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WEIGHTED NORM ESTIMATES AND Lp-SPECTRAL

INDEPENDENCE OF LINEAR OPERATORS

BY

PEER C. KUNSTMANN (Karlsruhe) and HENDRIK VOGT (Dresden)

Abstract. We investigate the Lp-spectrum of linear operators defined consistently
on Lp(Ω) for p0 ≤ p ≤ p1, where (Ω, µ) is an arbitrary σ-finite measure space and
1 ≤ p0 < p1 ≤ ∞. We prove p-independence of the Lp-spectrum assuming weighted
norm estimates. The assumptions are formulated in terms of a measurable semi-metric d

on (Ω, µ); the balls with respect to this semi-metric are required to satisfy a subexponen-
tial volume growth condition. We show how previous results on Lp-spectral independence
can be treated as special cases of our results and give examples—including strictly ellip-
tic operators in Euclidean space and generators of semigroups that satisfy (generalized)
Gaussian bounds—to indicate improvements.

1. Introduction and main result. Let (Ω, µ) be a σ-finite measure
space and 1 ≤ p < q ≤ ∞. Suppose that A is a linear operator that acts
consistently in Lr(Ω) for r ∈ [p, q], i.e.,

A : Lp(Ω) ∩ Lq(Ω) → Lp(Ω) ∩ Lq(Ω)

is linear and extends, for all r ∈ [p, q], to a bounded operator Ar : Lr(Ω) →
Lr(Ω) which, in addition, is weak∗-continuous if r = ∞. The “consistency”
refers to the property

Arf = Asf (f ∈ Lr(Ω) ∩ Ls(Ω), r, s ∈ [p, q]).

It is then a natural question whether the spectrum σ(Ar) of Ar in Lr(Ω)
depends on r ∈ [p, q] or not. This question also makes sense for unbounded
operators Ar in Lr(Ω), r ∈ [p, q], if consistency is rephrased in terms of
resolvents or semigroup operators (whenever the Ar are generators). We
refer to Corollary 2 and Remark 3(iii) for details.

There are several kinds of assumptions that are sufficient for r-indepen-
dence of σ(Ar). We refer to the discussion in [14] and the references there.
One method that has been widely used in the context of the Lp-theory of
elliptic operators relies on the exploitation of certain bounds, especially of
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Gaussian type, that hold for the kernels of associated integral operators,
namely semigroup or resolvent operators ([9], [1], [20], [7], [10], [13], [14]).
If these operators are not integral operators, which is in general the case if
p > 1 and q < ∞, then r-independence of the spectrum still holds under the
assumption of certain weighted norm estimates ([15]–[18]). It is the latter
kind of assumptions, i.e., weighted norm estimates, that we shall use in this
paper.

The case studied in most of the cited papers is that Ω is an open subset of
R

N and µ is Lebesgue measure. We shall deal here with an arbitrary σ-finite
measure space (Ω, µ). The weighted norm estimates for the operator A will
be formulated in terms of a measurable semi-metric d on Ω with suitable
properties. The underlying philosophy is that, in order to get r-independence
of the spectrum for a given operator A on (Ω, µ) by our result, one has
to find a semi-metric d on Ω such that A and d satisfy our assumptions.
With respect to the problem of r-independence of the spectrum as stated
above, this seems to be the natural procedure. Even if the space Ω carries
a natural metric d0, as is the case for open subsets of R

N or Riemannian
manifolds ([20]), a suitable semi-metric d may be quite different. We want
to emphasize that, in the case of weighted norm estimates, the consideration
of a general semi-metric space (Ω, d) instead of (subsets of) R

N means that
we have to use a new approach in the proof that is rather different from the
arguments used previously in this context.

In order to make the assumptions in our main result less restrictive we
now slightly change the setting outlined above.

Let (Ω′, µ) be a σ-finite measure space and suppose that d is a measurable
semi-metric on Ω′ satisfying

(1) γ := ess inf
z∈Ω′

µ(B(z, R)) > 0 for some R > 0,

where B(z, R) denotes the open ball with center z and radius R with respect
to d. Further assume that

(2) ess sup
z∈Ω′

µ(B(z, r)) ≤ m(r) (r > 0),

where m : [0,∞) → [0,∞) is a non-decreasing function such that m(0) = 0
and for all ε > 0 there exists Cε > 0 satisfying

(3) m(r) ≤ Cεe
εr (r > 0).

Note that we do not demand m(r) → 0 as r → 0 (cf. [7, p. 177]), and that (2)
and (3) mean that the volume growth is uniformly subexponential. We point
out that uniformly subexponential volume growth has a different definition
in the context of Riemannian manifolds since in general condition (1) does
not hold in that context; see the end of Subsection 2.1.
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Now let Ω ⊂ Ω′ be a measurable subset. We tacitly assume that functions
defined on Ω are extended by 0 outside Ω when considered as functions
on Ω′. In the following we consider operators on Lp(Ω), 1 ≤ p ≤ ∞. The
reason for introducing the space Ω′ is that condition (1) is not assumed to
hold for the balls of Ω but only for the (possibly larger) balls of Ω′. An
important example for this situation is Ω′ = R

N and a subset Ω ⊂ R
N .

