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GENERALIZED RADICAL RINGS,

UNKNOTTED BIQUANDLES, AND QUANTUM GROUPS

BY

WOLFGANG RUMP (Stuttgart)

Abstract. Generalized radical rings (braces) were introduced for the study of set-
theoretical solutions of the quantum Yang–Baxter equation. We discuss their relationship
to groups of I-type, virtual knot theory, and quantum groups.

Introduction. Some problems and conjectures arose from the study of
set-theoretical solutions [1] of the Yang–Baxter equation. A theory of non-
degenerate solutions was developed by Etingof, Schedler, and Soloviev [3]
for the involutive case, and by Lu, Yan and Zhu [19] and Soloviev [27] for the
general case. In [3, 19, 27], a structure group is associated to a non-degenerate
solution, which amounts to a universal linear extension of the solution. In
an equivalent context, this construction was anticipated by Gateva-Ivanova
and Van den Bergh [8]. Moreover, the structure group G gives rise to a
matched pair (G, G) of groups [30, 31].

Using the structure group, a non-degenerate unitary solution S : X2 →
X2 defines a surjection X ։ X such that S induces a non-degenerate uni-
tary solution S on X, the retraction [3] of S. So it may happen that after
finitely many steps, X is mapped into a singleton. In this case, X is called
a multipermutation solution.

In [6, 7], Gateva-Ivanova investigated a class of Artin–Schelter regular
semigroup rings, and it was shown [8] that they lead to involutive solutions
S : X2 → X2 which are square-free, i.e. S(x, x) = (x, x) for all x ∈ X. She
conjectured that every finite square-free involutive solution is obtained in
this way. As observed in [3], the conjecture is equivalent to the statement
that every such solution is decomposable, i.e. there are at least two orbits of
the structure group on X, unless |X| = 1. After its proof [25], the conjecture
was strengthened [5] to the assertion that every finite square-free involutive
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solution is a multipermutation solution. In [5], this enhanced statement is
called the “strong conjecture”.

In [25], we introduced cycle sets, i.e. sets with a binary operation and
a single relation (see Definition 2). Cycle sets X are equivalent to left non-
degenerate unitary solutions S : X ×X → X ×X of the Yang–Baxter equa-
tion. We showed [25] that finite cycle sets are also right non-degenerate. The
linear extension of a non-degenerate cycle set is an abelian group A with a
left distributive multiplication such that the circle operation

a ◦ b := ab + a + b

makes A into a group. Thus A consists of two groups, the additive group
(A, +) and the adjoint group G = (A, ◦), such that A is a right G-module,
and the connection between (A, +) and G is given by a bijective 1-cocycle
G → A. We call such a structure A a brace [26]. In particular, every radical
ring is a brace, and every brace has an underlying cycle set.

Although braces are non-associative and only one-sided distributive,
some concepts of ring theory do apply to braces. For example, the kernel of
a morphism is an ideal in the usual sense, and every ideal I of a brace A
leads to a factor brace A/I. On the other hand, the product of two ideals
need not be an ideal. Nevertheless, braces have a radical series

A ⊃ AA ⊃ A(AA) ⊃ A(A(AA)) ⊃ · · ·

consisting of ideals, while (AA)A need not be an ideal, in general. Dually,
there is a socle series [26] which also consists of ideals, where the socle Soc(A)
is defined as in ring theory, i.e. Soc(A) := {x ∈ A | ∀a ∈ A : ax = 0}. The
retraction of A is just the factor brace A/Soc(A), and for a cycle set X,
the retraction can be obtained from the retraction of the brace A = Z

(X)

generated by X. In this terminology, the strong conjecture simply states
that certain finite braces are nilpotent. Another interesting fact is that the
additive group of the retraction A/Soc(A) is determined by the cycle set
structure of A. (Thus irretractable braces are completely determined by
their underlying cycle sets!)

