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ON THE k-CONVEXITY OF THE BESICOVITCH-ORLICZ SPACE
OF ALMOST PERIODIC FUNCTIONS
WITH THE ORLICZ NORM

BY

FAZIA BEDOUHENE and MOHAMED MORSLI (Tizi-Ouzou)

Abstract. Boulahia and the present authors introduced the Orlicz norm in the class
B?%-a.p. of Besicovitch-Orlicz almost periodic functions and gave several formulas for it;
they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43
(2002)]. In the present paper, we consider the problem of k-convexity of B?%-a.p. with
respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict
convexity and reflexivity.

1. Introduction and preliminaries

1.1. Orlicz functions. In the following, the notation ¢ is used for an
Orlicz function, i.e. a function ¢ : R — R which is even, convex, satisfies
d(u) =0 iff u =0, and limy o0 ¢(u)/u = 00, limy,—o ¢(u)/u = 0.

This function is said to be of As-type when there exist constants K > 2
and ug > 0 such that

?2u) < Kp(u), Vu > up.

The function ¢(y) = sup{z|y| — ¢(z) : © > 0} is called conjugate to ¢. It is
an Orlicz function when ¢ is. The pair (¢, 1)) satisfies the Young inequality
vy < o(x) +Y(y), =eR, yeR
When both ¢ and ¢ are of As-type we write ¢ € Ay N Vs. Note that if ¢ is

of Ag-type then we have the following property (cf. [1]):
Vel €10,1[, Yup > 0, 38 = 5(¢) € ]0,1[, ¢(lu) < (1 —B)p(u), Yu > up.

Let now ¢ be strictly convex. Then (cf. [1]) for every & > 0 and € > 0,
there exists § > 0 such that

¢<u—2|—v> . (1_6)(¢(u)+¢(v))

2
for all u,v € R satisfying |ul, |v| < k and |u — v| > €.
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A normed space X is called strictly conver when
Ve,y € X, zll=yll=1llz—yl>0 = [z+y] <2

X is called k-convex for k € N, k > 2 when, for each {z,} C B(X) (the
closed unit ball of X), the following implication holds:

(|xn, + -+ zn,|| = k asny,...,ng — 00)
= {x,} is a Cauchy sequence in norm.

When (X, || - ||) is a Banach space, the right hand side of this implication
means that {z,} is norm convergent to some z € X.

The k-convexity has been introduced for k = 2 in [2]. In [4], it is shown
that k-convexity for k£ = 2 implies approximate compactness, which in turn
guarantees the existence of the projection of any element onto any convex
and closed subset of the space.

Moreover it is known that if X is k-convex then it is also (k + 1)-convex,
strictly convex and reflexive (cf. [1]). We can also easily see that uniform
convexity implies k-convexity.

Let X be a real linear space. A functional ¢ : X — [0, 00] is a (pseudo)
modular if it satisfies

(i) o(z) =0 iff z = 0 for a modular, and

(i)’ 0(0) = 0 for a pseudomodular,

(i) o(z) = o(—x), Vx € X,

(iii) e(ax + By) < o(x) + o(y), Vo, 20, a+f =1, 7,y € X.

When, in place of (iii), we have
(iil) o(ax + By) < ao(x) + Po(y), Vo, 620, a+ =1, 2,y € X,
the (pseudo) modular p is called convez.
The linear space X, = {z € X : lim,_¢ o(ax) = 0} associated to the

modular ¢ is called a modular space.
When g is a convex (pseudo) modular, a (pseudo) norm is defined on X

by the formula (cf. [10])
|z||p = inf{k > 0: o(x/k) < 1}.

A sequence {z,,} C X is called modular convergent to some x € X when
lim,, o 0(zy, — ) = 0. The definition of a modular Cauchy sequence is
similar.

