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ON THE k-CONVEXITY OF THE BESICOVITCH–ORLICZ SPACE

OF ALMOST PERIODIC FUNCTIONS

WITH THE ORLICZ NORM

BY

FAZIA BEDOUHENE and MOHAMED MORSLI (Tizi-Ouzou)

Abstract. Boulahia and the present authors introduced the Orlicz norm in the class
B
φ-a.p. of Besicovitch–Orlicz almost periodic functions and gave several formulas for it;

they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43
(2002)]. In the present paper, we consider the problem of k-convexity of B

φ-a.p. with
respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict
convexity and reflexivity.

1. Introduction and preliminaries

1.1. Orlicz functions. In the following, the notation φ is used for an
Orlicz function, i.e. a function φ : R → R which is even, convex, satisfies
φ(u) = 0 iff u = 0, and limu→∞ φ(u)/u = ∞, limu→0 φ(u)/u = 0.

This function is said to be of ∆2-type when there exist constants K > 2
and u0 ≥ 0 such that

φ(2u) ≤ Kφ(u), ∀u ≥ u0.

The function ψ(y) = sup{x|y| − φ(x) : x ≥ 0} is called conjugate to φ. It is
an Orlicz function when φ is. The pair (φ, ψ) satisfies the Young inequality

xy ≤ φ(x) + ψ(y), x ∈ R, y ∈ R.

When both φ and ψ are of ∆2-type we write φ ∈ ∆2 ∩∇2. Note that if ψ is
of ∆2-type then we have the following property (cf. [1]):

∀ℓ ∈ ]0, 1[, ∀u0 ≥ 0, ∃β = β(ℓ) ∈ ]0, 1[, φ(ℓu) ≤ ℓ(1 − β)φ(u), ∀u ≥ u0.

Let now φ be strictly convex. Then (cf. [1]) for every k > 0 and ε > 0,
there exists δ > 0 such that

φ

(
u+ v

2

)
≤ (1 − δ)

(
φ(u) + φ(v)

2

)

for all u, v ∈ R satisfying |u|, |v| ≤ k and |u− v| ≥ ε.
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A normed space X is called strictly convex when

∀x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ > 0 ⇒ ‖x+ y‖ < 2.

X is called k-convex for k ∈ N, k ≥ 2 when, for each {xn} ⊂ B(X) (the
closed unit ball of X), the following implication holds:

(‖xn1
+ · · · + xnk‖ → k as n1, . . . , nk → ∞)

⇒ {xn} is a Cauchy sequence in norm.

When (X, ‖ · ‖) is a Banach space, the right hand side of this implication
means that {xn} is norm convergent to some x ∈ X.

The k-convexity has been introduced for k = 2 in [2]. In [4], it is shown
that k-convexity for k = 2 implies approximate compactness, which in turn
guarantees the existence of the projection of any element onto any convex
and closed subset of the space.

Moreover it is known that if X is k-convex then it is also (k+1)-convex,
strictly convex and reflexive (cf. [1]). We can also easily see that uniform
convexity implies k-convexity.

Let X be a real linear space. A functional ̺ : X → [0,∞] is a (pseudo)
modular if it satisfies

(i) ̺(x) = 0 iff x = 0 for a modular, and
(i)′ ̺(0) = 0 for a pseudomodular,
(ii) ̺(x) = ̺(−x), ∀x ∈ X,
(iii) ̺(αx+ βy) ≤ ̺(x) + ̺(y), ∀α, β ≥ 0, α+ β = 1, x, y ∈ X.

When, in place of (iii), we have

(iii)′ ̺(αx+ βy) ≤ α̺(x) + β̺(y), ∀α, β ≥ 0, α+ β = 1, x, y ∈ X,

the (pseudo) modular ̺ is called convex .
The linear space X̺ = {x ∈ X : limα→0 ̺(αx) = 0} associated to the

modular ̺ is called a modular space.
When ̺ is a convex (pseudo) modular, a (pseudo) norm is defined on X

by the formula (cf. [10])

‖x‖̺ = inf{k > 0 : ̺(x/k) ≤ 1}.

