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POLYNOMIALLY GROWING PLURIHARMONIC FUNCTIONS
ON SIEGEL DOMAINS

BY

MONIKA GILZYNSKA (Otawa)

Abstract. Let D be a symmetric type two Siegel domain over the cone of positive
definite Hermitian matrices and let N(®)S be a solvable Lie group acting simply tran-
sitively on D. We characterize polynomially growing pluriharmonic functions on D by
means of three N (®)S-invariant second order elliptic degenerate operators.

Introduction. Let D be a type two symmetric Siegel domain and let
G be a solvable Lie group that acts simply transitively on D. By means of
G-invariant operators we study polynomially growing pluriharmonic func-
tions on D. More precisely, we consider second order real elliptic degenerate
G-invariant operators which annihilate holomorphic functions and so their
real and imaginary parts. Such operators are called admissible and they
have already been used to characterize pluriharmonic functions by a num-
ber of people: [B], [BBDHPT], [BBDR], [BDH], [BBDHJ|, [DDHT], [DH2],
[DHMP], [DHP], [T1], [T2]. All the results, except those in [B|, have con-
cerned only bounded functions. Only in the specific case of Hua operators
invariant under the full group of isometries of the domain D, no growth
conditions have been imposed.

In this paper we go a step further—we obtain an analogous character-
ization of polynomially growing functions on type two Siegel domains D
over cones of positive hermitian matrices. In the case when the cone is the
half-line, the domain is the Siegel half-space biholomorphically equivalent to
the complex ball.

The main result of the paper is:

There are three admissible operators H, L, L on D such that if a func-
tion F polynomially growing in the sense of (3.4) satisfies HF = LF =LF =0,
then F' is pluriharmonic modulo a polynomial. H+L~4-L is an elliptic operator.

When the cone is the half-line, the growth condition (see (1.18)) is con-
siderably weaker and the system of operators reduces to L, H.
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The characterization is considerably stronger than the one in [BDH],
where boundedness has been assumed. Moreover, while in [BDH] the group
picture was dominant, here we rather concentrate on the domain and the
action of G on it, which proves to be very fruitful. Unfortunately we have
not been able to obtain the result for all type two symmetric Siegel domains.

The paper consists of three sections. In the first one we consider the Siegel
half-space, which is identified with a solvable Lie group H x R™, a semidirect
product of the Heisenberg group H and R*. Writing any point in H x R™
as (&, z)a, where (£,7) € H, a € RT, we consider a function F that satisfies

|[F((& 2)a)| < Cra)(L+ [¢] + [« /%)Y

for some N and a locally integrable function 7. Using a relative fundamental
solution for the canonical sublaplacian on H, we obtain additional differential
equations on F' which make it possible to remove step by step terms of type
wow” for sufficiently large || + || from the Taylor expansion of F, which
gives the conclusion. The arguments are different from the ones from [BDH]
and based on an idea communicated to us by Aline Bonami, with whom we
have discussed the case of dimH = 3, i.e. the complex ball in C?.

The existence of nonzero polynomials which are annihilated by our sys-
tem of operators £, H is not surprising. Indeed, it is easy to construct ex-
amples of such.

In the third section the domain D over the cone of positive definite her-
mitian matrices is considered. We identify D with the group G = N(®)S, a
semidirect product of a step two nilpotent Lie group N(&) and a solvable Lie
group S of lower triangular matrices (see Section 2.1). S acts on the center
V of N(®) and the group VS acts simply transitively on a type one domain
immersed in D.

The proof in [BDH], based on the spectral synthesis for H, is not appli-
cable in the present situation, and a different approach is needed. Following
[BDH] the function F satisfying the assumptions of Theorem 3.18 is decom-
posed as

F=F+ F27

where F7 is holomorphic and F5 antiholomorphic in tube direction VS. Next,
for each of these functions, the results of Section 2 are applied.

The second section is the most difficult and original part of this paper.
We consider the case of a polynomially growing analytic function that is
holomorphic in tube direction VS, and satisfies one more equation generated
by a special Laplacian on a subgroup of N (&), which is the Heisenberg group.
This permits us to use the results of the first section to obtain additional
equations.

Later on the action of a maximal nilpotent subgroup Ny in S on D
enters into the picture and gives rise to some more equations on functions.
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This is an interesting phenomenon, already observed in previous papers.
Indeed, the behavior of the group Ny was always crucial to characterizing
pluriharmonicity by means of three invariant operators only [BDH|, [DHMP].
The present paper shows a new aspect of this.

The author is grateful to Dariusz Buraczewski and Ewa Damek for valu-
able conversations on the paper as well as to Aline Bonami and Philippe
Jaming for their first ideas in the H x R* case.

1. Siegel half-space

1.1. The Heisenberg group and the Siegel half-space. We consider the

group
H=C"xR={(,xz):£€C" xR}

with multiplication given by

(1.1) (&z)o (¢ y) = (E+ ¢z +y+ 3Iml),

where .
€= &
j=1

H is called the Heisenberg group. For j = 1,...,n let {; = x; + iy;. The
left-invariant vector fields

(1.2) X5 F (1) = (9, + Lu;0) ) (€, 1),
(1.3) Yif€.t) = ((9y, — 32;00) ) (&),
(14) Tf(§7 t) = (atf)(§7 t)

form a basis of the Lie algebra of H.
Consider the semidirect product S = H x R™ with multiplication

(15) (57 u, a) : (517 Ui, al) = ((éa u) o (01/251, CLUl), CLCLl)-
In this section we study the so called Siegel half-space
U={(£2):£€C" z€C, Imz > 1|¢]],

which is biholomorphically equivalent to the unit complex ball B in C"**!.
The group S acts on U in the following way:

(0,2) o (w, 2) = (w, 2 + ),
(1.6) (§,0) 0 (w, 2) = (w+ &,z + 2ig(w, ) + ip(&, %)),
ao(w,z)=(Vaw,az),

where

1 n
P(&,w) = 1 Zﬁjﬁj
j=1
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and the action is simply transitive. Let 6 : S — U be given by
0(s) = s0(0,1).

Putting s = (&, ¢, a), we obtain

(1.7) 0((6,t,0)) = (€t +i(a+ 21P)).

Let Z; = X; — i)}, Z; = Xj +i)Y;, where X; and )); are given in (1.2) and
(1.3). Then an easy computation shows that

(1.8) Zj = 20¢, + 5i&;0),

(1.9) Z;= 20; — 2i€;0;.

We consider the operator

(1.10) Lo=) Z;Z;=) (X + V) —niT.
j=1 j=1

The function

2 2n = 1) CERA— N
1.11 D) = 1 4 —qt)™"
i elen = 2 Sy ) (s - )
is called the relative fundamental solution for L,, i.e.
(1.12) f=Lof+d+Cf

for f being a Schwartz function or distribution with compact support in H.
Here C is the Cauchy—Szegé projection ([S, Section XIII, §4]). Let I =
(I1,...,I2,+1) be a multiindex. Define

I
D =xlr . xIhyrt |yl

In the next section we will need the following characterization of polynomi-
ally growing L,,-harmonic functions.