In the present paper, we start with a brief review of braces and cycle
sets, and then exhibit their relationship to groups of I-type, virtual knots,
and quantum groups. Monoids of I-type (see [8, 11, 12]) arose in the the-
ory of Sklyanin algebras [32]. They consist of a finitely generated free abelian
monoid N

(X) with an additional (not necessarily commutative) monoid
structure, such that the multiplication of a fixed element a ∈ N

(X) by the
generators x ∈ X just gives a permutation of the elements x + a (see Defi-
nition 1). By [12, Corollary 2.3] (or [25, Theorem 2]), it makes no difference
if we replace N

(X) by the free abelian group Z
(X). Theorem 1.3 of [8] states

that monoids of I-type are equivalent to finite involutive non-degenerate so-
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lutions of the Yang–Baxter equation. We will give a simple proof in terms
of cycle sets. Precisely, we show that every group Z

(X) of I-type defines a
cycle set structure on X, and vice versa (Theorem 1).

Section 4 exhibits a relationship between cycle sets and biquandles, which
are invariants of virtual knots in the sense of Kauffman [15]. We prove that
non-degenerate cycle sets are in one-to-one correspondence with “unknot-
ted” biquandles (Theorem 2).

Bijective 1-cocycles have been used by Etingof and Gelaki [2] for the
construction of minimal semisimple triangular Hopf algebras over C. More
generally, Lu, Yan and Zhu [21] obtained a classification of quasi-triangular
Hopf algebras with positive structure constants and proved [20] that Hopf
algebras with “positive bases” arise from matched pairs of groups. In Sec-
tion 5, we associate a minimal triangular Hopf algebra HK(A) over a given
field K to any finite brace A, and show that HK(A) is semisimple if and
only if the characteristic of K does not divide |A|. Furthermore, we show
that braces admit a dual. For cycle sets, a dual was defined in [25], and it
was shown that duals are necessarily unique. Moreover, a cycle set X has a
dual if and only if it is non-degenerate. Since braces A are non-degenerate,
their underlying cycle sets can be dualized. We show that the dual cycle set
comes again from a brace which is naturally associated to A.

1. Generalized radical rings. For any associative ring R, the circle

operation

(1) a ◦ b := ab + a + b

makes R into a semigroup with unity 0. Jacobson has shown [10] that R is
a radical ring (i.e. RadR = R) if and only if (R, ◦) is a group. With respect
to this adjoint group R◦, a radical ring can be regarded as a right module,
with right operation

(2) xa := xa + x, x ∈ R, a ∈ R◦.

In fact, we have

(3) x(ab + a + b) + x = (xa + x)b + (xa + x) for x, a, b ∈ R.

The identical map π : R◦ → R then satisfies the 1-cocycle condition

(4) π(a ◦ b) = π(a)b + π(b).

Thus every radical ring gives rise to a bijective 1-cocycle. So we are led to
the following structure, introduced in [26].

Definition 1. A brace is an abelian group A with a multiplication (jux-
taposition) so that

(I) (a + b)c = ac + bc,
(II) A is a group with respect to the circle operation (1).
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The group (A, ◦) will be called the adjoint group A◦ of A.

Condition (II) can be replaced by two conditions:

(II1) a(bc + b + c) = (ab)c + ab + ac,

(II2) for all a ∈ A, the map x 7→ xa := xa + x is bijective.

In fact, (II1) is equivalent to the associativity of the circle operation, and (I)
implies that 0c = 0 for all c ∈ A, whence 0 ◦ c = c. Furthermore, (II2) states
that every equation x ◦ a = b in A has a unique solution. As is well-known,
this implies that (A, ◦) is a group. In particular, the equation c◦0 = c yields

(5) 0c = c0 = 0

for all c ∈ A.

Note that condition (II1) is closely related to (3). If A is (left and
right) distributive, (II1) turns into associativity. This shows that distributive
braces are tantamount to radical rings.