A sequence {xn} ⊂ X is called modular convergent to some x ∈ X when
limn→∞ ̺(xn − x) = 0. The definition of a modular Cauchy sequence is
similar.

1.2. The Besicovitch–Orlicz space of almost periodic functions. Let
M(R) be the set of real Lebesgue measurable functions on R. The func-
tional

̺Bφ : M(R) → [0,∞], ̺Bφ(f) = lim
T→∞

1

2T

T\
−T

φ(|f(t)|) dt,
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is a convex pseudomodular (cf. [6]–[8]). The associated modular space

Bφ(R) = {f ∈M(R) : lim
α→0

̺Bφ(αf) = 0}

= {f ∈M(R) : ̺Bφ(λf) <∞ for some λ > 0}

is called the Besicovitch–Orlicz space. This space is endowed with the Lux-

emburg pseudonorm (cf. [6]–[8])

‖f‖Bφ = inf{k > 0 : ̺Bφ(f/k) ≤ 1}, f ∈ Bφ(R).

Let now A be the set of generalized trigonometric polynomials, i.e.

A =
{
P (t) =

n∑

j=1

αj exp(iλjt) : λj ∈ R, αj ∈ C, n ∈ N

}
.

The Besicovitch–Orlicz space of almost periodic functions, denoted Bφ-a.p.,
is the closure of A in Bφ(R) with respect to the pseudonorm ‖ · ‖Bφ :

Bφ-a.p. = {f ∈ Bφ(R) : ∃{pn}
∞
n=1 ⊂ A, lim

n→∞
‖f − pn‖Bφ = 0}.

In the case φ(x) = |x|, we use the notation B1-a.p. Some structural and
topological properties of this space are considered in [6]–[8].

Besides the Luxemburg norm, we may endow this space with the Orlicz

pseudonorm (cf. [9])

|||f |||Bφ = sup{M(|fg|) : g ∈ Bψ-a.p., ̺Bψ(g) ≤ 1}

where ψ denotes the conjugate function to φ and

M(f) = lim
T→∞

1

2T

T\
−T

f(t) dµ for f ∈ B1-a.p.

The Orlicz norm ||| · |||Bφ satisfies (cf. [9])

|||f |||Bφ = inf

{
1

k
(1 + ̺Bφ(kf)) : k > 0

}
.

More precisely,

(1.1) |||f |||Bφ =
1

k
(1 + ̺Bφ(kf)) for some k ∈ ]0,∞[,

which means that the set

K(f) =

{
k > 0 : |||f |||Bφ =

1

k
(1 + ̺Bφ(kf))

}

is not empty. Moreover, these two norms are equivalent (cf. [9]):

‖f‖Bφ ≤ |||f |||Bφ ≤ 2‖f‖Bφ.

Note also the important fact that when f ∈ Bφ-a.p., the limit in the
expression of ̺Bφ(f) exists (cf. [6]).
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The following technical result is used in the proof of the necessity con-
ditions of our main theorem.

Let {Ai}i≥1 ⊂ R be measurable subsets such that Ai ∩ Aj = ∅ if i 6= j
and

⋃
i≥1Ai ⊂ [0, α], α < 1. Let f =

∑
i≥1 aiχAi with

∑
i≥1 φ(ai)µ(Ai) <∞

and let f̃ be the periodic extension of f to the whole R (with period 1).
Then there exists a sequence {Pm}m≥1 ⊂ A such that (cf. [6])

(1.2) ̺Bφ

(
f̃ − Pm

4

)
→ 0 as m→ ∞.

2. Results. We first give some convergence results which we will use
extensively in different proofs.

Let Σ = Σ(R) be the Σ-algebra of Lebesgue measurable subsets of R.
We define the set function

µ(A) = lim
T→∞

1

2T

T\
−T

χA(t) dt = lim
T→∞

1

2T
µ([−T, T ] ∩A), A ∈ Σ,

where µ is the Lebesgue measure. Clearly, µ is not σ-additive and µ(A) = 0
when A ∈ Σ with µ(A) <∞. As usual, a sequence {fk}k≥1 of Σ-measurable
functions will be called µ-convergent to a measurable function f when, for
all ε > 0,

lim
k→∞

µ{t ∈ R : |fk(t) − f(t)| ≥ ε} = 0.

