.29) and (2.28) we have

∂z1j
wk1 = 0 for j 6= k,

∂z1j
wj1 =

−i
2a1

6= 0,

[∂z1j
,Z l] = 0 for l = 1, . . . ,m,

∂z1j
wk1 = 0.Applying ∂z1j

to both sides of (2.44), for a funtion F that satis�es (a) fromTheorem 2.31 we have
0 =

n∑

l=1

(∂z1j
wl1)Zα

( n∑

k=1

wk1∂zlk

)
F +

n∑

l=1

wl1Zα
( n∑

k=1

wk1∂zlk

)
∂z1j

F

=
i

2a1
Zα

( n∑

k=1

wk1∂zjk

)
F,For |α| = m1 − 1 we get the equation(2.45) Zα

( n∑

k=1

wk1∂zjk

)
F = 0 for 1 ≤ j ≤ n.We will onsider the ase when j = 1 (for other indies the proof is thesame). The equation (2.45) for |α| = m1 − 1 gives(2.46) Zα

( n∑

k=1

wk1∂z1k

)
F =

n∑

k=1

wk1Zα
∂z1k

F = 0.We will need an expression for Zα, similar to (2.33). We will show by indu-tion that if ∂zkl
F = 0 and k, l = 1, . . . , n, then(2.47) ZαF = a|α|/2

∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γ∂
γ

ξ
F

)
,
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where wβ is as in (2.30), and γ is a multiindex related to partial derivativesgiven by ξ = (ξpq) 1≤p≤n

1≤q≤m

. Notie that some cα,β,γ may vanish and for |α| = 1we simply have (2.32).Indeed, from (2.28),
Zk(ZαF ) = a|α|/2

∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γZk∂
γ

ξ
F

)

= a|α|/2
∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γ

( n∑

l=1

wl1∂ξlk

)
∂γ

ξ
F

)
.

Rearranging terms we will get (2.47). Let(2.48) fα,β =
∑

|γ|=|α|

cα,β,γ∂
γ

ξ
F.

If |α| = 1, Zα = Zk and wβ = wj1 then by (2.32),(2.49) fα,β = ∂ξjk
F.Notie that if ∂zkl

F = 0, then also ∂zkl
∂z1k

F = 0. Hene
Zα∂z1k

F = a|α|/2
∑

|β|=|α|

wβ
( ∑

|γ|=|α|

cα,β,γ∂
γ

ξ
∂z1k

F
)

= a|α|/2
∑

|β|=|α|

wβ∂z1k
fα,β.The equation (2.46) gives(2.50) n∑

k=1

∑

|β|=|α|

wk1w
β∂z1k

fα,β = 0.

Analogously for j = 2, . . . , n,
n∑

k=1

∑

|β|=|α|

wk1w
β∂zjk

fα,β = 0.

We will show that for every α the funtions fα,β are polynomials in ξ and z.In view of Lemma 2.35 it is enough to prove that for every zjk there is
γjk suh that ∂γjk

zjk
fα,β = 0. We start with |α| = m1 − 1 and then proeedby downward indution on the length of α, �nally getting the onlusion for

|α| = 1. Then Theorem 2.19 follows immediately by (2.49).Now we prove that the fα,β are polynomials.Lemma 2.51. For |α| = m1 − 1, fα,β is a polynomial. If F is a family offuntions F̃ satisfying ondition (2.18) for �xed M , then the degrees of theorresponding polynomials fα,β have a ommon bound.To prove this we need the following lemma:
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Lemma 2.52. Let |α| = m1 − 1. For every |β| = |α| and every j,(2.53) ∂|α|−j+1
z11

fα,β = 0.Proof. We proeed by indution on β1 = j. As before for k = 2, . . . , nwe apply ∂zk1
∂β2

z21
. . . ∂βn

zn1
to (2.50) to get n equations(2.54) ∂z1k

fα,(β1,...,βn)+
∑

j 6=k

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn) = 0, 1≤ k≤ n,with the onvention that if some βl = 0, then

∂z1l
fα,(β1,...,βl−1,...,βk+1,...,βn) = 0.For j = |α| by (2.54) we have
∂z11

fα,(|α|,0,...,0) = 0.Assume that (2.53) is true for every β suh that β1 = j. We will show thatit is true for j − 1. By (2.54) for k = 1 and β1 = j − 1 we obtain
∂z11

fα,(j−1,β2,...,βn) +
∑

l>1

∂z1l
fα,(j,β2,...,βl−1,...,βn) = 0.