If we use the exponential notation of (II2), the conditions (I) and (II1)
turn into

(a + b)c = ac + bc,(6)

ab◦c = (ab)c.(7)

Therefore, a brace can be regarded as an abelian group A with an additional
group structure (A, ◦), such that (A, ◦) operates from the right on (A, +).
To make this more transparent, let us consider the groups A = (A, +) and
G = (A, ◦) separately, such that G and A are connected by a bijection
π : G → A (the identical map). Equations (6) and (7) then imply that A is
a right G-module. Thus, if we write (1) as

a ◦ b = ab + b,

the connection between the two groups A and G can be expressed by the
fact that π is a bijective 1-cocycle, i.e. (4) holds for all a, b ∈ G. In other
words, braces are equivalent to bijective 1-cocycles.

2. Braces and cycle sets. In [25], we introduced cycle sets which
are in one-to-one correspondence with left non-degenerate involutive set-
theoretical solutions of the quantum Yang–Baxter equation. In the termi-
nology of [3], such a solution is given by a set X with a bijection S : X ×
X → X × X which makes X into a left non-degenerate symmetric set. If
S(x, y) = (xy, xy), this means, in particular, that the three equations

(8) xyz = x(yz)(yz); xyz =(xy)(xy)z ; (x(yz))(yz) = (xy)(
(xy)z)

(see Definition 7 below) are satisfied in X. By contrast, the definition of a
cycle set is rather simple.
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Definition 2. A cycle set [25] is a set (X, ·) with a binary operation
such that the left multiplications y 7→ x · y are bijective, and

(9) (x · y) · (x · z) = (y · x) · (y · z)

for all x, y, z ∈ X.

By linear extension, the left multiplication defines a map

(10) X × N
(X) .

→ N
(X).

What is less obvious, a unique extension of the first variable to N(X) is also
possible if we impose the condition

(11) (a + b) · c = (a · b) · (a · c),

which is symmetric in a and b. So we get a commutative diagram

X × N
(X) → N

(X)

∃!

N
(X) × N

(X)

↓

∩ →

which makes N
(X) into a cycle set ([25, Proposition 6]).

Definition 3. A cycle set A with abelian group structure is linear [25,
26] if

(a) a · (b + c) = a · b + a · c,
(b) (a + b) · c = (a · b) · (a · c)

for a, b, c ∈ A.

Note that N
(X) is not linear since (N(X), +) is not a group. By [25,

Proposition 9], every linear cycle set is non-degenerate, i.e. the map a 7→ a ·a
is bijective. Moreover, Proposition 6 of [25] implies that a cycle set X extends
to a linear cycle set Z

(X) if and only if X is non-degenerate. If we replace
the left multiplication b 7→ a · b of a linear cycle set A by its inverse b 7→ ba,
the two equations of Definition 3 turn into the exponential rules (6) and (7),
with b ◦ c = bc + c. Therefore, linear cycle sets are equivalent to braces. So
we get

Proposition 1. For an abelian group A, the following structures on A
are equivalent :

(a) a multiplication A × A → A which makes A into a brace;
(b) an exponential map (a, b) 7→ ab which satisfies (6) and (7) with b ◦ c

:= bc + c;
(c) a multiplication A × A

.
→ A which makes A into a linear cycle set ;

(d) a group G and a right G-module structure on A, together with a

bijective 1-cocycle π : G → A.
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Furthermore, the above discussion exhibits an intimate relationship be-
tween braces and cycle sets, in that every non-degenerate cycle set X gen-
erates a brace Z

(X), while every brace can be regarded as a linear cycle set.
By [25, Theorem 2], every finite cycle set is non-degenerate. So it is natural
to ask the following

Question. Does the implication

Z
(X) ∼= Z

(Y ) ⇒ X ∼= Y

hold for finite cycle sets X and Y ?

There is a formal analogy to the isomorphism problem for integral group
rings which, although a counter-example is known in the general case [9], has
found a positive solution for nilpotent groups [24, 34, 35]. If the answer to
the above question would be positive, a unique brace could be associated to
any square-free involutive solution of the quantum Yang–Baxter equation.

3. Non-commutative group deformation. The close relationship
between braces and cycle sets can be used to relate cycle sets to groups of
I-type, which arose in the theory of Sklyanin algebras [32].