We fix an increasing sequence (Ωn) of measurable subsets of Ω that
have finite d-diameter and finite µ-volume such that Ω =

⋃

n Ωn. We denote
by L1,loc(Ω) the set of all (equivalence classes of) measurable functions f
on Ω with ‖f‖L1(Ωn) < ∞ for all n ∈ N, and by L∞,c(Ω) the space of all
(equivalence classes of) bounded measurable functions f on Ω for which
there is an n ∈ N such that f = 0 a.e. on Ω \ Ωn (see also Remark 3(ii) for
these spaces).

We define weight functions ̺ε,z by

(4) ̺ε,z(x) := ̺ε(z, x) := e−εd(z,x) (x, z ∈ Ω′, ε ∈ R).

Note that the ̺ε,z are multiplicators on L1,loc(Ω) and on L∞,c(Ω).

For a linear operator T : D(T ) ⊂ Lp(Ω) → Lq(Ω), p, q ∈ [1,∞], we
denote its norm by ‖T‖p→q. The following is our main result; the proof is
given in Section 3.

Theorem 1. Assume that (1) to (3) hold. Let 1 ≤ p < q ≤ ∞ and

A : L∞,c(Ω) → L1,loc(Ω) be a linear operator satisfying

(5) ‖̺ε0,zA̺−1
ε0,z‖p→q ≤ C (z ∈ Ω′)

for some C, ε0 > 0. Then A extends to consistent bounded operators Ar on

Lr(Ω) (r ∈ [p, q]), and the spectrum σ(Ar) is independent of r ∈ [p, q]. In

the case q = ∞, the operator A : L∞,c(Ω) → L∞(Ω) is σ(L∞,c, L1)-weak∗-

continuous; A∞ denotes the unique weak∗-continuous extension.

In [12, Sec. 6] it was observed that, in the case of semigroup genera-
tors, p-independence of the spectrum of R(λ, Ap)

n for some n ∈ N and all
large λ implies p-independence of σ(Ap). Following the lines of [12, proof of
Thm. 1.7] we thus obtain the following application of Theorem 1.

Corollary 2. Assume that (1) to (3) hold. Let 1 ≤ p < q ≤ ∞. Let

Tr(t) be consistent C0-semigroups on Lr(Ω) with generators Ar (p ≤ r ≤ q),
and A∞ the weak∗ generator of the (weak∗-continuous) semigroup T∞(t) if

q = ∞. Suppose that

(6) ‖̺ε0,zTp(t)̺
−1
ε0,z‖p→q ≤ ct−αeωt (z ∈ Ω′, t > 0)

for some c, α > 0, ω ∈ R. Then the spectrum σ(Ar) is independent of

r ∈ [p, q].
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Remark 3. (i) In the case p = 1, q = ∞, Theorem 1 and Corollary 2
also hold if condition (1) is replaced by the weaker assumption

(1′) there exists R > 0 such that µ(B(z, R)) > 0 for a.e. z ∈ Ω′;

see the paragraphs introducing Lemma 9 and Proposition 10.
(ii) Observe that the spaces L1,loc(Ω) and L∞,c(Ω) depend on the choice

of the sequence (Ωn). The particular choice of (Ωn) may depend on the
problem under consideration. For instance, one may want to choose the sets
Ωn also bounded with respect to another measurable (semi-)metric d0 on Ω′.
To simply consider the space of all functions which are integrable over every
d-bounded set instead of L1,loc(Ω) and the space of all bounded functions
with support essentially contained in a d-bounded set instead of L∞,c(Ω)
may not always be the most convenient choice. See Subsection 2.3 for an
example.

(iii) By the spectral mapping theorem for the resolvent (see, e.g.,
[5, Lemma 2.11]) we have independence of the spectrum σ(Ar) for r ∈ [p, q]
if the Ar are unbounded operators in Lr(Ω) such that, for some λ ∈
⋂

r∈[p,q] ̺(Ar), the resolvent operators R := R(λ, Ar) are consistent and (5)

holds for A = R↾L∞,c(Ω). See Subsections 2.2 and 2.3 for applications.
(iv) If the measure space (Ω, µ) is finite, then it is known that in (5) no

weights are needed for the assertion of Theorem 1 (see [1, Prop. 1.1]). This
also follows from our result if we take d = 0 as a semi-metric on Ω′ = Ω.
Observe that (1) holds since B(z, R) = Ω for all R > 0.

(v) The space (Ω, µ) must be assumed to be σ-finite since otherwise
condition (2) cannot hold: We show that condition (2) implies an upper
bound for the volume of all balls in Ω′. Let x ∈ Ω′. If µ(B(x, r)) > 0 then
(2) implies that there exists z ∈ B(x, r) satisfying µ(B(z, 2r)) ≤ m(2r). It
follows that µ(B(x, r)) ≤ m(2r) for all x ∈ Ω′. (A simple example shows
that the latter bound cannot be improved.)

Acknowledgements. The authors would like to thank Jürgen Voigt
for carefully reading an early version of the manuscript and for a number of
valuable remarks.

2. Comments and examples. In this section we comment on the
existing literature on Lp-spectral independence and present some examples
to indicate the improvements.