THEOREM 1.13. Let F be a C™® function defined on 'H, satisfying
L, F(€,1) =0
and such that
[P )] < e+ [¢]+ /)N
for a constant N > 0. Moreover, assume that for all multiindices I we have
IDTE(E )] < ex(1+ [¢] + 11N
Then for all o = (aq,...,an) and |a| > N + 2 we have
ZOF(€,t) =0,

where Z% denotes any operator Z;, ... Zj. 2 € {Z1,...,2,}, such that
Z; appears o times.
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Proof. Let ¢ € C°(H) and

where
(1.14) T(&,t) = €] + [t
For m > 1 define ¢,,(&,t) = ¢(¢/m,t/m?). By (1.12),

SmE = C(¢mF) + Lo(nF) @,
and _ _

Z;(C(pmF)) = 0.
We also have
Zi(JEP/a—it) =0,  Z;(|€1P/4+it) =&,

2 log((€/4 +it) = i
Then
Z0(6,0) = ol 8)
’ (1€2/4 + i) PI(|€]2 /4 — ity
So

T 1B
% = ¢(B)T (&, 1) 1A=,

Fix (&,t). It is easy to notice that for m large enough we have

ZP(¢mF(E,1) = ZPF(E,1).

|ZP0(¢,1)| < c(B)

Moreover,
Z0(¢mF(&,1) = | Lo(mF)(w, $)Z°®((w,5)" (&, 1)) dw ds.
Observe that
Ln(dmF)(w,5)] < em™,  |Z0B((w,5)71(€,1)] < o8, & tym 172
for 7(w, s) < 2m and m large enough. Therefore,
1ZPF (1) <c S mNTIB=20 oy ds = ! mNT218
{(w,s):7(w,s)<2m}
This proves the theorem. m

1.2. Holomorphic functions on the Siegel half-space. In this section we
will characterize polynomially growing holomorphic functions defined on U.
In view of (1.7)-(1.9) we have

(1.15) dO(Z;) = 20, + i€;0.,
(1.16) do(Z;) = 20¢, — i&;0%,
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where (d§(Z;)F) o6 = Z;(F of). For a function F' defined on U we consider
(1.17) F((¢,1)a) = F(0(4,t,a)).

Suppose that there is a positive integer IV and a locally integrable function
((a) such that

(1.18) [F((& t)a)] < Cla) (1 + ¢ + ¢/
Clearly by (1.7), if P is a polynomial defined on U, then there are constants

¢, M such that |P((¢,t)a)| < c(14 a+ |¢] + |t|2)M, so the condition (1.18)
is satisfied.

THEOREM 1.19. Suppose that for a function F satisfying (1.18) we have
(1.20) (8 +i0,) F =
(1.21) Ln,F = (L —inT)F =

where L = Z?Zl(XjQ + yf) Then there is a polynomial W such that FF — W
18 a holomorphic function.

Proof. Notice that from (1.20) and (1.21),
(L—nd,)F =(L—inT)F =0 and (87 +8)F =
For a multiindex I = (11, ..., Iop41) let
DI = (ax))! .. (aX) ! (@) I+ L (aY,) 2 (a2 T ) T2
be a left-invariant differentiable operator defined on S. Define
(1.22) L = a(£ — nd,) + a*(0? + 9?2).

Then L is an elliptic operator with real polynomlal coefficients and it anni-
hilates the real and imaginary parts of F so RE and SF are real analytic

([N, §3.8]).
Using the Harnack inequality for L, denoting by B some neighborhood
in § of the unit element e we obtain

(1.23) IDTE((&,t)a)] < er [ IF((€,t,a)(w, 5,b))| dm((w, 5)b)
B

< Cr(a) (X + [¢] + [¢/2)N
Define

K =0(L—nd,) = 4266 O +2i Zg]a O — 20 &0:0¢, + |£[°0-0:.
Jj=1 j=1
Then by (1.20) and (1.21) we have

(1.24) KF(€,2) = (4 > 0,0, +2i szazagj)F(g, 2) =0
pst =1
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In viezv Qf Theorem 1.13, there is a number p such that for 1 < ]_ <n
we have ZPF(£,t) = 0 if | 3| > p. (We are going to skip df and write Z” on
both U and S). Together with (1.16) and (1.20) this implies

(1.25) 6§F(§, z) = 0.
Put w = (&, 2). In a neighborhood U of wy = (0,7) € U we write

F(w) =" cap(w — wo)™(®@ — )",
a8

where w = (§,2) and £ = (§1,...,&), 2,&§5 € Cfor 1 < j < n. Let g =
(B1, ..., Bnr1). In this notation w? = §f1 .. .55"-2’/3"“. Notice that if ¢, g # 0
then

n
d Bi<p—1, Buy1=0.
=1

Let 8o = (41, .-, Bnt1) be such that Zj Bj =p—1. So by (1.24),
(1.26) aza§°F = 0.
Let

h(w) = a§°F(w).

It is easy to see that h(w) = h(§) is a holomorphic function which does not
depend on z. Moreover,
[A(&)] = [1(€,0,1)| = |2 ... ZPF(£,0,1)] < e(1+ €)Y

and so h is a polynomial, i.e.
(1.27) h(w) = Wg,(w) = Bo! anﬁo(w — wp)“.

Moreover, Wpg, does not depend on z.
For smaller multiindices we need the following lemma:

LEMMA 1.28. Suppose that the function F satisfies the assumptions of
Theorem 1.19. If

(129) 8?F(€7 Z) = 9(5,2’) + W(§7 2)7

where g is a holomorphic function, W is a polynomial and m = (my, ..., my,)
#(0,...,0), then g is a polynomial.

Assuming that Lemma 1.28 holds, let us now finish the proof. Consider
the function

gw) = 2 .00 92 (F(w) = 3 o (w = wo) (@~ w0) )

1 j_l n -
- ag . .ag_ N .agn F(w) + Wy (w)E;,
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where Wp, is as in (1.27). For w € U we have

g(w) = CZ Cov,B1romnsBi—1ymnns B 0 (W — W0) ™

«

Hence ¢ is holomorphic. From Lemma 1.28 we see that g is a polynomial.
Fix a multiindex m = (my,...,my,0) and assume that for all multiindices
r=(r,...,m,0), r #m, m; <r; <p;—1,

> Ca(w — wo)*(W — Wo)"
is a polynomial. Then
g(w) = 97 (F(w) = Y cap(w — wo)* (@ = Wo)") = O F(w) + Win(w),

where W,,, is a polynomial. For w € U we have
g(w) = €3 camlw = wo)"™
(0%

So g is holomorphic, and by Lemma 1.28 it is a polynomial. Finally, we
conclude that

F(w) = can(w — wo)* + Wo(w),

which completes the proof of Theorem 1.19. =
Proof of Lemma 1.28. Notice that [0, K] = 2i0.0;. Therefore
0= ag—”lCF(ﬁ, z) = IC(@E”F({, z)) + 2i\m\6282—”F(§, z),
where [m| = >7"_; m;. From (1.29) we obtain
K(g(&,2)) + K(W(E, 2)) + 2i|m|0.9(&, 2) + 2i[m|0-W (&, 2) = 0.