Definition 4. Let X be a finite set. The free abelian group Z
(X), to-

gether with a second group structure (Z(X), ◦) with the same neutral ele-
ment 0, is said to be of I-type if

(12) {x ◦ a | x ∈ X} = {x + a | x ∈ X}

for all a ∈ Z
(X). If Z

(X) is replaced by the free abelian monoid N
(X), then

N
(X) is called a monoid of I-type.

Groups and monoids of I-type were investigated recently by Jespers and
Okniński [12]. It is shown there that every monoid of I-type admits a natural
extension to a group of I-type, so that both concepts are in fact equivalent. By
the following result, this can be viewed as a reformulation of [25, Theorem 2].

Theorem 1. Every group (Z(X), ◦) of I-type defines a finite cycle set ,
and vice versa.

Proof. Every element a ∈ Z
(X) gives rise to a permutation σ(a) of X

with

(13) x + a = σ(a)(x) ◦ a

for all x ∈ X. We define a binary operation on X by

(14) x · y := σ(x)(y)

for x, y ∈ X. Thus by definition, the left multiplication of x ∈ X coincides
with σ(x), which is bijective. To show that (X, ·) is a cycle set, we have to
verify (9) for x, y, z ∈ X.
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From (13) and (14), we infer that

(15) x + y = (y · x) ◦ y

for x, y ∈ X. So we get

((x·y)·(x·z))◦(x+y) = ((x · y) · (x · z)) ◦ (x · y) ◦ x

= ((x · y) + (x · z)) ◦ x = (x · (y + z)) ◦ x = x + y + z

for all z ∈ X. This proves that (x ·y) · (x ·z) is symmetric in x and y, whence
(9) is satisfied.

Conversely, let X be a finite cycle set. By [25, Theorem 2], X is non-
degenerate. Hence X extends to a linear cycle set Z

(X) by [25, Proposition 6].
So Z

(X) is a brace, and the circle operation

a ◦ b := ab + b

makes Z
(X) into a group. Hence x + a = (a · x)a + a = (a · x) ◦ a for all

a ∈ Z
(X) and x ∈ X. This shows that (Z(X), ◦) is a group of I-type, and X

is the corresponding cycle set.
Finally, if Z

(X) is a group of I-type, the corresponding cycle set X extends
to a linear cycle set Z

(X) such that

(16) x ◦ a = xa + a

for a ∈ Z
(X) and x ∈ X. By induction, this implies that any group (Z(X), ◦)

of I-type comes from the cycle set X.

Thus every group G = (Z(X), ◦) of I-type can be regarded as a brace.
Therefore, the right group action of G on the lattice Z

(X) extends to the real
vector space R

(X), so that G becomes a Bieberbach group with fundamental
domain [0, 1]X , the unit cube (cf. [8, Theorem 1.6]). For |X| = 2, the non-
trivial group G of I-type (Example 1.2 of [8]) corresponds to the following
linear cycle set.

Example. For the linear cycle set

0
x

x

y

y

X = {x, y}

G = 〈X | x ◦ x = y ◦ y〉

(nx + my) · x =

{

x for n + m even,

y for n + m odd,

the quotient R
2/G is a Klein bottle.
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4. Quandles and biquandles. Binary operations with bijective left
or right multiplication are well-known from knot theory. For a brief history,
see [14].

Definition 5. A set X with a binary operation ∗ is said to be a quandle

[13, 22] if the right multiplication y 7→ y ∗ x is bijective and such that

(17) x ∗ x = x, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)

for all x, y, z ∈ X.

Every oriented knot K defines a quandle Q(K) in the following way.
Denote the arcs of K between successive crossings by variables. At each
crossing, a relation is added as in the following example.

x

z y

x ∗ z = y
z ∗ y = x
y ∗ x = z

b

c

a

a ∗ b = c

(The orientation of the vertical line is immaterial.)

In 1982, Joyce [13] and Matveev [22] showed independently that up to
weak equivalence, two knots K and K

′ in R
3 are distinguished by their

quandle:

(18) Q(K) ∼= Q(K′) ⇒ (R3, K) ∼= (R3, K′).