The case studied most is (Ω, µ) where Ω ⊂ R
N is an open subset and

µ is Lebesgue measure. If Ω is endowed with the Euclidean distance d then
conditions (2) and (3) hold. If we choose a suitable superset Ω′ of Ω, also
(1) holds (take, e.g., a δ-neighbourhood of Ω, or simply R

N ).
In this setting, p-independence of the Lp-spectrum has been proved for

the generator A of consistent C0-semigroups in Lp(Ω, µ) under the assump-
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tion that the semigroup operators are given by kernels which satisfy Gaus-
sian bounds. Making use of Corollary 2, we will study this case in Sub-
section 2.1 below in a more general setting. The first proof of Lp-spectral
independence making use of Gaussian bounds was carried out in [9] for
Schrödinger operators with negative part of the potential in the Kato class.
In the general case of validity of Gaussian bounds, Lp-spectral indepen-
dence has been proved in [1] under the assumption that ̺(A2) is connected,
for selfadjoint A2 in [7] and under certain commutator estimates in [10].
In [13] those additional assumptions were removed. It is known that Gaus-
sian bounds hold for large classes of uniformly elliptic operators (see, e.g.,
[2]–[4], [6], [19], to mention but a few).

Weighted norm estimates may be used to prove Lp-spectral independence
if the semigroup does not act on all Lp-spaces, 1 ≤ p < ∞. In [17] this
was done for Schrödinger operators with form bounded negative part of
the potential. In [8] weighted norm estimates were used to prove Lp-spectral
independence for higher order elliptic operators. The ideas from [17] were put
in a more general context in [16], assuming so-called generalized Gaussian
bounds which involve weight functions x 7→ exp(ξ ·x), ξ ∈ R

N . Those weight
functions correspond to the Euclidean metric in R

N . In [18] more general
weight functions were used in order to study selfadjoint elliptic operators
with unbounded coefficients. There the weights are x 7→ exp(ξϕ(x)) where ϕ
is a so-called L1-regular function on R

N . This corresponds to the semi-metric
d(x, y) := |ϕ(x)−ϕ(y)| on R

N . In [15], Lp-spectral independence was proved
for closed (not necessarily selfadjoint) operators assuming a weighted norm
estimate for a single resolvent. In Subsection 2.2 we discuss properties of
L1-regular functions and show that Theorem 1 of the present paper extends
[15, Thm. 1].

We want to emphasize that, until now, all proofs of Lp-spectral inde-
pendence assuming weighted norm estimates relied on the “box method”
where R

N is split up into congruent cubes Qj and one works in the spaces
lr(Lp(Qj)). In contrast, our proof of Theorem 1 below does not use the box
method but relies on Lemma 9 as a substitute. Indeed, working in a general
measure space that carries a semi-metric it is not clear what one should
use instead of the partition into cubes of equal size. In Subsection 2.3 be-
low we give an example of a strictly elliptic operator which illustrates the
limitations of cube partitions even in Euclidean space.

Before proceeding with the examples, we introduce some notation. Let
(Ω′, µ) and d be as in the introduction and assume that (1) to (3) hold. For
a measurable function g on Ω′ × Ω′ and r ∈ [1,∞] we define

nr(g) := max(ess sup
x∈Ω′

‖g(x, ·)‖Lr(Ω′), ess sup
y∈Ω′

‖g(·, y)‖Lr(Ω′)) ∈ [0,∞].

If nr(g) is finite then g defines a bounded integral operator Ig : Lp(Ω
′) →
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Lq(Ω
′) for all 1 ≤ p ≤ q ≤ ∞ satisfying r−1 + p−1 = 1 + q−1. In fact,

(7) ‖Ig : Lp(Ω
′) → Lq(Ω

′)‖ ≤ nr(g),

which can be proved by an application of Fubini’s theorem and Riesz–Thorin
interpolation. In the case r = 1 the operator Ig is bounded in every space
Lp(Ω

′) (1 ≤ p ≤ ∞).

For ̺ε as in (4) we have n∞(̺ε) ≤ 1, and by assumption (3) we obtain

(8) np(̺ε) ≤
(

∞\
0

e−εpr dm(r)
)1/p

< ∞ (1 ≤ p < ∞).

Here we have used the fact that, for any non-increasing function ϕ : [0,∞) →
[0,∞) and almost all x ∈ Ω′, one can estimate\

Ω′

ϕ(d(x, y)) dµ(y) ≤
∞\
0

ϕ(r) dm(r)

by assumption (2); cf. [7, p. 179].

2.1. Gaussian bounds in metric spaces. In this subsection we discuss a
result of Davies [7] which stimulated us to study the problem of p-indepen-
dence in the context of (semi-)metric spaces. The result is as follows:

Let (Ω, d) be a separable metric space, and µ a Borel measure on Ω
satisfying

µ(B(x, r)) ≤
{

c0r
N if 0 ≤ r ≤ 1,

c0r
M if 1 ≤ r < ∞

for all x ∈ Ω and r > 0, for some constants c0 > 0 and 0 < N ≤ M < ∞. Let
H be a non-negative selfadjoint operator in L2(Ω). Assume that the gener-
ated semigroup e−tH on L2(Ω) is given by an integral kernel K satisfying
the Gaussian upper bound

(9) |K(t, x, y)| ≤ c1t
−N/2e−c2 d(x,y)2/t (t > 0, x, y ∈ Ω)

for some positive constants c1, c2.