Similarly, we define a µ-Cauchy sequence.

Lemma 1 ([6]–[8]). Let {fn}n≥1 ⊂ Bφ(R). Then:

(1) If {fn}n≥1 is modular convergent to some f ∈ Bφ(R) then it is also

µ-convergent to f.
(2) If {fn}n≥1 is µ-convergent to some f ∈ Bφ(R) and there exists

g ∈ Bφ-a.p. such that max(|fk(x)|, |f(x)|) ≤ g(x) for all x ∈ R, then

limn→∞ ̺Bφ(fn) = ̺Bφ(f).

Lemma 2. Let {fn}, {gn} ⊂ Bφ-a.p. with |||fn|||Bφ = 1, |||gn|||Bφ = 1
and limn,m→∞ |||fn + gm|||Bφ = 2. Let {kn}n≥1 and {hn}n≥1 be sequences of

scalars such that the norms of fn and gn are attained in formula (1.1) at the

points kn and hn respectively. If φ is strictly convex and b = supn{kn, hn}
is finite, then knfn − hmgm → 0 in µ.

Proof. Indeed, in the opposite case, we may assume that µ(En,m) > θ
where En,m = {t ∈ R : |knfn(t) − hmgm(t)| ≥ r} and r, θ are some fixed
positive numbers.
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From easy computations we can show the following:

∀ε > 0, ∃σ > 0, ∀A ∈ Σ, µ(A) ≥ ε ⇒ ‖χA‖Bφ > σ.

Let now k > 1 be such that µ(A) ≥ θ/4 ⇒ ‖χA‖Bφ ≥ 1/k and define

An = {t ∈ R : |fn(t)| ≥ k}, Bn = {t ∈ R : |gn(t)| ≥ k}.

We have

1 = |||fn|||Bφ ≥ ‖fn‖Bφ ≥ ‖fnχAn‖Bφ ≥ k‖χAn‖Bφ ,

i.e. ‖χAn‖Bφ ≤ 1/k and so µ(An) ≤ θ/4. By similar computations we also
get µ(Bn) ≤ θ/4.

From the strict convexity of φ, there exists δ > 0 such that

φ(ru+ (1 − r)v) ≤ (1 − δ)[rφ(u) + (1 − r)φ(v)]

for each r ∈ [1/(1 + b), b/(b+ 1)] and |u|, |v| ≤ bk, |u− v| ≥ r (see [1]).

Since kn/(kn + hm) and hm/(kn + hm) are in [1/(1 + b), b/(b+ 1)], for
t ∈ En,m \ (An ∪Bm) we have

(2.1) φ

(
knhm
kn + hm

(fn(t) + gm(t))

)

≤ (1 − δ)

[
hm

kn + hm
φ(knfn(t)) +

kn
kn + hm

φ(hmgm(t))

]
.

Then using (1.1) it follows that

2 − |||fn + gm|||Bφ

≥
1

kn
(1 + ̺Bφ(knfn)) +

1

hm
(1 + ̺Bφ(hmgm))

−
kn + hm
knhm

(
1 + ̺Bφ

(
knhm
kn + hm

(fn(t) + gm(t))

))

≥ lim
T→∞

1

2T

T\
−T

kn + hm
knhm

[
hm

kn + hm
φ(knfn(t)) +

kn
kn + hm

φ(hmgm(t))

− φ

(
knhm
kn + hm

(fn(t) + gm(t))

)]
dt

≥ lim
T→∞

1

2T

\
(En,m\(An∪Bm))∩[−T,T ]

[
δ

kn
φ(knfn(t)) +

δ

hm
φ(hmgm(t))

]
dt

≥
2δ

b
lim
T→∞

1

2T

\
(En,m\(An∪Bm))∩[−T,T ]

[
φ

(
|knfn(t) − hngn(t)|

2

)]
dt
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≥
2δ

b
φ

(
r

2

)
µ(En,m \ (An ∪Bm)) ≥

δ

b
φ

(
r

2

)
(µ(En,m) − µ(An) − µ(Bm))

≥
2δ

b
φ

(
r

2

)
θ

2
≥
δ

b
φ

(
r

2

)
θ.