Applying ∂|α|−j+1
z11

to both sides of the above equality and using the indutiveassumption we get
∂|α|−(j−1)+1

z11
fα,(j−1,β2,...,βn) = 0.This �nishes the proof of Lemma 2.52.Proof of Lemma 2.51. Notie that the same method may be used for theother equations, and we get the same result as for the variable z11, i.e. for

|α| = m1 − 1, every β and every k there is l ≤ |α| + 1 suh that(2.55) ∂l
z1k
fα,β = 0.Moreover, notie that by (2.45), we may use the same argument for othervariables zjk, j = 2, . . . , n. Therefore by (2.35) for |α| = m1 − 1 and every

β, fα,β is a polynomial.Notie that if F is a family of funtions F̃ satisfying ondition (2.18) for�xed M , then the orresponding polynomials fα,β satisfy the assumptions ofLemma 2.35 with the same p,M and βkl. Therefore the degrees of the fα,βhave a ommon bound.We want to get a similar onlusion for 0 < |α| < m1 − 1.Theorem 2.56. For 0 < |α| ≤ m1−1 and |β| = |α|, fα,β is a polynomial.If F is a family of funtions F satisfying ondition (2.18) for �xed M , thenthe degrees of the orresponding polynomials fα,β have a ommon bound.Proof. The proof is by indution on |α|. By Lemma 2.51, a|α|/2
1 ZαF is apolynomial in ξ, z. Assume that the assertion is true for |α| = K+1 ≤ m1−1.
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We want to show that (2.56) is true for |α| = K. By (2.41) we have

0 = cα[Z1,Z1]ZαF +
m∑

k=1

ZkZδkF,

where δk = |α| + 1. By the indutive assumption, a(|α|+2)/2
1 ZkZδkF is apolynomial W (ξ, z). Indeed, for |δ| = |α| + 2, a|α|+2

1 wδ is a polynomial in
ξ, z, i.e.(2.57) a

(|α|+2)/2
1 [Z1,Z1]ZαF = W (ξ, z).By (2.38) and the fat that W1F = 0 we obtain

a
(|α|+4)/2
1 Zα

( n∑

j=1

wj1

( n∑

k=1

wk1∂zjk

))
F (ξ, z) = W (ξ, z).As before this equation is equivalent to(2.58) a

(|α|+2)/2
1 Zα

( n∑

k=1

wk1∂zjk

)
F (ξ, z) = Wj(ξ, z), 1 ≤ j ≤ n,where Wj is a polynomial in ξ, z.Assume now j = 1 (for other j's the proof is analogous). First by (2.58)and (2.47) we get, for |α| = K,

a
|α|+1
1

( n∑

k=1

∑

|β|=K

wk1w
β∂z1k

fα,β

)
= W1,

where ZαF = a
|α|/2
1

∑
|β|=K wβfα,β.Applying ∂zk1

∂β2

z21
. . . ∂βn

zn1
for 1 < k ≤ n, we get for 1 ≤ k ≤ n theequations(2.59) aQ

1

(
∂z1k

fα,(β1,β2,...,βn) +
∑

j 6=k

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn)

)
= W̃1,β,where Q is a positive integer ≤ |α| + 1 and if βj = 0 for some j, then

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn) is meant to be zero. Applying ∂

zQ
11

, we get(2.60) (
∂z1k

fα,(β1,β2,...,βn) +
∑

j 6=k

∂z1j
fα,(β1,...,βj−1,...,βk+1,...,βn)

)
= W1,βand if βj = 0 for some j, then ∂z1j

fα,(β1,...,βj−1,...,βk+1,...,βn) is meant to vanish.Lemma 2.61. For |β| = |α| = K there is γ suh that
∂γ

z11
fα,β = 0.Proof. We use indution on β1. Notie that for β1 = K and k = 1, by(2.60), we get

∂z11
fα,(K,0,...,0) = W1,(K,0,...,0).