Then the semigroup e−tH on L1(Ω) ∩ L∞(Ω) extends to consistent C0-
semigroups Tp(t) on Lp(Ω) for all 1 ≤ p < ∞. Let −Hp denote the generator
of Tp(t). Then the spectrum of Hp is independent of p ∈ [1,∞).

We now show that this result of Davies can be deduced from Corollary 2,
thus removing the assumption that the semigroup is symmetric.

Proposition 4. Assume that (1′), (2) and (3) hold. Let T (t) be a C0-

semigroup on L2(Ω) given by an integral kernel K satisfying the Gaussian

upper bound (9) for some positive constants c1, c2. Assume that T (t) extends

to consistent semigroups Tp(t) on Lp(Ω) for 1 ≤ p ≤ ∞ (strongly continuous

for 1 ≤ p < ∞ and weak∗-continuous for p = ∞). Let Ap denote the
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generator of Tp(t) for 1 ≤ p < ∞, and let A∞ denote the weak∗ generator

of T∞(t). Then the spectrum of Ap is independent of p ∈ [1,∞].

If m(r) ≤ c0r
N (0 < r ≤ 1) for some c0 > 0 then a straightforward

computation shows that n1(t
−N/2 exp(−c2d

2/t)) ≤ Met/c2 for all t > 0, for
some M > 0. Thus, by (7), T (t) extends to a family of consistent semigroups
Tp(t) on Lp(Ω). As in [7] one shows that these semigroups are strongly
continuous for p < ∞ (for p > 1 this is clear by interpolation).

Proof of Proposition 4. By the inequality r ≤ t/4c2 + c2r
2/t, the kernel

kz,t of ̺1,zT (t)̺−1
1,z satisfies

kz,t(x, y) = ed(z,y)−d(z,x)K(t, x, y)≤ ed(x,y)c1t
−N/2e−c2 d(x,y)2/t ≤ c1t

−N/2et/4c2

for all x, y ∈ Ω. We thus find that (6) is satisfied for Ω′ = Ω, ε0 = 1,
p = 1 and q = ∞, so the assertion follows from Corollary 2 (see also Re-
mark 3(i)).

With slight modifications, the same can be shown if the semigroup kernel
satisfies a Gaussian upper bound of order m or, more generally, an upper
bound like

(10) |K(t, x, y)| ≤ c1t
−M/2 exp(−c2d(x, y)γ/tγ−1) (t > 0, x, y ∈ Ω)

for some c1, c2 > 0, M > 0 and γ > 1. Bounds of this type have been proved
in [4], [12] for semigroups generated by certain elliptic operators on open
subsets Ω ⊂ R

N . In [4], the operator was assumed to be uniformly elliptic,
satisfying Neumann or Robin boundary conditions, and (10) was shown
with γ = 2 and M ≥ N depending on some weak regularity assumption
on Ω. In [12], the bound (10) was shown with M = N and some γ ∈
(1, 2) for elliptic operators with unbounded coefficients in the principal part,
satisfying Dirichlet boundary conditions.

In [20], K. T. Sturm showed that the spectrum of uniformly elliptic oper-
ators on an N -dimensional complete Riemannian manifold with Ricci curva-
ture bounded below is p-independent if the volume grows uniformly subex-
ponentially in the following sense: Instead of (2) the stronger bound

µ(B(x, r)) ≤ m(r)µ(B(x, 1)) (x ∈ M, r > 0)

holds with m satisfying (3). This bound is stronger since supx∈M µ(B(x, 1))
< ∞ by Bishop’s comparison principle, but infx∈M µ(B(x, 1)) > 0 does not
hold in general, i.e., our condition (1) is not satisfied.

2.2. Weighted norm estimates and L1-regular functions. In this sub-
section we present a result of [15] on Lp-spectral independence for closed
operators acting in Lp(Ω) for some open set Ω ⊂ R

N . Choosing an appro-
priate semi-metric d on R

N we show that this result is also a consequence
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of our main theorem. We need to introduce the following notion due to Se-
menov ([18]): A function ϕ : R

N → R
N is called L1-regular if it is (uniformly)

Lipschitz continuous and

sup
k∈ZN

∑

j∈ZN

e−|ϕ(k)−ϕ(j)| < ∞.

We use Theorem 1 to reprove

Theorem ([15, Theorem 1]). Given 1 ≤ p < q < ∞ let Tp and Tq

be closed operators in Lp(Ω) and Lq(Ω), respectively. If there exist ε > 0,
C < ∞, λ0 ∈ ̺(Tp) ∩ ̺(Tq) and an L1-regular function ϕ : R

N → R
N such

that

(i) R(λ0, Tp) and R(λ0, Tq) are consistent ,
(ii) ‖eξϕR(λ0, Tp)e

−ξϕ↾L∞,c(Ω)‖p→q ≤ C for all ξ ∈ R
N with |ξ| ≤ ε,

then σ(Tp) = σ(Tq), and R(λ, Tp) and R(λ, Tq) are consistent for all λ ∈
̺(Tp) = ̺(Tq).

In [15], this theorem was applied to (not necessarily selfadjoint) strictly
elliptic operators in divergence form with lower order terms. We show that,
for the semi-metric on Ω′ := R

N defined by d(x, y) := |ϕ(x)−ϕ(y)|∞ and for
µ := |·| the Lebesgue measure, assumptions (1) to (3) and the weighted norm
estimate (5) hold. The lower volume estimate (1) is a direct consequence of
the Lipschitz continuity of ϕ: Let L > 0 be such that |ϕ(x) − ϕ(y)|∞ ≤
L|x − y|∞ for all x, y ∈ R

N . Then B(x, r) ⊃ x + [−r/L, r/L]N and hence
|B(x, r)| ≥ (2/L)NrN for all r > 0.