This contradicts the assumption that |||fn + gn|||Bφ → 2.

Lemma 3. Let f ∈ Bφ-a.p. and E ∈ Σ. Then the function

F : ]0,∞[→ R, F (λ) = ̺Bφ(fχE/λ),

is continuous on ]0,∞[.

Proof. Let λ0 ∈ ]0,∞[ and {λn} be a sequence of scalars such that
limn→∞ λn = λ0. We have

̺Bφ

[(
1

λn
−

1

λ0

)
fχE

]
≤

∣∣∣∣
1

λn
−

1

λ0

∣∣∣∣̺Bφ(fχE) → 0 as n→ ∞,

so {(1/λn)fχE} is modular convergent to (1/λ0)fχE . Moreover, we have

max

(
1

|λn|
|f |χE,

1

|λ0|
|f |χE

)
≤M |f | ∈ Bφa.p.

for some constant M . Now, using Lemma 1, we get

lim
n→∞

̺Bφ

(
fχE
λn

)
= ̺Bφ

(
fχE
λ0

)
,

which means that F is continuous at λ0.

Remark 1. We already know that (cf. [6])

̺Bφ(f) ≤ 1 ⇔ ‖f‖Bφ ≤ 1 for any f ∈ Bφ-a.p.

From Lemma 3 it follows that also

̺Bφ(fχE) ≤ 1 ⇔ ‖fχE‖Bφ ≤ 1 for any f ∈ Bφ-a.p. and E ∈ Σ.

Remark 2. In the same way, we know from [6] that

∀ε > 0, ∃δ > 0, ∀f ∈ Bφ-a.p., ̺Bφ(f) ≤ δ ⇒ ‖f‖Bφ ≤ ε.

From Lemma 3 it follows that the same holds for fχE instead of f.

Lemma 4. Assume φ ∈ ∆2. Then for all L > 0 and ε > 0 there exists a

δ > 0 such that if f, g ∈ Bφ-a.p. and E ∈ Σ, then

̺Bφ(fχE) ≤ L, ̺Bφ(gχE) ≤ δ ⇒ |̺Bφ((f + g)χE) − ̺Bφ(fχE)| < ε.

Proof. Using Lemma 3, the arguments are the same as those for the
Orlicz space case (see [1, Lemma 1.40]), so we omit the proof.

Lemma 5.

(1) If φ is of ∆2-type, then

inf{k ∈ K(f) : |||f |||Bφ = 1, f ∈ Bφ-a.p.} = d > 1.
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(2) If the conjugate ψ to φ is of ∆2-type, then, for each a, b > 0, the set

Q = {K(f) : a ≤ |||f |||Bφ ≤ b, f ∈ Bφ-a.p.} is bounded.

Proof. The arguments are exactly the same as those used in the Orlicz
space case (see [1]), so we omit the proof.

Lemma 6. Suppose φ ∈ ∆2 ∩ ∇2 and let {fn}, {gn} ⊂ Bφ-a.p. be such

that |||fn|||Bφ, |||gn|||Bφ ≤ 1, n = 1, 2, . . . , and limn,m→∞ |||fn + gm|||Bφ = 2.
Then for every ε ∈ (0, 1) there are δ > 0 and n0 ∈ N such that for all

n,m ≥ n0 and all E ∈ Σ we have ̺Bφ(gmχE) ≤ δ ⇒ ̺Bφ(fnχE) ≤ ε.