PLURIHARMONIC FUNCTIONS ON SIEGEL DOMAINS 53

Therefore there is γ1 suh that ∂γ1
z11
fα,(K,0,...,0) = 0. Now, assume that theonlusion is true for every β suh that β1 = j + 1, i.e. there is γj+1 suhthat ∂γj+1

z11
fα,β = 0. In view of (2.60) for k = 1 we have
∂z11

fα,(j,β2,...,βn) +
∑

l>j

∂z1l
fα,(j+1,β2,...,βj−1,...,βn) = W1,β,

where W1,β are polynomials. Apply ∂
γj+1

z11
to this equation. Then by theindutive assumption we obtain

∂
γj+1+1
z11

fα,(j,β2,...,βn) = V1,βfor some polynomials V1,β . Then there is γj suh that ∂γj
z11
fα,β = 0, whih�nishes the proof of Lemma 2.61.Notie that an analogous argument gives a similar result for other oef-�ients, i.e. for |β| = K and all j, k, there is δjk suh that

∂
δjk
zjk
fα,β = 0.Moreover, notie that if F is a family of funtions F̃ satisfying (2.18) forthe same M , then the degrees of the polynomials W in (2.57) will have aommon bound, so the δjk will be uniformly bounded. Therefore, the fα,βsatisfy the assumptions of Lemma 2.35 uniformly and so their degrees havea ommon bound.3. Pluriharmoni funtions on D. Our purpose is to haraterizepolynomially growing pluriharmoni funtions by three invariant di�erentialoperators (Theorem 3.19). On N(Φ)S we onsider the operators

∆j = X2
jj +H2

j −Hj , j ≤ n,

Lkl = X 2
kl + Y2

kl −Hk, k ≤ n, l ≤ m,

∆α
kl = (Xα

kl)
2 + (Y α

kl)
2 −Hl, k < l ≤ n, α = 1, i,

(3.1) L =
n∑

j=1

γjLj , γj > 0,

where Lj =
∑m

k=1 Ljk,

HF̃ =
∑

j

αj∆j , where αj > 0.

and(3.2) L =

n∑

j=1

dj∆j +

n∑

k<l

cαkl∆
α
kl,
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where dj , c

α
kl > 0. As L ats on the right, it is well de�ned also on VS. Onean hoose the oe�ients dj, c

α
k,l in suh a way that the maximal boundaryis V ([BDH℄), whih means that every bounded L-harmoni funtion G̃ on

VS is the Poisson integral(3.3) G̃(xs) =
\
V

g(x+ syst)PL(y) =: g ∗ P s
L,where g ∈ L∞(V), PL is the Poisson kernel for L, and P s
L is given by a properhange of variables ([BDH℄, [DH1℄).

PL is a smooth, positive funtion on V with integral 1, and G̃ ↔ g is aone-one mapping of L∞(V) onto the spae of bounded funtions L-harmonion VS. Moreover,
lim
a→0

G̃(xwa) = g(x)in the weak sense and
‖G̃‖L∞ = ‖g‖L∞ .Writing a→ 0 we mean that aj → 0 for every j = 1, . . . , n.Assume that for a real smooth funtion F̃ de�ned on N(Φ)S we have

(3.4) |F̃ ((ξ, x)s)| ≤ c(1 + |ξ|)M ,

(3.5) LF̃ = 0.Then for every ξ there exists fξ ∈ L∞(V) suh that(3.6) F̃ ((ξ, x)s) =
\
V

fξ(x+ syst)PL(y) dy.

fξ is alled the boundary value of F̃ ((ξ, ·)·).Moreover, assume for a while that there exists ε suh that for every ξ,(3.7) supp f̂ξ ⊂ {λ : ε ≤ |λ| ≤ ε−1}.Later on we will get rid of this assumption.Set F = F̃ ◦ θ−1. The �rst approximation of Theorem 3.19 isLemma 3.8. If F̃ ∈ C∞(N(Φ)S) satis�es assumptions (3.4), (3.5), (3.7),and is annihilated by H, L, L1, then there is a polynomialW suh that F−Wis pluriharmoni.Proof. Notie that for every ξ, F̃ ((ξ, ·)·) is a bounded funtion on VS,annihilated by L and H, so by Theorem 5.1 and Corollary 5.9 of [BDH℄,
supp f̂ξ(·) ⊂ Ω ∪ −Ω,where Ω is the one of positive hermitian matries.Let ϕ1 be a Shwartz funtion de�ned on V suh that ϕ̂1 ∈ C∞

c (V) isreal-valued. Moreover, assume that ϕ̂1 ≡ 1 on a neighborhood of supp fξ ∩Ω
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and suppϕ1 ∩ −Ω = ∅. Then
F̃1((ξ, x)s) =