The following lemma in particular shows that (2) and (3) hold.

Lemma 5. Let ϕ : R
N → R

N be Lipschitz continuous. Define the semi-

metric d on R
N as above. Then the following are equivalent :

(i) ϕ is L1-regular ,
(ii) n1(e

−εd) < ∞ for all ε > 0,
(iii) there exists C > 0 such that |B(x, r)| ≤ C(1 + r)N for all r > 0.

Proof. (iii)⇒(ii) is shown in (8).
(ii)⇒(i). For j ∈ Z

N let Qj := j + [−1/2, 1/2]N . Let L be as above.
Then for k ∈ Z

N we have
∑

j∈ZN

e−|ϕ(k)−ϕ(j)| ≤
∑

j∈ZN

eL/2
\

Qj

e−|ϕ(k)−ϕ(y)| dy = eL/2
\

RN

e−d(k,y) dy.

Since ϕ is Lipschitz continuous the function x 7→
T
RN e−d(x,y) dy is continu-

ous, and we conclude that

sup
k∈ZN

∑

j∈ZN

e−|ϕ(k)−ϕ(j)| ≤ eL/2 sup
k∈RN

\
RN

e−d(k,y) dy = eL/2n1(e
−d) < ∞.
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(i)⇒(iii) (cf. [15, Appendix A]). Let r > 0 and let n ∈ N with n − 1 <
r ≤ n. Then

B(x, r) = {y ∈ R
N ; ϕ(y) ∈ ϕ(x) + (−r, r)N}

⊂
⋃

{ϕ−1(ϕ(x) + j + [0, 1]N); j ∈ {−n, . . . , n − 1}N}.

It follows that |B(x, r)| ≤ (2n)N supz∈RN |ϕ−1(z + [0, 1]N)|. Since (2n)N ≤
2N (1 + r)N it remains to show that the supremum is finite.

To this end, let z ∈ R
N and Q := z + [0, 1]N . Let x0, y ∈ ϕ−1(Q)

and choose k, j ∈ Z
N with x0 ∈ Qk and y ∈ Qj. Then d(x0, y) ≤ 1

and d(x0, k), d(y, j) ≤ L/2, hence d(j, k) ≤ L + 1. Therefore ϕ−1(Q) ⊂
⋃

{Qj; j ∈ Z
N , d(j, k) ≤ L + 1} and

|ϕ−1(Q)| ≤ #{j ∈ Z
N ; d(j, k) ≤ L + 1} ≤

∑

j∈ZN

eL+1−d(j,k).

By the L1-regularity of ϕ this shows that |ϕ−1(Q)| can be estimated from
above independently of the cube Q, and the proof is finished.

To conclude, we show that the weighted norm estimate (ii) of the above
theorem with the unbounded weights eξϕ implies estimate (5) with the
bounded weights ̺ε,z = e−εd(·,z). To this end let E := {±εej ; j = 1, . . . , N}
where ej are the standard unit vectors of R

N . Fix z ∈ R
N and let ̺ξ :=

eξ(ϕ−ϕ(z)) for ξ ∈ E. Then

̺−1
ε,z = eε|ϕ−ϕ(z)|∞ = max

ξ∈E
̺−1

ξ .

For f ∈ L∞,c(Ω) and the dual operator A′ of A (cf. Lemma 7 of Section 3
below) we obtain

‖̺−1
ε,zA

′̺ε,zf‖p′ ≤
∑

ξ∈E

‖̺−1
ξ A′̺ξ̺

−1
ξ ̺ε,zf‖p′

≤
∑

ξ∈E

‖̺−1
ξ A′̺ξ‖q′→p′‖̺−1

ξ ̺ε,zf‖q′ .

Noting ̺−1
ξ ̺ε,z ≤ 1, we conclude, by Lemma 7(ii) and the definition of ̺ξ,

that
‖̺ε,zA̺−1

ε,z‖p→q = ‖̺−1
ε,zA

′̺ε,z‖q′→p′ ≤
∑

ξ∈E

‖̺−1
ξ A′̺ξ‖q′→p′

≤ 2N max
ξ∈E

‖eξϕAe−ξϕ‖p→q.

Therefore (5) is satisfied and we can apply Theorem 1, taking into account
Remark 3(iii).

2.3. Elliptic operators in Euclidean space. We now want to discuss in
some detail the fact that even in Euclidean space it is very helpful to have
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the possibility to resort to a totally different semi-metric and also not to be
restricted to “cube partitions”.

Let Ω ⊂ R
N be an open set, and µ the Lebesgue measure on Ω. Let

ajk ∈ L1,loc(Ω) be real-valued with ajk = akj for all 1 ≤ j, k ≤ N and

N
∑

j,k=1

ajkξjξk ≥ α|ξ|2 a.e. (ξ ∈ R
N )

for some α > 0. We define the differential operator −∇ · (a∇) with zero
Dirichlet boundary conditions by the form method. Let τ be the following
sesquilinear form in L2:

τ(u, v) :=
\
Ω

N
∑

j,k=1

ajk(x)∂ku(x)∂jv(x) dx, D(τ) := C∞
c (Ω).