Since ¢ is holomorphic, 9,¢(&, z) is a polynomial. Moreover, we can find a
holomorphic polynomial P such that 0,P = 0,g. Then we have

0:(9 — P)(§,2) =0,
8EJ(Q_P)(£7Z):O7 1§]§n7
9z(9 — P)(&,2) = 0.
Therefore, the function hy(§) = (g—P)(&, 2) is holomorphic and independent
of z. Then by (1.29) we get
(€] = [ (€,0,1)] = |Z™F(£,0,1) = W(£,0,1) — P(€,0,1)]
< Gu(D)(L+ DY

and so g is a polynomial. =



PLURIHARMONIC FUNCTIONS ON SIEGEL DOMAINS 39

2. Type two Siegel domain over the cone of Hermitian matrices

2.1. Definition and the basic properties. Suppose we are given a cone {2
in a Euclidean space V, a complex vector space Z and a Hermitian symmetric
bilinear mapping

P:ZxZ-VE=V+iV

such that

D, eN forée 2z,
if @(£,6)=0 then £=0,

P&, w) = P(w, §).
The Siegel domain associated with these data is the set
D={(¢2) e ZaV": 3z —D(E,€) € 2},

where 3 (z+iy) = y for z+iy € VC. In this paper V is the space of hermitian
n x n matrices, considered as a linear space over R. Then VC is the space of
complex-valued n x n matrices. The space Z consists of the complex-valued
n x m matrices and {2 is the cone of positive definite matrices in V. The
bilinear mapping ¢ is given by

b(&,w) = Ew'.
The elements w € Z, 2 € V act on D in the following way:
(2.1) (6,2) > w0 (€,2) = (€ +w, 2 + 2B(E, w) + iB(w, w)),
(2.2) (& 2) = xo(l,2)=(§2+ )

All the mappings of the form (2.1) and (2.2) form a group which will be
denoted by N(®). The multiplication in N(®) is given by
(2.3) (& 2)(Cy) = (§+ Gz +y + 239(¢, ().

Clearly, Z @ V is the Lie algebra of N(®). Let S be the group of lower
triangular complex n X n matrices with positive entries on the diagonal and
let

o(s)§=s, s€S,E€Z.
Notice that

(2.4) D(o(s)€, 0(s)w) = s®(&, w)5".
Therefore, s acts on D as follows:
(2.5) (&, 2) = s0(&2) = (0(s)€, 25").

N(®) and S generate a solvable Lie group which is their semidirect product
with multiplication

(26) (fvxa S) ° (517:1:17 81) = ((5»1')(0(3)517 legt)7 851)'
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Then the Lie algebra of N(®)S is Z®V &S, where S is the Lie algebra of S.
Clearly the group N(®)S acts simply transitively on the domain D, and the
function

(2.7) 0(&,vs) = (&,vs) 0 (0,1)

is a diffeomorphism of N(®)S onto D. So we are going to identify the group
N(®)S with the domain D. If n = 1, then D is just the Siegel half-space,
so from now on we assume that n > 2. Let |¢| and |v| be Euclidean norms
in Z and V respectively, and ||s|| the norm of the linear transformation

(€:0) = (o(s)€, 50).
The Lie algebra Z @&V & S is identified with matrices:
Z:{(fij)lfij eC,i=1,...,n,j= 1,...,m}
V= {(Uij) 1 € C, Vji = Vjj, 4, ] = 1,...,n}
8:{(wi,j) D Wi eC, Wij =0 for ¢ < j, Wi j eR, i,j=1,...,n.}
We will need commutation relations in the algebra Z &V & S. We consider
the following basis of it. For S we choose the matrices

Hy = (hpq)

and the matrices

1
pa=lm> k=1,...,n, where hpy; = 50pqkk;

. ) «
Ykojé' = (Upg)pg=1,.ns 1<k <j<mn,a€{li}, where yp,= ﬁ Opq,jk-
A basis of V consists of the matrices
Xik = (Tpg)pg=1,..ms k=1,...,n, where zp; = Opg ik,

and the matrices

X = @pg)pg=1,.m, 1<k<l<n, ae{l,i},

h G S
where xpy = —= dpqik + —= Opg ki-
pe = P /2 P
On the other hand, it is convenient to take in Z the matrices
1
Xt = (pg) p=1,.n, k=1,...,n,1=1,...,m, where z,,= 5 Opq.el»

q=1,...m
i
Vi = (Ypg) p=1,.m, k=1,....,n,1=1,...,m, where y,, = 2 Opq.kel-
q=1,....m
Now we calculate brackets in the algebra S. It is easy to see that the only
nonzero commutators in S are

(2-8) [HkaYkO}] - —%Ykoj'a [Hjaykoﬂ - %Ykaj
fora=1,i, 1 <k<j<n.
Notice that V is abelian so a commutator in V & S is given by

(2.9) [(x,8), (x1,51)] = (521 + 215" — 510 — 28}, [s, 51]).
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The only nonzero commutators are given by

[Hy,, ]ak]:% S for 1 <j<k<n,

[Hy, X0 = 5 X7, for1<k<j<n,

[Hk,ka] = Xk, for 1 <k < n,

[Y,%,ka] = X%, for1<k<j<n,

(2.10) Y3, X5 = X, for1<k<j<n,

2

Yy ;k]:%X;jv for1<p<k<j<n, a=1,1,
1 .

[Yk();ank]:_QX;’jv forl<p<k<jsmn a#p

Notice that the bracket in N (@) is given by

(211) [(Caq:)a(Clvxl)] = (0’4%¢(C7 Cl))
Using (2.11) we may easily find the nonzero commutators in IN(®):
1
(X, Xpi] = ﬁXip for1<k<p<n,
(Xt Vi) = =X fork=1,...,n,
(2.12) 1
(Xt Vil = =75 Xnin(pmax(ep) T8 Fop =1-ooms ki 7 p,
1
[Vt V] = EXIZP for1<k<p<n,
where [ =1,...,m.

We do the same with commutators in Z® S. It is easy to see that in this

algebra
[(07 5)7 (57 0)] = s8¢,

where s € § and £ € Z. Therefore the only nonzero commutators are

1 1
( ) [Yklj’Xkl] = 75 Xit, [Ykljvykl] = E Vit
2.13
: 1 i 1

where 1 <k<j<nandl=1,...,m.
We are left with the commutators

(2.14) [Hi, Xt) = 3 X0, [Hi, Vi) = V0,
where k=1,...,nand I =1,...,m.