\
V

ϕ1(v)F̃ ((ξ, x− v)s) dv =
\
V

ϕ1(v)F̃ ((0,−v) · (ξ, x)s) dvsatis�es the assumptions of the present lemma. Set f1,ξ = ϕ1 ∗V fξ. Then
f1,ξ is the boundary value of F̃1 and supp f̂1,ξ ⊂ Ω.Using the same arguments as in Setion 5 of [BDH℄, we prove that F̃1◦θ−1is holomorphi, and so(3.9) (Xjj + iHj)F̃1 = 0, (Xα

kl + iY α
kl)F̃1 = 0for j = 1, . . . , n and 1 ≤ k < l ≤ n, α = 1, i. Moreover, LjF̃1 = 0 for

j = 1, . . . , n.Let ϕ̂2(λ) = ϕ̂1(−λ). Analogously, we de�ne F̃2 = ϕ2 ∗V F̃ . Then, ofourse, F̃ = F̃1+F̃2, and we prove that F̃2◦θ−1 is antiholomorphi, therefore
(Xjj − iHj)F̃1 = 0, (Xα

kl − iY α
kl)F̃1 = 0for j = 1, . . . , n, 1 ≤ k < l ≤ n, α = 1, i. Moreover L1F̃2 = 0. Set F1 =

F̃1 ◦ θ−1 and F2 = F̃2 ◦ θ−1. Then in view of (1.19) there are polynomials
W1,W2 suh that F1 − W1 = H1 is holomorphi and F2 − W2 = H2 isantiholomorphi. Then

F = F1 + F2 = H1 +H2 +W1 +W2 = H1 +H2 +W,where W is a polynomial, whih �nishes the proof.The above lemma an be made onsiderably stronger.Lemma 3.10. Suppose that F̃ ∈ C∞(N(Φ)S) satis�es (3.5), (3.6), (3.7)and is annihilated by H and L. Then there is a polynomial W suh that
F −W is pluriharmoni.Proof. As in the proof of Lemma 3.8 we disintegrate F̃ as F̃ = F̃1 + F̃2,where(3.11) (Xj + iHj)F̃1 = 0 and (Xα

kl + iY α
kl)F̃1 = 0for j = 1, . . . , n, 1 ≤ k < l ≤ n and α = 1, i, and(3.12) LF̃1 = 0.We will show that (3.12) gives LjF̃ = 0 for every j = 1, . . . , n. Weuse the left-invariant vetor �elds on N(Φ), whih are identi�ed with ∂xjj

,
∂xα

jk
, ∂xkl

, ∂ykl
at e. For 1 ≤ j < k ≤ n and l = 1, . . . ,m denote them by

X̃jj, X̃
α
jk, X̃kl, Ỹkl. Notie that(3.13) XF̃1((ξ, x)s) = (Ads X̃)F̃ s

1 (ξ, x),
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where for a �xed s, F̃ s

1 (ξ, x) = F̃1((ξ, x)s). If we write s = wa, then
∆jF̃1((ξ, x)wa) = a2

j ((Adw X̃j)
2 + ∂2

aj
)F̃ s

1 (ξ, x),

LjkF̃1((ξ, x)wa) = aj((Adw X̃jk)
2 + (Adw Ỹjk)

2 − ∂aj
)F̃ s

1 (ξ, x).From (3.11) and (3.13) we obtain
∂aj

F̃1((ξ, x)wa) = iAdw(X̃jj)F̃
s
1 (ξ, x).Using the fat that LF̃ = 0 we have(3.14) ( n∑

j=1

γjaj

( m∑

k=1

(Adw(X̃jk))
2 + (Adw(Ỹjk))