It is well-known that the form τ is closable and that τ is a Dirich-
let form. Let H be the selfadjoint operator in L2 associated with τ . Then
e−tH↾L∞,c(Ω) extends to a C0-semigroup e−tHp on Lp for all 1 ≤ p < ∞.
Here L∞,c(Ω) means the space corresponding to the sequence Ωn :=
{x ∈ Ω; |x| ≤ n, dist(x, ∂Ω) ≥ 1/n}, where dist denotes the Euclidean
distance. This is the appropriate choice for later application of [15, Thm. 8].

If H is uniformly elliptic, i.e., the coefficients ajk are bounded, then the
semigroup e−tH satisfies an upper Gaussian estimate, and σ(Hp) is indepen-
dent of p ∈ [1,∞) ([1, Example 5.2]).

In [18], Semenov studied elliptic operators that are not necessarily uni-
formly elliptic. In this case the semigroup may not satisfy an upper Gaussian
estimate (with respect to the Euclidean metric), but under certain condi-
tions p-independence of the spectrum still holds. He showed the same if the
operator is perturbed by a real-valued potential with form small negative
part. Then the semigroup does not necessarily exist in all Lp-spaces.

In [15], the conditions from [18] were slighty relaxed, and an additional
first order perturbation was included. This required a new method of proof
since the resulting operator need no longer be selfadjoint.

We are now going to present an example in dimension N = 2 that is
not covered by the above mentioned results but is by our Theorem 1: Let
Ω := Ω′ := {x ∈ R

2; x1 > 0, 0 < x2 < x−2
1 } ∪ {x ∈ R

2; x1 ≤ 0, 0 < x2 < 2}.
Note that Ω has infinite measure, but the unbounded subset Ω0 := Ω ∩
{x; x1 ≥ 0, x2 ≤ 2} has finite measure.

Let ajk be as above and assume that a22(x) ≤ c0x2 for x2 > 2 and
a11(x) ≤ c0 for x1 < 0. The formula

d(x, y) := |
√

x2 ∨ 2 −
√

y2 ∨ 2| + |x1 ∧ 0 − y1 ∧ 0| (x, y ∈ Ω)
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(where ∨ denotes the maximum, and ∧ the minimum) defines a semi-metric
on Ω. We now consider open balls of radius r with respect to this semi-
metric. Obviously such a ball contains Ω0 if and only if it contains a point
of Ω0. A direct calculation shows that 4r ≤ µ(B(x, r)) ≤ 4r + 2

√
2 for all

x ∈ Ω, r > 0. Hence conditions (1) to (3) are fulfilled for the metric d if we
choose m(r) := 4r + 2

√
2 (r > 0) and m(0) := 0.

Observe that in this example the space of all essentially bounded func-
tions with support in a d-bounded set is strictly larger than the space
L∞,c(Ω) we have chosen, since it contains the characteristic function of
Ω0 (cf. Remark 3(ii)). On the other hand, the space of all functions that are
integrable on all d-bounded sets is strictly smaller than L1,loc(Ω).

In order to show the weighted estimate (5) for the resolvents of H, we
want to apply [15, Thm. 8]. For 0 < ε ≤ 1, z ∈ Ω and ̺ := ̺ε,z we obtain

̺−2
2

∑

j,k=1

ajk∂k̺∂j̺ =
2

∑

j,k=1

ajkε
2∂kd(·, z)∂jd(·, z)

= ε2(a11(∂1d(·, z))2χ{x; x1<0} + a22(∂2d(·, z))2χ{x, x2>2}) ≤ c0.

Further, ̺ ∧ n and ̺−1 ∧ n are Lipschitz continuous for all n ∈ N, so the
conditions of [15, Thm. 8] are satisfied. We conclude that for 1 < p < q < ∞
there exist λ ∈ R and C > 0 such that

‖̺ε,z(λ + H)−1̺−1
ε,z↾L∞,c(Ω)‖p→q ≤ C (0 < ε ≤ 1, z ∈ Ω).

(In fact the same is true for p = 1, but this is not covered by the above
mentioned theorem.) By Remark 3(iii), it follows that the spectrum of Hp

is independent of p ∈ (1,∞).

Applying [15, Thm. 2] directly to this situation would lead to more
restrictive conditions on the coefficients ajk: On the one hand, the linear
growth of a22 would not be allowed, on the other hand there would be an
additional condition on a11 on the subset Ω0. This is clear from the discus-
sion on L1-regular functions in the previous subsection.

3. Proof of the main result. We start with a series of preparatory
results. For this whole section we fix 1 ≤ p ≤ q ≤ ∞.

In order to prove the inclusion ̺(Ar) ⊂ ̺(As) for r, s ∈ [p, q], one has
to show that for λ ∈ ̺(Ar) the operator R(λ, Ar)↾L∞,c(Ω) extends to a
bounded operator on Ls(Ω). This is expressed in the following elementary
lemma which is stated in the general context of topological spaces (cf. [15,
Prop. 4] or [1, Prop. 2.3]).

Let E, F, G be Hausdorff spaces with E, F →֒ G such that E ∩ F is
dense in both E and F . Let D ⊂ E ∩ F be a subset that is dense with
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respect to the initial topology coming from the embeddings E∩F →֒ E and
E ∩ F →֒ F .