If −K denotes the knot K with inverse orientation, and K
∗ stands for the

mirror image of K, the quandle Q(−K
∗) is always isomorphic to Q(K).

Therefore, the quandle does not distinguish the trefoil K3 from its mirror
image. Since

−K3
∼= K3,

we have

Q(K∗) ∼= Q(K).

Later on, the concept of quandle was generalized to that of a biquandle,
which removes the lack of symmetry and also applies to virtual knots and
links [15].

While real knots can be represented by their projection into a thickened
sphere, virtual knots [15] arise when the genus of that sphere is increased.
This can be achieved by attaching infinitesimal handles so that virtual cross-

ings become possible, so called as they do not represent a singulatity. Alge-
braically, a virtual knot diagram is defined as follows.
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Definition 6 (Kauffman). A virtual knot is given by a knot diagram
with additional virtual crossings (at infinitesimal handles attached to the
sphere), modulo generalized Reidemeister moves:

↔

↔

↔

↔

↔

↔

↔

The virtual crossings are marked by a small circle.

As virtual crossings do not represent a singularity, but merely arise from
a global invariant (the genus) of the ambient surface, they can be moved
over virtual and real crossings. This means that locally, virtual crossings
can be treated as if they were not there.

Definition 7. A set X with two operations xy and xy is called a bi-

quandle if:

(a) xyz = x(yz)(yz), xyz =(xy)(xy)z, (x(yz))(yz) = (xy)(
(xy)z) for x, y, z ∈ X.

(b) The map (x, y) 7→ (xy, xy) is bijective.
(c) The maps x 7→ xy and x 7→ yx are bijective with inverse operations

x 7→ y · x and x 7→ y × x, respectively.
(d) (x · x) × (x · x) = (x × x) · (x × x) = x.

To avoid parentheses, we write xyz instead of (xy)z, etc. The simplified
version of condition (d) (cf. [16, 17]) is due to Stanovský [28].

In a similar way as quandles are invariants of real knots, biquandles
can be associated to virtual knots [17, 4]. Every virtual knot K defines a
biquandle BQ(K). Here the generators of BQ(K) are semi-arcs [4], i.e. the
arcs between consecutive real crossings, ignoring any virtual crossing. The
relations are given by the following diagrams:
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a

b

ab

ab

a

b

b

a

For example,

x

z

y t
yt

x = ty

y = zx
z = ty
t = zx

The following theorem shows that non-degenerate cycle sets can be re-
garded as biquandles.

Theorem 2. A non-degenerate cycle set defines a biquandle via

(19) xy = xy · y.

Conversely , every biquandle with this property is a non-degenerate cycle set.

Proof. Let X be a non-degenerate cycle set. Using (19), we can form a
map R : X × X → X × X with

R(x, y) := (xy, xy).

By [25], this implies that R satisfies the set-theoretical quantum Yang–
Baxter equation, which is equivalent to equations (a) of Definition 7. Fur-
thermore, R is involutive, i.e. R21R = 1, where R21(x, y) := (yx, yx), which
implies condition (b) of Definition 7. Condition (c) just says that X is non-
degenerate, and (d) follows by [25, Proposition 2].

Conversely, let X be a biquandle which satisfies (19). Then the first
equation of condition (a) in Definition 7 can be rewritten as x = yz ·(yz ·xyz).
With the substitution x 7→ y · (z · x), this gives y · (z · x) = (yz) · (yz · x) =
(yz ·z)·(yz ·x). Thus if we replace y by z ·y, we get (z ·y)·(z ·x) = (y ·z)·(y ·x),
i.e. X is a cycle set. Furthermore, condition (d) of Definition 7 implies that
X is non-degenerate.

In view of Theorem 2, the question arises which virtual knots K corre-
spond to finite cycle sets. By (19), we have (xy)(x

y) = y, and thus

(xy)(xy) = (xy)(x
y) · (xy) = y · (xy) = x.