REMARK 2.15. The basis of the algebra Z®V®S just chosen is consistent
with [BDH, Section 2.2|, the elements of V & S being denoted identically. If
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we fix k then the vector fields

Xklv"’7kavyk17"'aykm

form a basis of the root space, denoted by Zj in [BDH], and they correspond
to the vectors A", Vi in [BDH]. The structure of a Jordan algebra in V is
given by multiplication
rox = %(:L‘:L’l + x17)
and the scalar product is
(x,21) = tr(zxy).

2.2. Holomorphic functions on D. On N(®)S we will consider a number
of differential operators. Let

Wk:ka—f-in, k=1,...,n,

V?k:X?k“‘i ﬁg, a=land 1 <j<k<n,

Vi=X0+iY, f=iandl<j<k<n,

and

m

Ly = Z ZyZy,

k=1

where
Zk:.)flk—iylk, k:zl,...,m.
For a function F' on D we define
(2.16) F(&,2) = F ((€,25) o (0,4)) = F o (¢, ).
Suppose that F has the following properties:

(2.17) F is annihilated by the operators £1,Wj and V?k,
and for a submultiplicative function 7,
(2.18) [F(& s)| < en(s)(1+ [¢] + |2]/*)M.

A submultiplicative function is a function bounded on compact sets and sat-
isfying n(s1s2) < n(s1)n(s2). We have the following characterization of func-
tions F'.

THEOREM 2.19. Let F be an analytic function which satisfies (2.17) and
(2.18). Then there is a polynomial W such that F'— W is holomorphic. If F
is a family of functions satisfying (2.18) for a given M, then the polynomials
W may be chosen to have degrees uniformly bounded.

The rest of the section is devoted to the proof of Theorem 2.19. Notice
that m
£1 = Z(ka + y%k) - minl.
k=1
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For a function satisfying (2.17) we also have
m
LoF = (Z(ka +Y2) - mH1>F.

k=1
Define

A;=WW; = X3, + H} — Hj,
S = ViV = (X2)7 + (V) = Hy,
fora=1,iand 1 <j <k <n. Let

m n
(2.20) M= (X5 + V) —mHL + Y Aj+ > A%

k=1 j=1 j<k,o
Then MF = 0. From (2.13) the vector fields Xjx, Vi for k = 1,...,n and
Xjj, Hj for j = 1,...,n, and X]‘?‘k,YjO/fC for 1 < j<k<nand a =14
generate the Lie algebra of the group N(®)S. This means that the operator
M satisfies the Hérmander condition. We will use the Harnack inequality
for the operator M to estimate the derivatives

IDE(¢, vs)| < en(s)(1+ [|s|)™ (1 + [¢] + o]/,

where D = Py... P, 7 € N, Pj € {Xpg, Yy X2, V3, X0 V3 Xy Hy 01 <
g<m,1<p<n,1<k<l<n}, and ||s] is the norm of s as a linear map
on VC.
Indeed, by the Harnack inequality for M ([VSC, Section III]) we have
IDF(0,€)| < ¢ | |[F(x, wr)| dx dwdr,
B

where B is a fixed bounded neighborhood of (0, €). Since M is left-invariant,
we may write

(221)  [DF(&vs)| < c | |F((& vs) o (x,wr))| dy dwdr

B
< en(s) S n(r) (1 + € + sx| + |z + sws® + 23B(¢, sx)|Y)M dx dw dr
B
< en(s)(1+ [lsID™ (1 + [¢] + [ 72)M § () (1 + x| + [w]*)M dyx dw dr.

B
Consider the Heisenberg group H generated by Xix, Vig, K = 1,...,m,
and X71. The function F restricted to H satisfies the assumptions of Theo-
rem 1.13. Hence for my = |y| = M + 3,

(2.22) ZF =0

on the group H, where Z7 is as in Theorem 1.13. We will show that (2.22)
is satisfied on N(®)S. To prove that, we consider

G(& ws) = F((x, vs1)(E, 5))-
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Condition (2.17) is satisfied for G. Moreover, by (2.6),
|G (& ws)] < enls1)(L+ [lsalD™ (1 + x| + o] 2)Mn(s)(1 + [€] + |2|'/2)M
= C(x, vs)n(s)(1+ [€] + ||
where C'(x,vs1) is a constant depending on y,v and s;. By Theorem 1.13,
Z7G(€,x) =
for |y| = M + 3 and (§,z) € H. But

(27G) (&, x) = Z7(F((n,vs1)(§,2))) = (Z7F)((n, vs1)(§, ),
and (2.22) follows on N(9)S.
We need to write Wj,V?k for « = 1,7 and Z, in coordinates on the
domain D. Introduce on V° the following coordinates:

Z=2%+iZP,  (a) = (22) + i(z}fl)

where 2 = (211 + 211)/2 and z,fl = (—zp+zik)/2iand 1 < k <1 < n.
Moreover, notice that the terms 2z}, and z,f .. are the real and imaginary parts
of 2y, respectively. We write every element £ of Z as £ = (&;). The element

(&, 2) € D will always be written in coordinates as &g, 2, Zlfl' Moreover, we
assume that

_ : _ . B8 _ B . B
Skl = Ty + Yk, 2 = Tyt Wk, 2y = Ty Y

Each s € S will be written as
(2.23) 5 = wa,

where w = [wy;] is a lower triangular matrix with wy;, = 1 and a is a diagonal
matrix with strictly positive entries ai, ..., a,. In the theorem below writing
W, W, G, We mean w o o1, Wy © =1 apof L.

THEOREM 2.24. Let 0 be as in (2.7). Then

(2.25)  dO(Xye + iHy) = ay (zazkk + ZZ (i ()= + ()0, gj)),
h=k j=k
where cgk(w):cgk(w)zo andk=1,...,n. For1 <k <l <n,
(2.26)  dO(XC+iYE) = /arar (\f Dz0 +Z Z ,+b§j(w)a§gj)),
h=Fk j=l
where b (w) = b’gl(w) =0. For1 <k<l<n,
B By _ o .

(2.27) dO(X]+iv]) = 1/—%@1(@ 0p +3 D (i (1) Dz, +dy (w)o 5])),

h=Fk j=l
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where dff,(w) = dfl(w) =0,

(2.28) do( X + i) = <Zwl1 (8‘ 2ii§jkazlj>>v
j=1

where wi1 = 1,
i(Zer — 218) + 206, €)1k
2((11 ] 0_1) ’
(&€ = 2501 &1y - &gy and a1 007 = Sz11 — |12, where |67 = (£,6)11.

All the terms b, bﬁc, oy Cklv dag;, d L1 are monzero polynomials of degree 2 de-
pending on w and w.

(2.29) Wpy 06! =

The proof of this theorem is standard and it is left to the reader.