2−ℑ(Adw(X̃jj))
))
F̃ s

1 = 0.Now, we let aj go to zero. To do this, we have to ensure some regularity ofthe boundary value f1 of F̃ s
1 . Instead of F̃ s

1 onsider
̺ ∗ F̃ s

1 (ξ, x) =
\

N(Φ)

̺((ξ, x)(η, u)−1)F̃ s
1 (η, u) dη du

for ̺ ∈ C∞
c (N(Φ)). Then

( n∑

j=1

γjaj

( m∑

k=1

(Adw(X̃jk))
2 + (Adw(Ỹjk))

2 −ℑ(Adw(X̃jj))
))

(̺ ∗ F̃ s
1 ) = 0,

and the boundary value for ̺ ∗ F̃ s
1 is ̺ ∗ f1.Fix w and j. Let aj = t, and ak = t2 for j 6= k. If we divide (3.14) by tand let t→ 0, we obtain

(3.15) Dj,w(̺ ∗ f1)

=
( m∑

k=1

((Adw(X̃jk))
2 + (Adw(Ỹjk))

2) −ℑ(Adw(X̃jj))
)
(̺ ∗ f1) = 0.We do this for every j. Dj,w is a left-invariant operator on N(Φ). We willshow that (3.15) implies(3.16) Dj,wF̃

s
1 = 0,If s := wa in (3.15) then we get the assertion of Lemma 3.10.Let

G((ξ, x)s) = ̺ ∗ F̃ s
1 (ξ, x), g(ξ, x) = ̺ ∗ f1(ξ, x) = gξ(x).Then LG = 0 and

Gs(ξ, x) = G((ξ, x)s) = gξ ∗V P s
L(x).We only need to show the following property: If D is a left-invariant operatorde�ned on N(Φ), then

DGs(ξ, x) =
\
V

(Dg)(ξ, x− v)P s
L(v) dv =

\
V

(Dg)((0,−v)(ξ, x))P s
L(v) dv.
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This equality holds beause we an hange the order of integration anddi�erentiation. This is allowed beause
Dg(ξ, x) = D(̺ ∗ f1)(ξ, x)is dominated by c(1 + |ξ|)N for some N . So if Dj,w(̺ ∗ F̃ s

1 ) = 0 for every ̺and s, then the equality (3.16) is proved.The lass of operators whih haraterize the polynomially pluriharmonifuntions an be extended even more. We replae the operator L by a moregeneral one. Namely, let(3.17) L′ =
n∑

j=1

dj∆j +
n∑

k<l

cαkl∆
α
kl,where dj , c

α
kl > 0.Theorem 3.18. Assume that F̃ satis�es (3.4) and L′F̃ = HF̃ = LF̃ = 0.Then there is a well de�ned boundary value f ∈ L∞(N(Φ)) of F̃ . Moreover ,assume that f satis�es (3.7). Then there is a polynomial W suh that F −Wis pluriharmoni.Proof. If L′F̃ = 0, HF̃ = 0 and (3.4) holds, then the arguments ofSetion 3 of [BDH℄ show that ∆̃jF = 0 for every j, and adding to L′ a suitablelinear ombination ∑n

j=1 ηj∆j , ηj ≥ 0, we an get the operator L = L′ +∑n
j=1 ηj∆j (see Proposition 3.5 in [BDH℄ and Lemma 2.1 in [DHMP℄). Then,as before, there is f ∈ L∞(N(Φ)) suh that (3.6) holds for fξ(x) = f(ξ, x).Now the theorem follows from Lemma 3.10.Our purpose is to remove the ondition (3.7), i.e. we want to prove thefollowing main theorem:Theorem 3.19. Suppose that F̃ satis�es (3.4) and L′F̃ = 0, HF̃ = 0 and

LF̃ = 0. Then there is a polynomial W suh that F −W is pluriharmoni.Proof. Let ϕ be a Shwartz funtion on V with
ϕ̂(−λ) = ϕ̂(λ), ϕ̂(λ) =

{
1, |λ| ≤ 1,

0, |λ| ≥ 2.Consider the family of funtions p−nϕ(x/p), p ∈ N. For every boundedfuntion g we may hoose a subsequene pk suh that the limit
lim

pk→∞

\
V

p−n
k ϕ(x/pk)g(x) dxexists. Let {ξj} be a dense ountable subset in Z. By the diagonal methodwe hoose pk suh that the limit(3.20) lim

pk→∞

\
V

p−n
k ϕ(x/pk)fξj

(x) dx = H(ξj)
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exists for every ξj. De�ne