1.2. The Besicovitch—Orlicz space of almost periodic functions. Let
M(R) be the set of real Lebesgue measurable functions on R. The func-
tional

T
ope : M(R) = [00c].  opolf) = T o | o(1£(2)])
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is a convex pseudomodular (cf. [6]-[8]). The associated modular space
B*(R) = {f € M(R) : lim gps(af) = 0}
={f e MR): ogs(Af) < oo for some A > 0}

is called the Besicovitch—Orlicz space. This space is endowed with the Lux-
emburg pseudonorm (cf. [6]-[8])

Iflge = inf{k > 0: 0ps(f/k) <1},  f € B*(R).
Let now A be the set of generalized trigonometric polynomials, i.e.
A= {P(t) = Zozj exp(irjt) : Aj eR, ;€ C,n € N}.
j=1

The Besicovitch—Orlicz space of almost periodic functions, denoted B®-a.p.,
is the closure of A in B?(R) with respect to the pseudonorm || - || ge:

Bap.={f € B*R): Hpa}isi C A, lim | = pullpe =0},

In the case ¢(z) = |z|, we use the notation Bl-a.p. Some structural and
topological properties of this space are considered in [6]-[8].

Besides the Luxemburg norm, we may endow this space with the Orlicz
pseudonorm (cf. [9])

I/l g = sup{M(|fg]) : g € B*-a.p., 0ps(g) < 1}
where 1 denotes the conjugate function to ¢ and
T
M(f) = lim — \ f(t)ydu for f € B'-ap.

The Orlicz norm || - || gs satisfies (cf. [9])

1o = nt {7 1+ 0k 1> 0.

More precisely,

(1) Wflge =3 (+ ope(kf)  for some k €]0, 0]

which means that the set
1
K0 = {1 05 Wl = 1 1+ 2001

is not empty. Moreover, these two norms are equivalent (cf. [9]):

I fllge < IfllBs < 2| f 5o

Note also the important fact that when f € B®-a.p., the limit in the
expression of pgs(f) exists (cf. [6]).
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The following technical result is used in the proof of the necessity con-
ditions of our main theorem.

Let {A;}i>1 C R be measurable subsets such that 4; N A; =0 if i # j
and ;51 Ai C[0,a],a < 1. Let f =35  aixa, with 3 .5 d(ai)u(4;) < oo
and let fv be the periodic extension of f to the whole R (with period 1).
Then there exists a sequence {Pp, }ym>1 C A such that (cf. [6])

F_p
(1.2) QB¢<f4 >—>0 as m — oo.

2. Results. We first give some convergence results which we will use
extensively in different proofs.

Let ¥ = Y(R) be the X-algebra of Lebesgue measurable subsets of R.
We define the set function

i(A) = Tim — | XA(t)dt:T@ o7 (=T, TIN4),  AeX,

where p is the Lebesgue measure. Clearly, [z is not o-additive and 7(A) =0
when A € X with pu(A) < co. As usual, a sequence { fi }r>1 of Z-measurable
functions will be called fi-convergent to a measurable function f when, for
all e > 0,

Tim 7t € R |filt) — £()] > €} =0.
Similarly, we define a -Cauchy sequence.
LeMMA 1 ([6]-[8]). Let {fu}n>1 C B®(R). Then:

(1) If {fa}n>1 is modular convergent to some f € B®(R) then it is also
ni-convergent to f.

(2) If {fn}n>1 is H-convergent to some f € B?(R) and there ewists
g € B?-a.p. such that max(|fr(z)|,|f(z)]) < g(x) for all z € R, then
limy, 00 QB¢(fn) = QB¢(f)-

Levma 2. Let {fu},{ga} © B%-ap. with [lfullge = 1, lgallge = 1
and limy, ;m—oco || fro + gmll ge = 2. Let {kn}n>1 and {hp}n>1 be sequences of
scalars such that the norms of f, and g, are attained in formula (1.1) at the
points ky, and h, respectively. If ¢ is strictly convex and b = sup,{kn, hn}
is finite, then knfn — hmgm — 0 in 1.