Lemma 6. Let AE : E → E and AF : F → F be continuous mappings

satisfying AE↾D = AF ↾D. Assume that AE is continuously invertible and

that A−1
E ↾D extends to a continuous mapping R : F → F . Then AF is con-

tinuously invertible, and A−1
F = R.

Proof. Since D is dense in E ∩ F and E, F →֒ G, we have AE↾E∩F =
AF ↾E∩F and A−1

E ↾E∩F = R↾E∩F . Hence RAF = AF R = I on E ∩ F . The
density of E ∩ F in F yields the claim.

To apply this lemma we further need the following. Consider the dual
system 〈L∞,c(Ω), L1,loc(Ω)〉 and endow L∞,c(Ω) and L1,loc(Ω) with the cor-
responding weak topologies. If A : L∞,c(Ω) → L1,loc(Ω) is a weakly con-
tinuous operator then A has a dual operator A′ : L∞,c(Ω) → L1,loc(Ω), i.e.T
Af · g =

T
f · A′g for all f, g ∈ L∞,c(Ω).

Lemma 7. Let A : L∞,c(Ω) → L1,loc(Ω) be a linear operator with

‖A‖p→q < ∞.

(i) If p < ∞ then A is weakly continuous.

(ii) If A is weakly continuous then for the dual operator A′ one has

‖A′‖q′→p′ = ‖A‖p→q.

(iii) If A is weakly continuous and p = q = ∞ then A has a unique

weak∗-continuous extension A∞ : L∞(Ω) → L∞(Ω).

Proof. (i) Let Ap : Lp(Ω) → Lq(Ω) be the continuous extension of A.
Then Ap is weakly continuous. Since Lp(Ω) is reflexive, Ap is weak∗-contin-
uous. This implies (i).

(ii) follows from ‖A‖p→q = sup{|
T
Af · g|; f, g ∈ L∞,c(Ω), ‖f‖p = ‖g‖q′

= 1}.
(iii) By (ii) we have ‖A′‖1→1 < ∞. Let Ã : L1(Ω) → L1(Ω) denote the

continuous extension of A′. Then A∞ := Ã′ is the unique weak∗-continuous
extension of A.

Corollary 8. Let Ar : Lr(Ω) → Lr(Ω) be consistent bounded operators

(p ≤ r ≤ q), and A∞ weak∗-continuous if q = ∞. If λ ∈ ̺(Ar) and

‖R(λ, Ar)↾L∞,c(Ω)‖s→s < ∞ for some r, s ∈ [p, q], then λ ∈ ̺(As).

Proof. For r, s < ∞ the result follows directly from Lemma 6 with G =
L1,loc(Ω) and D = L∞,c(Ω).

We endow L∞(Ω) with the weak∗-topology. Then, for t < ∞, L∞,c(Ω) is
dense in Lt(Ω)∩L∞(Ω), and Lt(Ω)∩L∞(Ω) is dense in Lt(Ω) and L∞(Ω).

For the case r = ∞ it remains to note that λ−A∞ has a bounded inverse
if and only if it has a weak∗-continuous inverse. In the case r < s = ∞ the
assumptions imply that R(λ, Ar)↾L∞,c(Ω) is Lr- and L∞-bounded. Hence,
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by Lemma 7(i) and (iii), R(λ, Ar)↾L∞,c(Ω) has a weak∗-continuous extension
R : L∞(Ω) → L∞(Ω), and again we are done by Lemma 6.

Now, using the weights ̺ε,z, we construct a norm equivalent to the Lq-
norm. Here is the only point where assumption (1) is needed. Observe that
in the case q = ∞ it suffices to assume (1′).

Lemma 9. For all f ∈ Lq(Ω) and ε > 0 we have

‖f‖q,ε :=
∥

∥z 7→ ‖̺ε,zf‖Lq(Ω)

∥

∥

Lq(Ω′)
≥ c−1

q,ε‖f‖q,

where cq,ε := γ−1/qeεR.

Proof. By Fubini’s theorem, ‖f‖q,ε =
∥

∥x 7→ ‖̺ε,x‖Lq(Ω′)f(x)
∥

∥

Lq(Ω)
. As-

sumption (1) implies ‖̺ε,x‖Lq(Ω′) ≥ ‖e−εRχB(x,R)‖Lq(Ω′) ≥ e−εRγ1/q for
almost all x ∈ Ω. This gives the desired conclusion.

The following consequence of (7) will be used throughout:

(11)
∥

∥Ω′ ∋ z 7→ ‖g(z, ·)f‖p

∥

∥

q
≤ nt(g)‖f‖s

(p ≤ s, t ≤ q, p−1 + q−1 = s−1 + t−1),

where g is a measurable function on Ω′ × Ω′, and f a measurable function
on Ω. In particular, for p = q, g = ̺ε we have ‖f‖q,ε ≤ nq(̺ε)‖f‖q, so ‖ · ‖q,ε

is indeed equivalent to ‖ · ‖q.
For a linear operator A : L∞,c(Ω) → L1,loc(Ω) and ε ∈ R we will use the

following notation:

‖A‖p→q,ε := sup
z∈Ω′

‖̺ε,zA̺−1
ε,z‖p→q

= inf{c > 0; ∀f ∈ L∞,c(Ω), z ∈ Ω′ : ‖̺ε,zAf‖q ≤ c‖̺ε,zf‖p} ∈ [0,∞].