The aim of this section is to show that for every j, k, agij is a poly-
nomial. We start with the following observations. Notice that for every
1<j<k<mnandl=1,...,m we have Z/(a;) = 0, Z/(a;) = 0 and
Z(w;x) = 0, Z;(wj)) = 0. This means that the factors a; are not important
in our case. So we have the analogous equalities on the domain. For example
df(Z;)(a; 0 071) = 0. To simplify notation we will identify the vector fields
and functions on the group and on the domain denoting them identically,
i.e. if we write Z,F, we mean df(Z;)F. This will not lead to confusion. For
E=1,...,mset w= (1, wa,...,wy1) and g = (&1k, ..., &nk). Then

(2.30) WY = Wht ... WY
and N N

o 1 n

877’“ 8§1k 6§nk

THEOREM 2.31. Suppose that the function F satisfies conditions (2.17)
and (2.18), and m1 = m(M + 3). Then

(a) 0z, F =0 fork,l=1,...,n

2 0 A

(b) ZIF = aff/ (2 |a|=q Ca®* 0 ) F, where co > 0.

(c) 8gF(§, z) = 0 for every multiindex v with || = my
For every compact subset K CV @ S and every multiindex v there are con-
stants c(vy), M () such that if (§,z) € 0(Z x K), then

(d) [07F (&, 2)| < e(7)(1+ YV ).

Proof. (a) will be proved by induction on k+1. Notice that for k =1 =n,
from (2.25) and (2.17) we obtain

O_de( ) (57 )_20% Znn (67 )
Therefore 0z, F (&, z) = 0.

Znn
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Assume that the formula holds for 2n > k+1 > t. Then for k +1 = ¢
from (2.17) we have

0 = do(Xj + 1Y) F (&, )

ara; (\/_(%kl Z w)0ze, o+ b ()05 )

pl

p=k+1
+ Z w)dze + ) (w)D_s )
q=l+1 ka
+ Z Z w)dzg, + by ()95 ) | F(E 2).
p=k+1 gq=Il+1

Notice that we can apply the inductive assumption to the terms containing
sums. Therefore we obtain

Zkl (ga )_0

By the same method we prove the rest of (a).
Now we prove (b) by induction on ¢. For ¢ = 1, by (a) we get

(2.32) ZLF = \/a( Zn: wi (aglk — 9 angjkaglj))F
=1 Jj=1

n
= V(S unde, )F
=1
Assume now that the formula holds for g. Then

ZZH = a§/2zk( Z cawo‘(?O‘)

lal=q
Notice that Z;w® = 0 and 8z, F = 0 by (a). Therefore
(2.33) ZIHp = gt/ 2( 3 CawO“@,?]‘k)F
|a|=g+1

and ¢, are strictly positive, which finishes the proof of (b).
For (c), by (b) we get

0=Z"F= > caW™dF
laf=m
Notice that if o # 3 then W® # wWP. So, if we differentiate the equatlon my

times with respect to z,1, we obtain amlF = 0. Induction gives 8 F =0,
nk

if we apply aﬁ, where z = (1,221,...,2n1), |B] = M + 3 and j = 1,...,
Notice that for || = m; we will just have 8§‘F =0.
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Now, we show (d). Let s = wa be as in (2.23). Notice that

= Z Wa,g(f,vwa)Dﬁ
a’ﬁ
where W, g is a polynomial in §,v,w, ay, ..., an,, a;l, ...,a; ' If vs is in the
compact set I, then from (2.21),

(2.31)  |02F(€vs)] < ec 1+ S IDTF(E, vs)] < e(1+]g)) M@+,
il

Because of (2.7) the image of J¢,, on the domain is O¢ +2 g Wia(§)0z,,
and so we obtain

0, F(¢.vs) = ((2, +2qu ) F) (0(¢,05)) = 9, (&, 2).

Therefore, on §(Z x K) we have
O2F(E.2)] < (1 + Je) MO,
which finishes the proof of Theorem 2.31. u

Every polynomially growing function which is holomorphic in C” is poly-
nomial. We will need the following generalization of this fact to our situation.

LEMMA 2.35. Suppose that a function f is analytic on D and satisfies
the following conditions:

(1) For all k,1, we have 0z, f(§,2) =

(2) For every k,l there is By such that 8§:llf(£, z) =0.

(3) There is p such that for all |7y| = p, we have Ggf(g, 2)=0

(4) There is a nonpositive integer N such that for every compact set

K there is a constant ¢ such that |f(£,2)] < c(1 + |EDN if (€,2) €

0(Z x K).

(5) There is a nonpositive integer N such that for every |y| < p and every
compact set K there is a constant ¢ such that |0gf(£, 2)| < e(14€))N

if (€,2) € 0(Z x K).

Then f is a polynomial.
Let F be a family of functions which satisfy the above conditions for given
p, N, Br;. Then the degrees of the polynomials in F have a common bound.

The proof of Lemma 2.35 is an elementary calculation.

In the next step we will try to get some more equations satisfied by
the function F'. We know that Z*F' = 0 for |a| = m;. We will need some
formulas for Z* for |o| < mi. To do this we will use commutators.
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Notice that for k = 1,...,m the vector fields Z;, have the properties

(2.36) [2k, 2] =0, k#],
(2.37) (2, Z4]F = |21, Z)]F = —iay ( 3w ( anazﬂ))p,
j=1 =1
where w11 = 1, and F is as in (a) of Theorem 2.31. Indeed,
(2, Z;] = [Xig — i1k, Xaj + i)
= [Xik, X5 + Vi, V1] — i((Viw, X15] — [Xg, Vij]) =0
by (2.12). On the other hand, if £ = j, then [Xx, V1] = —X11. Therefore
(2.38) (21, Z1] = —2iX11 = —i(Wy + Wh).
Using the fact that W F = 0, we obtain
(21, Z4]F = —iW, F.
A direct computation using the action of (£,vs) € N(2)S on D given by
(2.39) (€,v8) 0 (x,u) = (€ + sx,v + sus’ + 2id(sx, &) +i®(&, £)).

shows that
n n
Wi =ay ijl ( Zwuazjl)v
j=1 =1

and so we get (2.37).
LEMMA 2.40.
Z%ZkaF = (Z[Zk, Zk]Zﬁc + ZkZ?FI)F.
Proof. The proof is by induction. For [ = 1 we have
Assume that (2.40) holds for . Then
Notice that
[[Zk; Zk]s Zk) = [[Zk, 2], 2k] = 0.
Therefore,
ZZ 2L F = (1124, Z1) 25 + (24, 24 20 + 2,20 F
= ((1+1)[2, Zg) 2 + 2,20 F,
which finishes the proof. =
From Lemma 2.40, (2.36) and (2.37) we obtain

m m
(2.41) ZOLF =2 Z.ZcF = |al[21, 21]2°F + ) 2,Z%F,
k=1 k=1
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where By = o+ e, and e, = (0,...,1,...,0), with 1 in the kth place.

Moreover, notice that if || = m; — 1, then Zﬁ’“ =0 for every k=1,...,m.
Therefore we get an additional equation
(2.42) (21, Z1]2Z°F = 0.
Since [[21, Z1], Z1]F = 0, (2.38) gives
n n
(2.43) Za<2wj1(2wk18zjk))F =0.
j=1 k=1

Hence

n
(2.44) Zwﬂfa(z:mlazjk)p -
j=1 k=1
Notice that for j =2,...,nand k = 1,...,n from (2.29) and (2.28) we have
Oz, wg1 =0 for j # k,
Oz, Wi = 2%21 # 0,
(0z,,Z])=0 forl=1,...,m
851].@1 =0.