Proof. Indeed, in the opposite case, we may assume that fi(Ey, ,,) > ¢
where Ey, = {t € R : |kpfn(t) — himgm(t)| > r} and r, 6 are some fixed
positive numbers.
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From easy computations we can show the following:
Ve>0, 30 >0, VAe X, T(A)>¢c = |xallpges > 0.
Let now k > 1 be such that 1(A) > 0/4 = ||xallge > 1/k and define
Ap={teR:|fu(t)| >k}, Bp={teR:|g.(t)]>k}.
We have

L= fullge = fnllpe = [ faxanllps = Ellxa,llpe,

ie. |xa,llge < 1/k and so f(A,) < 6/4. By similar computations we also
get 1i(Bn) < 0/4.
From the strict convexity of ¢, there exists § > 0 such that
¢(ru+ (1 =rjv) < (1 =8)[ré(u) + (1 —7)o(v)]
for each r € [1/(1+0),b/(b+1)] and |ul, [v| < bk, |u — v| > r (see [1]).
Since ky,/(kn + hm) and hy,/(kn + hyp) are in [1/(1+b),0/(b+ 1)], for
t € Enm\ (An U By,) we have

1) 8 (fult) + (1) )

< (1= 0) | oMbl + 1 0 (0)]

Then using (1.1) it follows that

2= |Ifn+ gmll ge

> 1 (L apolnf) + 5= (1F 2o (mg)
_knt
2l (g (2 0) + )
17 kn +h kn
> Thl};o ﬁ 3 |:k: T oy nfn( )) K + B (z)(hmgm(t))

¢<k " (Unt >+gm<t>)ﬂ dt

| ) 1)
ST 5 [ 0 Fu0) 4 7 Ol
(En,m\(AnUBm))ﬁ[—T,T}
206 — 1 |knfn(t) - hngn(t)|
> 5 fm on S M 2 >] a

(En,m\(AnUBm))N[—T,T)
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Y

2 ¢(g>ﬁ(En,m \(4UB) > § qﬁ(g) (7(Enm) = Ai(An) = 7i(B))

26 (r\0
= 5o(5)3250(3)
This contradicts the assumption that || f, + gnllgs — 2. =
LEMMA 3. Let f € B®-a.p. and E € X. Then the function
F:]0,00[= R, F(A) = ops(fxe/A),
is continuous on ]0, ocol.

Proof. Let A\g € ]0,00[ and {\,} be a sequence of scalars such that
lim,, o0 An, = Ag. We have

EREE R PR
R W W e Bl PV

so {(1/A\n)fxe} is modular convergent to (1/\g)fxg. Moreover, we have

o (e o e ) < 17| € oo

for some constant M. Now, using Lemma 1, we get

lim ops <fXE> = 0p¢ (fX—E>7
n—00 An Ao
which means that F' is continuous at Ag. =
REMARK 1. We already know that (cf. [6])
0ps(f) <1 & |flpe <1 forany f € B®ap.

From Lemma 3 it follows that also

ops(fxe) — 0 asn— oo,

0ps(fxe) <1 < |fxellge <1 for any f € B®-a.p. and E € X.
REMARK 2. In the same way, we know from [6] that
Ve > 0,30 > 0,Yf € B®a.p., ops(f) <6 = ||Ifllgs <e.
From Lemma 3 it follows that the same holds for fxg instead of f.

LEMMA 4. Assume ¢ € As. Then for all L > 0 and € > 0 there exists a
8 > 0 such that if f,g € B®-a.p. and E € X, then

0ps(fxE) < L, 0pe(gxE) <6 = |ops((f +9)xE) — 0ps(fXE)| < €.

Proof. Using Lemma 3, the arguments are the same as those for the
Orlicz space case (see [1, Lemma 1.40]), so we omit the proof. m

LEMMA 5.
(1) If ¢ is of Ag-type, then
inf{k € K(f): ||fllgs =1, f € B®-a.p.} =d > 1.
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(2) If the conjugate 1) to ¢ is of As-type, then, for each a,b > 0, the set
Q=1{K(f):a<|fllge <b, f € B®a.p.} is bounded.