Proof. Let u′ > 0 be such that φ(u′) < ε/2, and put En = {t ∈ R :
|fn(t)| < u′}. Then

̺Bφ(fnχE∩En) ≤ φ(u′)µ(E ∩En) ≤ ε

for any E ∈ Σ. Hence we may assume that |fn(t)| ≥ u′ for all t ∈ R.
Let kn ∈ K(fn) and hn ∈ K(gn). Then

hn
kn + hn

∈

[
1

1 + b
,

b

1 + b

]
⊂ ]0, 1[,

where b = supn{kn, hn} <∞. We may suppose that infn{kn, hn} ≥ a > 0.
Since φ ∈ ∇2 there exists β > 0 such that (cf. [1])

(2.2) φ

(
bu

1 + b

)
≤
b(1 − β)

1 + b
φ(u), ∀|u| ≥ u′,

and using the fact that the function ℓ 7→ φ(ℓu)/ℓu is increasing, we obtain

φ(ℓu) ≤ ℓ(1 − β)φ(u), ∀ℓ ∈

[
1

1 + b
,

b

1 + b

]
, ∀|u| ≥ u′.

Given any α > 0, from Lemma 4, there exists δ′ > 0 such that

(2.3) ̺Bφ(f) ≤ 1, ̺Bφ(g) ≤ δ′ ⇒ |̺Bφ(f + g) − ̺Bφ(f)| < α.

Since φ is of ∆2-type, we may choose δ > 0 such that ̺Bφ(g) ≤ δ ⇒

̺Bφ
(
b2

2ag
)
≤ δ′ and hence

̺Bφ(gmχE) ≤ δ ⇒ ̺Bφ

(
knhn
kn + hn

gmχE

)
≤ ̺Bφ

(
b2

2a
gmχE

)
≤ δ′.

Now, from (2.3), we get

̺Bφ

(
knhm
kn + hm

(fn + gm)χE

)
≤ ̺Bφ

(
knhm
kn + hm

fnχE

)
+ α

≤
hm

kn + hm
(1 − β)̺Bφ(knfnχE) + α.

Take an integer n′ such that

n,m ≥ n′ ⇒ 2 − |||fn + gm|||Bφ < α.
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Using the convexity of φ, for n,m ≥ n′ we have

α ≥ 2 − |||fn + gm|||Bφ

≥
1

kn
̺Bφ(knfn) +

1

hm
̺Bφ(hmgm) −

kn + hm
knhm

̺Bφ

(
knhm
kn + hm

(fn + gm)

)

≥ lim
T→∞

1

2T

T\
−T

[
1

kn
φ(knfn) +

1

hm
φ(hmgm)

−
kn + hm
knhm

φ

(
knhm
kn + hm

(fn + gm)

)]
dµ

≥ lim
T→∞

1

2T

\
E∩[−T,T ]

[
1

kn
φ(knfn) +

1

hm
φ(hmgm)

−
kn + hm
knhm

φ

(
knhm
kn + hm

(fn + gm)

)]
dµ

≥ lim
T→∞

1

2T

\
E∩[−T,T ]

[
1

kn
φ(knfn) +

1

hm
φ(hmgm)

]
dµ

− lim
T→∞

1

2T

\
E∩[−T,T ]

kn + hm
knhm

φ

(
knhm
kn + hm

(fn + gm)

)
dµ

≥ lim
T→∞

1

2T

\
E∩[−T,T ]

[
1

kn
φ(knfn) +

1

hm
φ(hmgm)

]
dµ

−
1

kn
(1 − β) lim

T→∞

1

2T

\
E∩[−T,T ]

φ(knfn) dµ−
kn + hm
knhm

α

≥
β

kn
̺Bφ(knfnχE) −

2b

a2
α ≥

β

b
̺Bφ(afnχE) −

2b

a2
α.

Now, since α > 0 is arbitrary and φ is of ∆2-type, we get the desired result.

Lemma 7. Let {fn}n ⊂ Bφ-a.p. be such that supn ̺Bφ(fn) < ∞. Then

for every θ > 0 there exists A> 0 such that supn µ({t ∈ R : |fn(t)| ≥A})< θ.