ψk(x) = p−n
k ϕ(x/pk), ϕk(x) = pn

kϕ(pkx),and onsider
F̃ 1

k ((ξ, x)s) =
\
V

ϕk(v)F̃ ((0,−v)(ξ, x)s) dv =
\
V

ϕk(v)F̃ ((ξ, x− v)s) dv,

F̃ 2
k ((ξ, x)s) =

\
V

ψk(v)F̃ ((0,−v)(ξ, x)s) dv =
\
V

ψk(v)F̃ ((ξ, x− v)s) dv.The ondition (3.4) guarantees that F 1
k and F 2

k are well de�ned and uniformlybounded on every ompat set in N(Φ)S. Moreover, for j = 1, 2,

HF̃ j
k = 0, L′F̃ j

k = 0, LF̃ j
k = 0and limk→∞ F̃ 1

k = F̃ uniformly on ompat sets in N(Φ)S.Notie that the boundary values for F̃ 1
k and F̃ 2

k are ϕk ∗ fξ and ψk ∗ fξ,respetively, where fξ(x) = f(ξ, x) is the boundary value for F̃ .Sine ϕ̂(λ/pk) − ψ̂(pkλ) = 0 if |λ| ≤ 1/pk or |λ| ≥ 2pk, we have
ϕ̂k ∗ fξ − ψ̂k ∗ fξ = 0there. This means that F̃ 1

k − F̃ 2
k satis�es the assumptions of Theorem 3.18.So, we have a family of funtions F 1

k − F 2
k and a family of polynomials Wk(see Theorem 2.19) with degrees bounded by the same onstant M1 suhthat F 1

k − F 2
k −Wk are pluriharmoni funtions. As usual F j

k = F̃ j
k ◦ θ−1.Let w = (ξ, z) and for k = nm + n2 let w1, . . . , wk be oordinates in

Z ⊕ VC . If |α| ≥M1, then for all k and j we have
(3.21)

0 = ∂wj
∂α

w(F 1
k − F 2

k −Wk) = ∂wj
∂α

w(F 1
k − F 2

k ),

0 = ∂wj
∂α

w(F 1
k − F 2

k −Wk) = ∂wj
∂α

w(F 1
k − F 2

k ).Now assume that
lim

k→∞
F̃ 2

k ((ξ, xs)) = H(ξ)exists and is a polynomial, hene limk→∞(F̃ 1
k − F̃ 2

k ) = F̃ − H. Then wean take the limit of both sides of (3.21), and if α, β 6= 0, and |α| + |β| >
max(M1, degH), then

∂α
wj
∂β

wj
(F ) = ∂α

wj
∂β

wj
(F −H) = lim

k→∞
∂α

wj
∂β

wj
(F 1

k − F 2
k ) = 0.This means that there exists a polynomial W suh that F −W is plurihar-moni. To �nish the proof of Theorem 3.19 we have to show the followingLemma 3.22. The limit

lim
k→∞

F̃ 2
k ((ξ, xs)) = H(ξ)exists, is independent of x, s, and it is a polynomial in ξ, ξ.
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Proof. Changing variables syst = u, we write (3.6) as
F̃ ((ξ, x)s) =

\
V

fξ(x− u)P s
L(u) du.Sine ϕk is even, we have

F̃ 2
k ((ξj, x)s) =

\
V

ϕk(v)
\
V

fξj
(x− v − y)P s

L(y) dy dv

=
\
V

ϕk(v)
\
V

fξj
(y)P s

L(x− v − y) dy dv

=
\
V

ϕk(v)
\
V

fξj
(y)P s

L(x+ v − y) dy dv.

Let γ(y) = P s
L(x+ y). Then

F̃ 2
k ((ξj, x)s) =

\
V

ϕk(v)fξj
∗ γ(v) dv.