Proof. The arguments are exactly the same as those used in the Orlicz
space case (see [1]), so we omit the proof. m

LEMMA 6. Suppose ¢ € As N Va and let {fn},{gn} C B®-a.p. be such

that || fulls, lgnllpe < 1, n = 1,2,..., and limpm—co |fn + gmllpe = 2.
Then for every ¢ € (0,1) there are 6 > 0 and ng € N such that for all
n,m >ngy and all E € X we have 0gs(gmXE) < 0 = 0ps(fuxr) < €.

Proof. Let v/ > 0 be such that ¢(u') < €/2, and put E, = {t € R :
|fn(t)| < w'}. Then
opo(faxene,) < o(Wa(ENE,) <e

for any F € X. Hence we may assume that |f,,(¢)| >« for all t € R.
Let k, € K(f,) and h,, € K(g,,). Then

i 1 b
1
T F T [1+b’1+b}c]0’ L

where b = sup,,{kn, by} < 0co. We may suppose that inf, {ky, h,} > a > 0.
Since ¢ € V3 there exists 3 > 0 such that (cf. [1])

bu b(l — 5) /
2.2 < >

(2.2 o(105) < Mo Viulz

and using the fact that the function £ — ¢(fu)/lu is increasing, we obtain
1 b

</(1-— -
o) < K1 = Do), W€ | T
Given any a > 0, from Lemma 4, there exists 8’ > 0 such that
(23)  ops(f) <L opelg) 0" = lops(f +9) — ope(f)l <

Since ¢ is of Ag-type, we may choose 6 > 0 such that gogs(g) < 6 =
QB¢(%9) < §" and hence

}, Viu| > '

AL P S S
Ope\ImXE) > Ope k’n"‘hnngE = 0p¢ 26LngE > 0.

Now, from (2.3), we get

knhom, (o + ) < knhm f
0p¢ k: . n T Im)XE | = 0B¢ k Th nXE

hm
< M 1
S T he (1 —=B)oge(knfuxe) + «

Take an integer n’ such that

n,m > n = 2-— ”|fn“‘9m”|B<f> <a.
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Using the convexity of ¢, for n,m > n’ we have
=2~ fn+ gmlps

> ki_ Op¢ (knfn) + h_ QB¢(hmgm) — 7  Op¢ <7 (fn + gm))

knhm, kn + him
T
> Jim_ o 3 [ othadn 5 = 6(bmgn)
T T—oo 2T k. fn m3m
" ot ¢<k:n Ty U +gm)>} du
> — _
- TIE};O 2T S |:kn qb( nfn) + . ¢(hmgm)
EN[—T,T)
. ¢<k Th (fn+gm)>} du
> Fm o || okt + 5 6hmgn)
T T—o0 2T kn, i f mgm) | di
EN[—T,T)
— 1 kn + hum, knhm
EN[-T,T
> — - L
- TIEEO 2T S |:kn (z)(knfn) + . ¢(hmgm):| dp
EN[—T,T)
— - =f) fim o |kt dn— ==

ﬁ 2b 2b
k ops(knfuXE) — 22 a > N ops(afaXxk) — 2 Q.

Now, since a > 0 is arbitrary and ¢ is of Aa-type, we get the desired result. =

LEMMA 7. Let {f.}n C B®-a.p. be such that sup,, 0ge(fn) < co. Then
for every 6 >0 there exists A >0 such that sup,, i({t € R: |fn(t)| > A}) < 0.

Proof. In fact, in the opposite case we have

(2.4) i Sgpﬂ({t ER:[fu(t)] = N}) #0

(note that the sequence is decreasing, so its limit exists). Putting E, n =
{teR:[fu(t)] = N}, we then get

QB¢(fn) > QB¢(fTLXEn,N) > Nﬁ(En,N)a
and taking the supremum over n gives

(2.5)  supopge(fn) =supope(fuxe, x) =sup Ni(E, n) = N sup fi( £y n).
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Finally, letting N — oo in (2.5) and using again (2.4), we obtain sup,, 05 (fn)
= 00. This contradicts the assumption. =

LEMMA 8. Let {fn}n be a sequence in B®-a.p. satisfying the Ti-Cauchy
condition and modular equicontinuous, i.e. for every € > 0, there exist § > 0
and ng € N such that

ME) <6 = ops(faxe) <&, Vn 2 no.