Proof. In fact, in the opposite case we have

(2.4) lim
N→∞

sup
n
µ({t ∈ R : |fn(t)| ≥ N}) 6= 0

(note that the sequence is decreasing, so its limit exists). Putting En,N =
{t ∈ R : |fn(t)| ≥ N}, we then get

̺Bφ(fn) ≥ ̺Bφ(fnχEn,N ) ≥ Nµ(En,N ),

and taking the supremum over n gives

(2.5) sup
n
̺Bφ(fn)≥ sup

n
̺Bφ(fnχEn,N )≥ sup

n
Nµ(En,N ) =N sup

n
µ(En,N ).
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Finally, lettingN →∞ in (2.5) and using again (2.4), we obtain supn ̺Bφ(fn)
= ∞. This contradicts the assumption.

Lemma 8. Let {fn}n be a sequence in Bφ-a.p. satisfying the µ-Cauchy

condition and modular equicontinuous, i.e. for every ε > 0, there exist δ > 0
and n0 ∈ N such that

µ(E) < δ ⇒ ̺Bφ(fnχE) ≤ ε, ∀n ≥ n0.

If supn ̺Bφ(fn) <∞, then {̺Bφ(fn)}n≥1 is a Cauchy sequence in R.

Proof. First, we show the assertion for φ(u) = |u|. Set En,m = {t ∈ R :
|fn(t)− fm(t)| > ε/2}. The sequence {fn} being equicontinuous, there exist
δ > 0 and n0 ∈ N such that for all n ≥ n0 we have

µ(E) < δ ⇒ ̺B1(fnχE) ≤ ε/4.

Since {fn} is a µ-Cauchy sequence, there exists n1 ∈N such that µ(En,m)< δ
for n,m ≥ n1. Taking n,m ≥ max(n0, n1) we get

|̺B1(fn)−̺B1(fm)| =

∣∣∣∣ lim
T→∞

1

2T

T\
−T

|fn(t)| dµ− lim
T→∞

1

2T

T\
−T

|fm(t)| dµ

∣∣∣∣

≤ lim
T→∞

1

2T

T\
−T

|fn(t) − fm(t)| dµ

≤ lim
T→∞

1

2T

\
[−T,T ]∩En,m

|fn(t) − fm(t)| dµ

+ lim
T→∞

1

2T

\
[−T,T ]∩Ec

n,m

|fn(t) − fm(t)| dµ

≤ ̺B1(fnχEn,m) + ̺B1(fmχEn,m) +
ε

2
µ(Ec

n,m)

≤ ε/4 + ε/4 + ε/2 = ε.

Now, for an arbitrary Orlicz function φ, it is sufficient to show that (φ(fn))n
is a µ-Cauchy sequence; the result follows then from the case φ(x) = |x|.

By Lemma 7, we know that if supn ̺Bφ(fn) < ∞ then for every θ > 0,
there exists M > 0 such that µ({t ∈ R : |fn(t)| ≥M}) < θ for all n.

Put Gn = {t ∈ R : |fn(t)| ≤ M} and let ε > 0. Since φ is uniformly
continuous on [−M,M ], there exists η > 0 such that

|φ(t1) − φ(t2)| ≥ ε ⇒ |t1 − t2| > η.

Now since for all t ∈ Gn ∩ Gm, we have fn(t), fm(t) ∈ [−M,M ], it follows
that

|φ(fn(t)) − φ(fm(t))| ≥ ε ⇒ |fn(t) − fm(t)| > η,
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whence, for any ε, θ > 0,

µ{t ∈ R : |φ(fn(t)) − φ(fm(t))| ≥ ε}

≤ µ{t ∈ Gn ∩Gm : |φ(fn(t)) − φ(fm(t))| ≥ ε}

+ µ{t ∈ (Gn ∩Gm)c : |φ(fn(t)) − φ(fm(t))| ≥ ε}

≤ µ{t ∈ Gn ∩Gm : |fn(t) − fm(t)| ≥ η} + 2θ.