Applying 0z,; to both sides of (2.44), for a function F' that satisfies (a) from
Theorem 2.31 we have

0= Z azljwll (Zwklazlk)F—f-ZwllZ (kalazlk)agljF
=1 k=1
7 —
Z“(kalazjk)F
1 k=1

For |a| = m; — 1 we get the equation
n

(2.45) ZO‘(ZEM@M)F =0 forl1<j<n.
=1

We will consider the case when j = 1 (for other indices the proof is the
same). The equation (2.45) for |a| = m; — 1 gives

(2.46) Zo ( Zwklam)F =Y w20, F = 0.

k=1 k=1

We will need an expression for Z¢, similar to (2.33). We will show by induc-
tion that if 0;,, ' =0 and k,l =1,...,n, then

(2.47) ZOF =d? Y wﬂ( > caps0IF),

|B1=la IyI=lal
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where @ is as in (2.30), and v is a multiindex related to partial derivatives

given by & = (&pq) 1<p<n - Notice that some ¢, 3, may vanish and for |a| =1
1<g<m

we simply have (2.32).
Indeed, from (2.28),

Zk(ZO‘F):aW‘ﬂ Z @ﬂ< Z Ca’gﬁzkagF)

B=lo]  hl=lof
_a|a/2|ﬁza| (;}acam(Zwua) )

Rearranging terms we will get (2.47). Let

(2.48) fag= > Ca,pr O F.
1y1=le
If |a| = 1, Z% = Z}, and w° = w;; then by (2.32),
(2.49) fap = O F.
Notice that if 0z,,F = 0, then also 03,,0,,, F' = 0. Hence
200, F = a2 3" w0 (3 capr000.,F) =2 ST w00, fup.
18l=|al [y1=lel |8l=le

The equation (2.46) gives

(2.50) > W0, fap =0.

k=1|B|=|al
Analogously for j = 2,...,n,

n

Y D W@, faps =0

k=11B|=|a]
We will show that for every o the functions f, g are polynomials in { and z.
In view of Lemma 2.35 it is enough to prove that for every zj;, there is
;k such that 07 fo 3 = 0. We start with |a| = my — 1 and then proceed
by downward induction on the length of «, finally getting the conclusion for
|a| = 1. Then Theorem 2.19 follows immediately by (2.49).

Now we prove that the f, 3 are polynomials.
LEMMA 2.51. For |a| =mi1 —1, fo 3 is a polynomial. If F is a family of

functions F satisfying condition (2.18) for fized M, then the degrees of the
corresponding polynomials fo g have a common bound.

To prove this we need the following lemma:
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LEMMA 2.52. Let |a] = my — 1. For every |3| = |a| and every j,
(2.53) plal=itly, 5 =0.

211
Proof. We proceed by induction on 1 = j. As before for k = 2,...,n
we apply 0 922 ...82’6:1 to (2.50) to get n equations

k1>~ Z21

(2‘54) aZlka?(ﬂl"“’ﬁn)—i_Z azlj fa:(ﬂla"'7ﬂj717"'7ﬁk+17"'7ﬂn) = 07 1 S k S n,
J#k
with the convention that if some 3; = 0, then
8211fa,(ﬁl,---ﬂz—17---ﬂk+17---ﬂn) =0.
For j = |a| by (2.54) we have

D211 fa(la],0,...,0) = O
Assume that (2.53) is true for every (3 such that 51 = j. We will show that
it is true for j — 1. By (2.54) for k =1 and 31 = j — 1 we obtain

aznfa,(jfl,b’z,...,ﬁn) + Z 8211fa,(jﬂmmﬁz*L--ﬁn) =0.
>1
Applying a‘;ﬂ‘j 1 to both sides of the above equality and using the inductive
assumption we get

O IN 1 By = 0.

This finishes the proof of Lemma 2.52. =

Proof of Lemma 2.51. Notice that the same method may be used for the
other equations, and we get the same result as for the variable 211, i.e. for
|a] =mq — 1, every 3 and every k there is [ < |a| 4 1 such that

(2.55) 0L, fap =0.
Moreover, notice that by (2.45), we may use the same argument for other
variables zj, j = 2,...,n. Therefore by (2.35) for |a| = m; — 1 and every

B, fa,s is a polynomial.

Notice that if F is a family of functions F satisfying condition (2.18) for
fixed M, then the corresponding polynomials f, g satisfy the assumptions of
Lemma 2.35 with the same p, M and 3j;. Therefore the degrees of the f, g
have a common bound. =

We want to get a similar conclusion for 0 < |a| < m; — 1.

THEOREM 2.56. For0 < |a] < mi—1 and |3] = |a|, fo s is a polynomial.
If F is a family of functions F satisfying condition (2.18) for fized M, then
the degrees of the corresponding polynomials f. g have a common bound.

Proof. The proof is by induction on |a|. By Lemma 2.51, a‘laVQZO‘F is a
polynomial in &, 2. Assume that the assertion is true for || = K+1 < mj—1.
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We want to show that (2.56) is true for || = K. By (2.41) we have

m
0=cal21,Z21]2°F + ) _ Z,Z%F,

k=1
where 0 = |a| + 1. By the inductive assumption, aga|+2)/22kz6kF is a
polynomial W (¢, z). Indeed, for |[0| = || + 2, a'la‘+2ﬁ‘s is a polynomial in
&, 2, ie.
(2.57) a2z ZZ0F = W(E, 2).

By (2.38) and the fact that W, F' = 0 we obtain
aﬁ‘“'“)/g?"(zwl ( Z@k18zjk>)F(f7 z) =W(, 2).
j=1 k=1

As before this equation is equivalent to

n
(258) agaH_Q)/QZa(Zwklazjk)F((g? Z) - W](§7 Z)v 1< .] < n,
k=1
where W; is a polynomial in &, z.
Assume now j = 1 (for other j’s the proof is analogous). First by (2.58)
and (2.47) we get, for |a] = K,
n
(S Y 0 dun) ~
k=1|8|=K

where ZQF = a‘1a|/2 Z‘m:[( wﬂfaﬂ'

Applying agklagjl...aggl for 1 < k < n, we get for 1 < k < n the
equations

(2.59) af (8Z1kfa,(ﬁlﬂ27mw3n) + Zazufa,(ﬁl,...,ﬁj—1,'..,ﬁk+1,'..,ﬂn)) = Wig,
J#k

where @) is a positive integer < |a| + 1 and if §; = 0 for some j, then

015 fo(B1,B5—1,.. But 1,....3,) 18 meant to be zero. Applying 82%, we get

(2.60) <5z1kfa,(ﬁ1ﬁz,...,ﬁn> + Z@mfa,wl,...,ﬁj—1,...,ﬁk+1,...,ﬁn)) =Wig
j#k
and if §; = 0 for some j, then 0z, fo,(5,,....8;1,... B4 +1,...,8,) 1S meant to vanish.
LEMMA 2.61. For |B| = |a| = K there is v such that
a;ynfaﬁ = 0.