From Lemma 4.3 of [BDH℄ and (3.20),
lim

k→∞
F̃ 2

k ((ξj, x)s) = H(ξj)
\
V

γ(v) dv = H(ξj).For every (ξ, x)s we hoose a sequene ξj → ξ. Fix a bounded neighbor-hood U of (ξ, x)s suh that (ξj , x)s ∈ U . By (3.4) and the Harnak inequalitythe �rst derivatives of F 2
k are bounded on U by the same onstant, so thereexists a onstant C suh that

|F̃ 2
k ((ξ, x)s) − F̃ 2

k ((ξj, x)s)| ≤ C|ξ − ξj|.The density of ξj in Z implies that
lim

k→∞
F̃ 2

k ((ξ, x)s) = H(ξ)exists and is independent of x, s. Moreover, on ompat sets, the funtions
F̃ 2

k are bounded by the same onstant, so the onvergene is in the sense ofdistributions. Then we have
LH = lim

k→∞
LF̃ 2

k = 0.Beause H is independent of x, s we have
n∑

j=1

γj

( m∑

k=1

∂2
xjk

+ ∂2
yjk

)
H(ξ) = 0,

whih shows that H is a polynomial.Finally, the proof of Theorem 3.19 is omplete.



60 M. GIL�Y�SKA
REFERENCES[BBDR℄ Ch. Benson, D. Burazewski, E. Damek and G. Ratli�, Di�erential systemsof type (1, 1) on Hermitian symmetri spaes of tube type and their solutions,J. Funt. Anal. 215 (2004), 427�475.[BBDHPT℄ A. Bonami, D. Burazewski, E. Damek, A. Hulaniki, R. Penney andB. Trojan, Hua system and pluriharmoniity for symmetri irreduible Siegeldomains of type II , J. Funt. Anal. 188 (2002), 38�74.[BBDHJ℄ A. Bonami, E. Damek, A. Hulaniki and P. Jaming, Maximum boundaryregularity of bounded Hua-harmoni funtions on tube domains, J. Geom.Anal. 14 (2004), 457�486.[B℄ D. Burazewski, The Hua system on irreduible Hermitian symmetri spaesof nontube type, Ann. Inst. Fourier (Grenoble) 54 (2004), 81�128.[BDH℄ D. Burazewski, E. Damek and A. Hulaniki, Bounded plurihramoni fun-tions on symmetri irreduible Siegel domains, Math. Z. 240 (2002), 169�195.[DDHT℄ E. Damek, J. Dziuba«ski, A. Hulaniki and J. L. Torrea, Pluriharmonifuntions on symmetri tube domains with BMO boundary values, Colloq.Math. 94 (2002), 67�86.[DH1℄ E. Damek and A. Hulaniki, Boundaries for left-invariant subellipti opera-tors on semidiret produts of nilpotent and abelian groups, J. Reine Angew.Math. 411 (1990), 1�38.[DH2℄ �, �, Pluriharmoni funtions on symmetri irreduible Siegel domains,Studia Math. 139 (2000), 104�140.[DHMP℄ E. Damek, A. Hulaniki, D. Müller and M. Peloso, Pluriharmoni H2funtions on symmetri irreduible Siegel domains, Geom. Funt. Anal. 10(2000), 1090�1117.[DHP℄ E. Damek, A. Hulaniki and R. C. Penney, Hua operators on bounded ho-mogeneous domains in C

n, J. Funt. Anal. 151 (1997), 77�120.[N℄ R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland,1968.[S℄ E. Stein, Harmoni Analysis: Real-Variable Methods, Orthogonality , andOsillatory Integrals, Prineton Univ. Press, 1993.[SV℄ D. Strook and S. R. Varadhan, Multidimensional Di�usion Proesses,Springer, 1979.[T1℄ B. Trojan, Poisson kernels and pluriharmoni H2 funtions on homogeneousSiegel domains, J. Lie Theory 12 (2002), 217�243.[T2℄ �, Asymptoti expansions and Hua-harmoni funtions on bounded homo-geneous domains, Math. Ann. 336 (2006), 73�110.[VSC℄ N. Varopoulos, L. Salo�-Coste and T. Coulhon, Analysis and Geometry onGroups, Cambridge Univ. Press, 1992.ul. Zaiszna 7/1655-200 Oªawa, PolandE-mail: m.gilzynska�prawo.uni.wro.plReeived 6 Otober 2006 (4801)