Letting n,m→ ∞, we get

∀ε > 0, ∀θ > 0, µ{t ∈ R : |φ(fn(t)) − φ(fm(t))| ≥ ε} ≤ 2θ.

Finally, since θ is arbitrary, we get the desired result.

Lemma 9. Let {fn} ⊂ Bφ-a.p. be a µ-Cauchy sequence equicontinuous

in norm. Then {fn} is a modular Cauchy sequence. In particular , if φ ∈ ∆2,
the sequence {fn} is norm convergent to some f ∈ Bφ-a.p.

Proof. Set En,m = {t ∈ R : |fn(t) − fm(t)| > ε/2}. The sequence {fn}
being equicontinuous in norm, there exist δ > 0 and n0 ∈ N such that for
all n ≥ n0 we have

µ(E) < δ ⇒ ̺Bφ(2fnχE) ≤ ε/2.

Since {fn} satisfies the µ-Cauchy condition, there exists n1 ∈ N
∗ such that

n,m ≥ n1 ⇒ µ(En,m) < δ. Taking n,m ≥ max(n0, n1) we get

̺Bφ(fn − fm) ≤ ̺Bφ((fn − fm)χEn,m) + ̺Bφ((fn − fm)χ(En,m)c)

≤
1

2
[̺Bφ(2fnχEn,m) + ̺Bφ(2fmχEn,m)] +

ε

2
µ((En,m)c)

≤
1

2

(
ε

2
+
ε

2

)
+
ε

2
= ε.

Lemma 10. Let f ∈ Eφ([0, 1]), where Eφ([0, 1]) is the Orlicz class

Eφ([0, 1]) = {f measurable : ̺φ(λf) <∞, ∀λ > 0},

and let ̺φ be the usual Orlicz modular. Then:

(1) If f̃ is the 1-periodic extension of f to the whole R, then f̃ ∈ Bφ-a.p.

(2) The injection i : Eφ([0, 1]) → Bφ-a.p., i(f) = f̃ , is an isometry with

respect to the modular and for the respective Orlicz norms.

Proof. (1) Let f =
∑n

i=1 aiχAi , Ai ∩Aj = ∅ if i 6= j and
⋃n
i=1Ai⊂ [0, α],

0 < α < 1. Let m ∈ N. Since
∑n

i=1 φ(mai)µ(Ai) < ∞, it follows from (1.2)
that there exists Pm ∈ P (the set of generalized trigonometric polynomials)
for which

̺Bφ

(
m

4
(f̃ − Pm)

)
≤

1

m
,

where f̃ is the 1-periodic extension of f .
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Let λ > 0 and m0 ∈ N be such that λ ≤ m0/4. Then

̺Bφ(λ(f̃ − Pm)) ≤ ̺Bφ

(
m

4
(f̃ − Pm)

)
≤

1

m
, ∀m ≥ m0.

This means that limm→∞ ‖f̃ − Pm‖Bφ = 0, i.e. f̃ ∈ Bφ-a.p.
Consider now the general case of f ∈ Eφ([0, 1]). It is known (see [1])

that the step functions are dense in Eφ([0, 1]), hence given ε > 0, there
is a gε =

∑n
i=1 aiχAi for which ‖gε − f‖φ ≤ ε/4. Since f is absolutely

continuous, we may choose δ > 0 such that µ(A) ≤ δ ⇒ ‖fχA‖φ ≤ ε/4.
We take α > 0 with 1 − α ≤ δ and put Aαi = Ai ∩ [0, α], i = 1, n. Then

the function gαε =
∑n

i=1 aiχAαi belongs to Eφ([0, 1]). If f̃ and g̃αε are the
respective 1-periodic extensions, then

‖f̃ − g̃αε ‖Bφ = ‖f − gαε ‖φ ≤ ‖(f − gαε )χ[0,α]‖φ + ‖(f − gαε )χ[α,1]‖φ

≤ ‖f − gε‖φ + ‖fχ[α,1]‖φ ≤ ε/4 + ε/4 = ε/2.