Proof. We use induction on ;. Notice that for 5y = K and k = 1, by
(2.60), we get

0211 fo,(K,0,..,0) = W1,(K,0,....0)-
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Therefore there is 7; such that 9}, fa,(K0,..,0) = 0. Now, assume that the
conclusion is true for every 3 such that 3; = j + 1, i.e. there is ~;;1 such
that 02/, fa3 = 0. In view of (2.60) for k = 1 we have

Ooas for G52 T D Oeri S0, 83,081, 0) = Wi
I>j
where W g are polynomials. Apply 977+" to this equation. Then by the
inductive assumption we obtain

+1
’Zfrl ng(] ﬁ?a aﬁ’n) Vivﬁ
for some polynomials V;j 3. Then there is 7; such that 8211 fa,3 = 0, which
finishes the proof of Lemma 2.61. u

Notice that an analogous argument gives a similar result for other coef-
ficients, i.e. for |3| = K and all j, k, there is d;;, such that

Z]kfaﬁ =0.

Moreover, notice that if F is a family of functions F satisfying (2.18) for
the same M, then the degrees of the polynomials W in (2.57) will have a
common bound, so the ;5 will be uniformly bounded. Therefore, the f, 3
satisfy the assumptions of Lemma 2.35 uniformly and so their degrees have
a common bound. =

3. Pluriharmonic functions on D. Our purpose is to characterize
polynomially growing pluriharmonic functions by three invariant differential
operators (Theorem 3.19). On N(®)S we consider the operators

2 2 .
L = X4+ Vi — Hy, k<n,1<m,
= (X222 +(YS)? —H, k<l<n,a=1,i,
n
(3.1) L= yLj >0,
where £; = > Ljk,

HF = ZajAj, where a; > 0.

(3.2) L= Zd A +ZCMAM,

k<l
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where dj, ¢}, > 0. As L acts on the right, it is well defined also on VS. One
can choose the coefficients d;, Cg,l in such a way that the maximal boundary

is V (JBDH]), which means that every bounded L-harmonic function G on
VS is the Poisson integral

(3.3) G(ws) =\ g(a + sys' ) Pr(y) =: g * P§,

%
where g € L>°(V), Py, is the Poisson kernel for L, and Pj is given by a proper
change of variables ([BDH]|, [DH1]).

Py, is a smooth, positive function on V with integral 1, and G o gisa
one-one mapping of L>°(V) onto the space of bounded functions L-harmonic
on VS. Moreover,

lim G(zwa) = g(z)

a—0
in the weak sense and N
Gz = llgllze~-
Writing @ — 0 we mean that a; — 0 for every j =1,...,n.

Assume that for a real smooth function F defined on N(®)S we have

(34) F((&a)s)] < e(1+ €)Y,

(3.5) LE =0.

Then for every £ there exists fe € L>(V) such that

(3.6) F((& x)s) = | fe( + sy5") Pr(y) dy.
v

fe is called the boundary value of F((€,-)).
Moreover, assume for a while that there exists € such that for every &,

(3.7) supp]?g c{h:e<|N<e

Later on we will get rid of this assumption.
Set F' = F o~ !. The first approximation of Theorem 3.19 is

LEMMA 3.8. If F € C®(N(®)S) satisfies assumptions (3.4), (3.5), (3.7),
and is annihilated by H, L, L1, then there is a polynomial W such that F—W
is pluriharmonic.

Proof. Notice that for every &, F((§,-)-) is a bounded function on VS,
annihilated by L and H, so by Theorem 5.1 and Corollary 5.9 of [BDH],
supp f;() CcNU-2,
where (2 is the cone of positive hermitian matrices.

Let ¢1 be a Schwartz function defined on V such that @1 € C2(V) is
real-valued. Moreover, assume that $; = 1 on a neighborhood of supp fe N {2
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and supp @1 N —§2 = (). Then
Fi((¢,2)s) = [ p1(0)F((§,@ = v)s) dv = | 01(0) F((0, —v) - (§,x)s) dv
% %
satisfies the assumptions of the present lemma. Set f; ¢ = 1 *y fe. Then
f1,¢ is the boundary value of I} and supp f1¢ C 0.

Using the same arguments as in Section 5 of [BDH], we prove that Fj o~
is holomorphic, and so

(3.9) (Xj; +iH)FL =0, (X{+iY5)Fi =0
for j=1,...,.nand 1 < k <l < n, a = 1,i. Moreover, Ejﬁl = 0 for
j=1...,n

Let {5 (A) = @1(=A). Analogously, we define F = g %) F. Then, of
course, F' = Fy 4+ F5, and we prove that F506~! is antiholomorphic, therefore

(Xj; —iH)F =0, (X —iY,5)F =0

forj=1,...,n,1 <k <l <n, a=1,i Moreover Elﬁz = 0. Set F, =
Fio60~'and Fy, = Fy 007!, Then in view of (1.19) there are polynomials
Wi, Ws such that Iy — W; = Hp is holomorphic and Fy, — Wy = Hy is
antiholomorphic. Then

F=FR+FK=H+H+W1+Wy=H+Ha+ W,
where W is a polynomial, which finishes the proof. =
The above lemma can be made considerably stronger.

LEMMA 3.10. Suppose that F € C(N(®)S) satisfies (3.5), (3.6), (3.7)
and is annshilated by H and L. Then there is a polynomial W such that
F — W s pluriharmonic.

Proof. As in the proof of Lemma 3.8 we disintegrate FasF=F + ﬁg,
where

(3.11) (X;+iH;)F1 =0 and (X +iY3)Fi =0
forj=1,...,n,1<k<l<nand a=1,4 and
(3.12) LF =0.

We will show that (3.12) gives Ejﬁ = 0 for every j = 1,...,n. We
use the left-invariant vector fields on IN(®), which are identified with dy;;,
8 oy Oy Oy at e For 1 < j <k <mnandl=1,...,m denote them by

X]],X]k, Xkl,ykl Notice that
(3.13) XF((€,2)s) = (Ady X)FS (€, 2),
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where for a fixed s, Ff(&,2) = F1((€,z)s). If we write s = wa, then
AjF (6 2)wa) = af (Ady X;)* + 07 FY (€, ),
LipF1((& 2)wa) = a;((Ady Xjp)* + (Adw Vp)* — 90, FF (€, 2).
From (3.11) and (3.13) we obtain
Oa; FA((€, w)wa) = i Adu(X;5) F} (€, 2).
Using the fact that LF = 0 we have

(3:14) (- s ( D0 (Adw(Fie))? + (Adu (V) ~ S(Adu( X)) ) Fi = 0.
j=1 k=1
Now, we let a; go to zero. To do this, we have to ensure some regularity of
the boundary value f; of F}. Instead of F}’ consider
ox Fi(€&a)= | o((&a)(n,w) " )Ff(n,w)dndu
N(2)
for p € C°(N(2)). Then

(D2 s (D2 (Adu(Fi))? + (Aduw(Da))? = S(Adu (X)) ) (o % F) =0,
j=1 k=1
and the boundary value for o * ﬁf is o * fi.