Therefore, (19) is equivalent to

(20) (xy)(xy) = x, (xy)(x
y) = y.
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In addition to the Reidemeister moves, this gives

x y

(xy)(xy) (xy)(x
y)

↔

Therefore, the real crossings of such a knot K can be removed, whence K

has to be the unknot corresponding to the one-element cycle set:

{finite cycle sets} ∩ {virtual knots} = { }.

5. Minimal quantum groups. Now we return to braces, i.e. linear
cycle sets. Recall that a quantum group is a quasi-triangular Hopf algebra.
For the general theory of Hopf algebras, see [29].

Definition 8. Let K be a field. A Hopf algebra H over K with an
element R ∈ (H ⊗ H)× is said to be quasi-triangular if

• ∆op(a) = R∆(a)R−1, ∀a ∈ H,
• (∆ ⊗ 1)(R) = R13R23, (1 ⊗ ∆)(R) = R13R12,
• (ε ⊗ 1)(R) = (1 ⊗ ε)(R) = 1.

The second line contains relations in H⊗3 (braid relations). As usual,
Rij means R applied to the ith and jth coordinate, e.g., if R =

∑

ai ⊗ bi,
then R13 =

∑

ai ⊗ 1⊗ bi. The Hopf algebra H is said to be triangular if, in
addition, R21R = 1.

Assume that H is quasi-triangular with

(21) R =
n

∑

i=1

ai ⊗ bi,

such that n is minimal. Consider the subspaces A := Ka1 + · · · + Kan and
B := Kb1 + · · · + Kbn. Then A and B are sub-Hopf algebras of H, and
B ∼= A∗cop, where A∗ denotes the dual of A, and Acop denotes the same
algebra as A with switched comultiplication. Radford [23] has shown that

(22) HR := AB = BA

is a quasi-triangular sub-Hopf algebra. If H = HR, the Hopf algebra H is
called minimal [23]. (This implies that H is finite-dimensional!)

Theorem 3 (Radford [23]). Let H be a finite-dimensional Hopf algebra.

(a) The Drinfel’d double D(H) is a minimal quasi-triangular Hopf al-

gebra.
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(b) Every minimal quasi-triangular Hopf algebra is a quotient of a Drin-

fel’d double.

The first example of a minimal triangular semisimple Hopf algebra was
found by Etingof and Gelaki [2] in 1998. Before we give a description in
terms of braces, we show that braces arise in pairs. In [25], we defined the
dual of a cycle set X to be a cycle set (X,×) which satisfies

(23) (x · y) × (y · x) = (x × y) · (y × x) = x

for all x, y ∈ X. By [25, Proposition 2], the dual is unique, and X admits
a dual if and only if it is non-degenerate. This concept admits an extension
to braces.

Proposition 2. Let A be a brace. The dual cycle set of A is a brace

Aop with respect to the addition and multiplication

(24) a ⊞ b := (a′ + b′)′, a � b := (a′b′)′,

where a′ denotes the inverse of a with respect to the circle operation (1).
The adjoint groups of A and Aop are opposite to each other.

Proof. We show first that the operations (24) define a brace Aop. Ob-
viously, (A, ⊞) is an abelian group with the same zero element 0′ = 0.
Moreover, Aop is right distributive, since

(a ⊞ b) � c = ((a ⊞ b)′c′)′ = ((a′ + b′)c′)′ = (a′c′ + b′c′)′

= ((a � c)′ + (b � c)′)′ = (a � c) ⊞ (b � c).

Furthermore, (a � b) ⊞ a ⊞ b = ((a � b)′ + a′ + b′)′ = (a′b′ + a′ + b′)′ =
(a′ ◦ b′)′ = b ◦ a, which shows that the circle operation for A is opposite to
the circle operation of Aop. Thus Aop is a brace.

By [25, Proposition 2], the map b 7→ a × b is inverse to b 7→ ab = ab · b.
Thus it remains to prove that

(25) ab · b = (b � a) ⊞ b

for all a, b ∈ A. Now (b � a) ⊞ b = ((b � a)′ + b′)′ = (b′a′ + b′)′. Since
0 = a ◦ a′ = aa′

+ a′ = (a · a) + a′, we have

(26) a′ = −(a · a)

for all a ∈ A. Therefore, (25) is equivalent to

(27) −((ab · b) · (ab · b)) = b′a′ + b′.