Now, since g̃αε ∈ Bφ-a.p., there exists Pε ∈ P for which ‖g̃αε − Pε‖Bφ ≤ ε/2.
Finally,

‖f̃ − Pε‖Bφ ≤ ‖f̃ − g̃αε ‖Bφ + ‖g̃αε − Pε‖Bφ ≤ ε/2 + ε/2 = ε,

i.e. f̃ ∈ Bφ-a.p.
(2) It is clear that i : Eφ([0, 1]) → Bφ-a.p. is a modular isometry. The

fact that it is also an isometry for the Orlicz norms follows immediately
since

|||f |||φ = inf
k>0

{
1

k
(1 + ̺φ(kf))

}
= inf

k>0

{
1

k
(1 + ̺Bφ(kf̃ ))

}
= |||f̃ |||Bφ.

We can now state our main result.

Theorem 1. The space (Bφ-a.p., ‖ · ‖Bφ) is k-convex iff φ ∈ ∆2 ∩ ∇2

and φ is strictly convex.

Proof. Necessity. As known for general Banach spaces, k-convexity im-
plies strict convexity and reflexivity. From [9], reflexivity of Bφ-a.p. implies
that φ ∈ ∆2∩∇2. It remains to show that φ is strictly convex. Indeed, strict
convexity of φ is necessary for strict convexity of the Orlicz class Eφ([0, 1])
(cf. [1]) and using Proposition 10, we deduce that it is also necessary for
strict convexity of Bφ-a.p.

For the sufficiency, let {fn} ⊂ Bφ-a.p. with |||fn|||Bφ = 1 and |||fn+fm|||Bφ
→ 2 as n,m → ∞. Given any ε > 0, take n0 and δ as in Lemma 6. Since
fn0

∈ Bφ-a.p. there is a δ′ > 0 such that µ(E) < δ′ ⇒ ̺Bφ(fn0
χE) ≤ δ and

then by Lemma 6 we obtain ̺Bφ(fmχE) ≤ ε for all m ≥ n0.
On the other hand, since |||fn+fm|||Bφ → 2 as n,m→ ∞, from Lemma 2

it follows that {knfn} is a µ-Cauchy sequence. Now, we will show that it is
also modular equicontinuous.
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Given any ε > 0, from Remark 2 there is δ > 0 such that ̺Bφ(fnχE)≤ δ
⇒ ‖knfnχE‖Bφ ≤ ε and then from the arguments presented above we also
have the implication µ(E) < δ′ ⇒ ‖knfnχE‖Bφ ≤ ε, ∀n ≥ n0 for some δ′.
This means that the sequence {knfn}n is norm equicontinuous.

Moreover, from Lemma 8, {̺Bφ(knfn)}n≥1 is a Cauchy sequence in R,
whence it converges to some l ∈ R.

Now, using (1.1), we may write |||fn|||Bφ = (1/kn)(1 + ̺Bφ(knfn)) and
letting n→ ∞ we get limn→∞ kn = 1 + l.

Finally, from Lemma 9, the sequence (knfn)n is modular Cauchy and
again by the ∆2-condition it is a norm Cauchy sequence, i.e. it converges in
norm to some g ∈ Bφ-a.p.

Consequently, {fn} is norm convergent to g/(1 + l).
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rale et géométrie, Thèse de Doctorat, 1996.
[8] —, On modular approximation property in the Besicovitch–Orlicz space of almost

periodic functions, Comment. Math. Univ. Carolin. 38 (1997), 485–496.
[9] M. Morsli, F. Bedouhene and F. Boulahia, Duality properties and Riesz representa-

tion theorem in the Besicovitch–Orlicz space of almost periodic functions, ibid. 43
(2002), 103–117.

[10] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
[11] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.

Department of Mathematics
Faculty of Sciences
University of Tizi-Ouzou, Algeria
E-mail: fbedouhene@yahoo.fr

mdmorsli@yahoo.fr

Received 16 February 2006;

revised 28 December 2006 (4723)