Fix w and j. Let aj = t, and ay = 2 for j # k. If we divide (3.14) by ¢
and let t — 0, we obtain
(3.15)  Djw(o* f1)

= (Z((Adw(%kw + (Adw(Vjr))?) — %(Adw()zjj)» (o f1) =0.
k=1
We do this for every j. Dj, is a left-invariant operator on N(®). We will
show that (3.15) implies

(3.16) D FY =0,

If s :=wa in (3.15) then we get the assertion of Lemma 3.10.
Let

G((&,2)s) = 0 x F{(E,2),  g(€.x) = 0% f1(E,2) = ge(a).
Then LG = 0 and
G*(€,7) = G((€,2)s) = ge +v Pi(w).

We only need to show the following property: If D is a left-invariant operator
defined on N(®P), then

DG* (&, x) = {(Dg)(&,@ — v) Pi(v) dv = {(Dg)((0, —v)(&, x)) P} (v) do.
1% 1%



PLURIHARMONIC FUNCTIONS ON SIEGEL DOMAINS 57

This equality holds because we can change the order of integration and
differentiation. This is allowed because

is dominated by c(1 + [£])"Y for some N. So if Dj (0 * F?5) = 0 for every o
and s, then the equality (3.16) is proved. =

The class of operators which characterize the polynomially pluriharmonic
functions can be extended even more. We replace the operator L by a more
general one. Namely, let

(3.17) L= diAj+ ) A,
j=1 k<l
where d;, cg; > 0.

THEOREM 3.18. Assume that F satisfies (3.4) and L'F = HF = LF = 0.
Then there is a well defined boundary value f € L>(N(®P)) of F. Moreover,
assume that f satisfies (3.7). Then there is a polynomial W such that F —W
is pluriharmonic.

Proof. 1f L'F = 0, HEF = 0 and (3.4) holds, then the arguments of
Section 3 of [BDH] show that A~jF = 0 for every j, and adding to L’ a suitable
linear combination 7 ; 7;4;, n; > 0, we can get the operator L = L’ +
> j=17M;4; (see Proposition 3.5 in [BDH| and Lemma 2.1 in [DHMP]). Then,
as before, there is f € L>(N(®)) such that (3.6) holds for fe¢(z) = f(§, ).
Now the theorem follows from Lemma 3.10. m

Our purpose is to remove the condition (3.7), i.e. we want to prove the
following main theorem:

THEOREM 3.19. Suppose that F satisfies (3.4) and L'F = 0, HE =0 and
LF = 0. Then there is a polynomial W such that F — W is pluriharmonic.

Proof. Let ¢ be a Schwartz function on V with

N . N L, A<,
—A pr— )\’ A pr—
P(=A) =2(N), BN {07 N> 2

Consider the family of functions p~"¢(z/p), p € N. For every bounded
function g we may choose a subsequence py such that the limit

lim | p"(2/pr)g(x) da
pk_’oov

exists. Let {¢;} be a dense countable subset in Z. By the diagonal method
we choose pj, such that the limit

(3.20) Jim Yoo (/o) fe, (@) do = H(E)
v
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exists for every ;. Define

Ur(x) = pp"e(x/pr), () = pre(pez),

and consider

J () F((0,—0) (&, 2)5) dv = § pr(0) F((€, 3 — v)s) do,
v 12

- ka(”) , —0)(§, @) = ka F((¢,x —v)s) dv.
v

The condition (3.4) guarantees that F}' and F? are well defined and uniformly
bounded on every compact set in N(&®)S. Moreover, for j = 1,2,

HF =0, L'F/ =0, LF =0
and limg_, ﬁkl — F uniformly on compact sets in N(®)S.
Notice that the boundary values for Fk1 and F,f are @ * fe and g * fe,

respectively, where fg( x) = f(&, z) is the boundary value for F'.
Since @(A/pk) — (pk)\) = 0if [\ < 1/pg or |A| > 2pg, we have

@k*f5—¢k*f§=0

there. This means that F, k} —F kQ satisfies the assumptions of Theorem 3.18.
So, we have a family of functions F; kl - F ,f and a family of polynomials Wy,
(see Theorem 2.19) with degrees bounded by the same constant M; such
that Fk1 — Fk2 — W are pluriharmonic functions. As usual Fl = ﬁg ofh 1.

Let w = (£,2) and for k = nm + n? let wy,...,wy be coordinates in
Z @ VO If |a] > My, then for all k and j we have
0 = O, 05 (F} — F — W) = 0, 05 (Fy — F}),

0 = 0w, 0%(Fy — Ff — W) = 0, 0%(F} — F7).

Now assume that

(3.21)

lim F2((€,2s)) = H(&)

k—oo

exists and is a polynomial, hence limk_m(ﬁk} - l;kz) — F — H. Then we
can take the limit of both sides of (3.21), and if a,, 8 # 0, and |a| + |3] >
max(Mj,deg H), then

0,0, (F) = 03,05 (F — H) = lim 95,05 (F{ — F{) =0.
This means that there exists a polynomial W such that F' — W is plurihar-
monic. To finish the proof of Theorem 3.19 we have to show the following
LEMMA 3.22. The limit

lim FZ((&,zs)) = H(E)

k—o00

exists, is independent of x, s, and it is a polynomial in &, €.
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Proof. Changing variables sy3' = u, we write (3.6) as

F((&,2)s) = | fele — u)P}(u) du.

Since ¢y, is even, we have

FR((&,2)s) = Je, (& — v —y)Pi(y) dy dv

Jou(v) |
1% Y

= Vo) | fe, ) Pi(z — v —y) dy dv
1% Y
[ or () | fe, () P2 + v — ) dy d.
1% Y

Let v(y) = Pj(x +y). Then

F{ (& m)s) = { on(v) fe; x7(v) do.
v
From Lemma 4.3 of [BDH] and (3.20),
Jim F((&,2)5) = H(&) | y(v) do = H(g).
%

For every (§,z)s we choose a sequence {; — . Fix a bounded neighbor-
hood U of (§, z)s such that (§;,x)s € U. By (3.4) and the Harnack inequality
the first derivatives of F| ,3 are bounded on U by the same constant, so there
exists a constant C' such that

[FR((&,2)s) = FR((&,0)9)] < Clé = 1.
The density of §; in Z implies that
Jlim FR((&,2)s) = H(E)

exists and is independent of z,s. Moreover, on compact sets, the functions
F kz are bounded by the same constant, so the convergence is in the sense of
distributions. Then we have

LH = lim LF? =0.
k—o0
Because H is independent of x, s we have
n m
S0z, + a2, ) HE =0,
j=1 k=1
which shows that H is a polynomial. =

Finally, the proof of Theorem 3.19 is complete. u
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