Now (ab · b) · (ab · b) = (b · ab) · (b · b) = a · (b · b). Hence (27) reduces to
a · b′ = b′a′ + b′, i.e.

(28) a · b = ba′ + b

for all a, b ∈ A. Replacing a by a′, this means that ba = ba + b, which is
trivial.
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Proposition 3. Let A be a brace. With the abbreviation (19), the fol-

lowing equations hold for all a, b, c ∈ A:

a◦bc = a(bc), ab◦c = (ab)c,(29)

a(b ◦ c) = ab ◦(ab)c, (a ◦ b)c = a(bc) ◦ bc.(30)

Proof. The right-hand equation of (29) coincides with (7). By (1), we
have

(31) a ◦ b = ab + b

for all a, b ∈ A. Therefore, the right-hand equation of (29) states that

(ab + b)c = a(bc)(bc) + bc.

By (6), this is equivalent to the first equation of (8). If we pass to the
dual brace Aop, and use (19) and (25), the remaining equations follow by
duality.

Equations (29) and (30) show that every brace A gives rise to a matched

pair (A◦, A◦) of groups in the sense of [30]. So we can form the matched
product G := A◦ ⊲⊳ A◦ [30]. (Note that every group G with subgroups A
and B such that every element of G is a unique product ab with a ∈ A and
b ∈ B gives rise to a matched product G = A⊲⊳B. Namely, every product ba
can be written uniquely as ba · ba with ba ∈ A and ba ∈ B, so that relations
similar to (29) and (30) are satisfied. Conversely, equations (29) and (30)
make A×B into a formal product A⊲⊳B = AB via (a, b)(c, d) := (a· bc, bc ·d)
with a, c ∈ A and b, d ∈ B.) We write the elements of G = A◦ ⊲⊳ A◦ as pairs
(a, b) with a, b ∈ A◦.

Now let A be finite, and let K be a field. Using [31], we define a Hopf
algebra HK(A) with basis G as follows:

Multiplication: (a, b)(c, d) =

{

(a, b ◦ d) for ab = c,

0 otherwise.

Comultiplication: ∆(a, b) =
∑

a=c◦d

(c,db) ⊗ (d, b),

Unit element: 1 =
∑

a∈A

(a, 0),

Augmentation: ε(a, b) = δa,0,

Antipode: S(a, b) = ((a · b′) · a′, a · b′) = ((ab)′, (ab)′),

R-matrix: R =
∑

a,b∈A

(a, b′) ⊗ (a · b, a).
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Note that, alternatively, the group G can be represented as a semidirect
product. In fact, the multiplication map

(32) G = A◦ ⊲⊳ A◦ m
−→→ A◦

has an abelian kernel

(33) Ker m = {(a′, a) | a ∈ A}

isomorphic to the additive group of A. Therefore, G is a semidirect product

(34) G = A◦
⋉ A

with abelian kernel A = (A, +).

Proposition 4. Let K be a field of characteristic 0, and let A be a finite

brace. Then HK(A) is a minimal triangular semisimple Hopf algebra.

Proof. A straightforward calculation shows that H(A) is a minimal tri-
angular Hopf algebra. Furthermore, the restriction of the antipode S to G
coincides with the map g 7→ g−1. Hence S2 = 1. Now the Larson–Radford
theorem [18] implies that HK(A) is semisimple.

Remark. If K is a field of characteristic p > 0, the Hopf algebra HK(A)
is still minimal and triangular, but need not be semisimple. In this case, it
is easily seen that

(35) I :=
∑

a∈A

(0, a)

is a left and right integral, and ε(I) = |A|. Therefore, Maschke’s theorem
for Hopf algebras implies that HK(A) is semisimple if and only if p does not
divide |A|. (Note that dimHK(A) = |A|2.)
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