If sup,, 0ge(fn) < 00, then {oges(fn)}n>1 is a Cauchy sequence in R.

Proof. First, we show the assertion for ¢(u) = |u|. Set E,,,,, = {t e R :
| fn(t) — fm(t)| > €/2}. The sequence { f,,} being equicontinuous, there exist
6 > 0 and ng € N such that for all n > ng we have

WE) <o = opi(faxe) <e/d

Since { f, } is a i-Cauchy sequence, there exists n; € N such that @(Ey, ,,) < ¢
for n, m > ny. Taking n,m > max(ng,n;) we get
T

o ()~ e ()l = | Jim o 1£a(0) dia— Jim L § \fm()!du‘
T

T
< Jim o | fa(®) = fm(0)] dp

T —
< Tim 1 t t) d
= Tl—Igoﬁ S |fn()_fm( )| 14
(=T, T)NEn,m
1
+ Jim o ) — f(®)]d
[T, TINES,

< 5/4+5/4+5/2 =ec.
Now, for an arbitrary Orlicz function ¢, it is sufficient to show that (¢(fp))n

is a i-Cauchy sequence; the result follows then from the case ¢(x) = |x|.
By Lemma 7, we know that if sup,, oge(fn) < oo then for every 6 > 0,
there exists M > 0 such that g({t € R: |f,(t)] > M}) < 6 for all n.
Put G, = {t € R: |fu(t)] < M} and let ¢ > 0. Since ¢ is uniformly
continuous on [—M, M], there exists 7 > 0 such that

|o(t1) — o(t2)| > = |t1 — L2 > .

Now since for all ¢ € G, N Gy, we have f,,(t), fm(t) € [—M, M], it follows
that

6(fn() = ¢SmO = & = [[u(t) = fm()] >,
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whence, for any €,0 > 0,

a{t € R:|o(fu(t)) — ¢(fm(t))| = €}
S E{t € GaNGm 2 [0(fn(t) = ¢(fin(t))] = €}
+1{t € (Gn N Gm) < [¢(fu(t)) — O(fm(t))] = €}
<{t € G NGyt | fult) — fm(t)| > n} +20.
Letting n, m — oo, we get
Ve>0,V0 >0, uf{teR:|[o(fn(t))— o(fm(t))]>ce} < 26.
Finally, since 6 is arbitrary, we get the desired result. m

LEMMA 9. Let {f,} C B?-a.p. be a fi-Cauchy sequence equicontinuous
in norm. Then {fn} is a modular Cauchy sequence. In particular, if ¢ € Ag,
the sequence {f,} is norm convergent to some f € B¢-a.p.

Proof. Set Ey . = {t € R : |fn(t) — fin(t)| > €/2}. The sequence {f,}
being equicontinuous in norm, there exist § > 0 and ng € N such that for
all n > ng we have

a(E) <d = ope(2faxe) <e/2.
Since {f,} satisfies the f-Cauchy condition, there exists n; € N* such that
n,m >ny = G(E,m,) < 0. Taking n, m > max(ng, n1) we get

QB¢(fn - fm) < QB¢((fn - fm)XEn,m) + QB¢((fn - fm)X(En,m)C)

< 3 (030 (2FuXEn ) + 050 Fxm )]+ o F(E))

<1 €+£ +€_€
=9\g7gy) Ty 7"

LeEMMA 10. Let f € E?([0,1]), where E®([0,1]) is the Orlicz class
E?([0,1]) = {f measurable : o4(\f) < 00, YA > 0},
and let o4 be the usual Orlicz modular. Then:

(1) If fz's the 1-periodic extension of f to the whole R, then fe B®-a.p.
(2) The injection i : E*([0,1]) — B®-a.p., i(f) = f, is an isometry with
respect to the modular and for the respective Orlicz norms.
Proof. (1) Let f=3"1" aixa,, AinAj=0if i#j and |J; A; C[0,q],
0 <a < 1. Let m € N. Since > ;" | ¢p(ma;)pu(Ai) < oo, it follows from (1.2)
that there exists P, € P (the set of generalized trigonometric polynomials)
for which

)

1
m

0Bs (% (f - Pm)> <

where fis the 1-periodic extension of f.
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Let A > 0 and mg € N be such that A < mg/4. Then

~ m =~ 1
ops(M(f = Pm)) < opo <Z (f = Pm)> < Ymzmo.
This means that lim,, s || f — Pnllgs = 0, i.e. f € Bé-a.p.

Consider now the general case of f € E?([0,1]). It is known (see [1])
that the step functions are dense in E?([0,1]), hence given £ > 0, there
is a g = Y, ya;xa, for which ||g- — f|ls < e/4. Since f is absolutely
continuous, we may choose § > 0 such that u(A) < 6 = |[[fxalls < /4.
We take v > 0 with 1 — a < § and put A} = A;N[0,a], i = 1,n. Then
the function ¢& = >, aixag belongs to E?([0,1]). If f and g% are the
respective 1-periodic extensions, then

1F =305 = I1f = 9216 < 1(f = 9)x0.01lle + 1(F = 92)X a1l
<f = gello + 1 Xulls < e/4+e/4=¢€/2.

Now, since g¢ € B?-a.p., there exists P. € P for which |[§¢ — P.||gs < &/2.
Finally,

If = Pellgs < If = 9ellpe + 119 — Pellps <e/2+¢/2 =,

ie. fe B®-a.p.

(2) Tt is clear that i : E([0,1]) — B?-a.p. is a modular isometry. The
fact that it is also an isometry for the Orlicz norms follows immediately
since

10 = it {1 1+ 2okn) b = jut L5 (4 06T = 17 o

We can now state our main result.

THEOREM 1. The space (B?-a.p.,| - || gs) is k-convex iff ¢ € Ag NV,
and ¢ 1s strictly convex.

Proof. Necessity. As known for general Banach spaces, k-convexity im-
plies strict convexity and reflexivity. From [9], reflexivity of B®-a.p. implies
that ¢ € AaNVs. It remains to show that ¢ is strictly convex. Indeed, strict
convexity of ¢ is necessary for strict convexity of the Orlicz class E?(]0, 1])
(cf. [1]) and using Proposition 10, we deduce that it is also necessary for
strict convexity of B®-a.p.

For the sufficiency, let {f,} C B®-a.p. with || fullge = 1 and || fn + fill go
— 2 as n,m — oo. Given any ¢ > 0, take ng and § as in Lemma 6. Since
fno € B?-a.p. there is a &' > 0 such that i(E) < &' = 0ps(fnoxr) < 6 and
then by Lemma 6 we obtain gge(fmxE) < € for all m > nyg.

On the other hand, since || f,, + fm||ge — 2 as n, m — oo, from Lemma 2
it follows that {k, f,} is a @-Cauchy sequence. Now, we will show that it is
also modular equicontinuous.
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Given any ¢ > 0, from Remark 2 there is 0 > 0 such that gps(frxe) <0
= ||knfoxEellge < € and then from the arguments presented above we also
have the implication i(E) < ¢ = |[knfoxElpge < €,Yn > ng for some ¢§'.
This means that the sequence {ky, fy}, is norm equicontinuous.

Moreover, from Lemma 8, {opes(knfn)}n>1 is a Cauchy sequence in R,
whence it converges to some [ € R.

Now, using (1.1), we may write || fullge = (1/kn)(1 + opes(knfn)) and
letting n — oo we get limy,, oo kp =1+ 1.

Finally, from Lemma 9, the sequence (kyf,)n is modular Cauchy and
again by the As-condition it is a norm Cauchy sequence, i.e. it converges in
norm to some g € B-a.p.

Consequently, {f,} is norm convergent to g/(1+1). m
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