With this notation assumption (5) reads ‖A‖p→q,ε0
≤ C.

Using Lemma 9 and the estimate (11) only, we see that assumption (5)
implies that the operator A is Lq-bounded: For f ∈ L∞,c(Ω),

‖Af‖q ≤ cq,ε0
‖Af‖q,ε0

≤ cq,ε0

∥

∥z 7→ ‖A‖p→q,ε0
‖̺ε0,zf‖p

∥

∥

q

≤ cq,ε0
np(̺ε0

)‖A‖p→q,ε0
‖f‖q.

But we are going to establish much more general estimates. For ε > 0 and
M ≥ 1 we define a class of weight functions

P (ε, M) := {̺ : Ω′ → (0,∞) measurable;

∀u, x ∈ Ω′ : ̺(x)/̺(u) ≤ M̺−ε,u(x)}.
For ̺ ∈ P (ε, M), ε′ ∈ R and u ∈ Ω′ we have

(12) ̺ε′,u̺̺(u)−1 ≤ M̺ε′−ε,u and ̺ε′,u̺(u)̺−1 ≤ M̺ε′−ε,u.

Note that due to the triangle inequality ̺ε,z ∈ P (|ε|, 1) for ε ∈ R and z ∈ Ω′.
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We now estimate several operator norms in terms of ‖A‖p→q,ε0
(cf. [17,

Prop. 3.2]). Again observe that in the case p = 1, q = ∞ it suffices to
assume (1′).

Proposition 10.

(i) Let p ≤ s ≤ q and t−1 := p−1 + q−1 − s−1. For 0 ≤ ε < ε0, M ≥ 1
and ̺ ∈ P (ε, M) we have

‖̺A̺−1‖s→q ≤ M2cq,ε0+εnt(̺ε0−ε)‖A‖p→q,ε0
.

(ii) There exist constants Cε0,ε < ∞, bounded as ε → 0, such that

‖A‖s→t,ε ≤ Cε0,ε‖A‖p→q,ε0

for all p ≤ s ≤ t ≤ q and |ε| < ε0.

Proof. We begin with (i). Let ε′ := ε0+ε and f ∈ L∞,c(Ω). By Lemma 9
we have

‖̺A̺−1f‖q ≤ cq,ε′
∥

∥u 7→ ‖̺ε′,u̺̺(u)−1A̺(u)̺−1f‖q

∥

∥

q
.

Using (12) and the definition of ‖A‖p→q,ε0
we get

‖̺ε′,u̺̺(u)−1A̺(u)̺−1f‖q ≤ M‖̺ε0,uA̺(u)̺−1f‖q

≤ M‖A‖p→q,ε0
‖̺ε0,u̺(u)̺−1f‖p ≤ M2‖A‖p→q,ε0

‖̺ε0−ε,uf‖p.

By (11) we conclude that

‖̺A̺−1f‖q ≤ cq,ε′M
2‖A‖p→q,ε0

∥

∥u 7→ ‖̺ε0−ε,uf‖p

∥

∥

q

≤ M2cq,ε′‖A‖p→q,ε0
nt(̺ε0−ε)‖f‖s.

This proves (i).

For t = q, part (ii) is just a special case of (i) since ̺ε,z ∈ P (|ε|, 1)
for z ∈ Ω′. Note that the constant Cε0,ε does not depend on p, q, s, t since
cq,ε′ ≤ c1,ε′ ∨ c∞,ε′ and nq(̺ε0−ε) ≤ n1(̺ε0−ε) ∨ n∞(̺ε0−ε). Further, note
that the constants stay bounded as ε → 0.

We now prove (ii) for s = t = p. Note that the case p = ∞ is treated
above, so we assume p < ∞. By Lemma 7(i) we know that ̺ε0,zA̺−1

ε0,z :
L∞,c(Ω) → L1,loc(Ω) is weakly continuous for all z ∈ Ω′. It easily follows
that A is weakly continuous and that (̺ε,zA̺−1

ε,z)
′ = ̺−1

ε,zA
′̺ε,z for all ε ∈ R

and z ∈ Ω′. Hence by Lemma 7(ii) and by (i) we obtain

‖A′‖q′→p′,ε1
= ‖A‖p→q,−ε1

≤ cq,ε0+ε1
nq(̺ε0−ε1

)‖A‖p→q,ε0

for ε0 > ε1 > 0. For |ε| < ε0, choosing |ε| < ε1 < ε0 and using (i) again for
the dual situation we conclude that

‖A‖p→p,ε = ‖A′‖p′→p′,−ε ≤ cp′,ε1+|ε|nq′(̺ε1−|ε|)‖A′‖q′→p′,ε1

≤ cp′,ε1+|ε|nq′(̺ε1−|ε|)cq,ε0+ε1
nq(̺ε0−ε1

)‖A‖p→q,ε0
.
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Now Riesz–Thorin interpolation between the cases treated above proves the
remaining cases.

Remark 11. Let A : L∞,c(Ω) → L1,loc(Ω) be weakly continuous with
‖A‖p→q,ε0

< ∞ for some ε0 > 0. By Lemma 7(i) the latter implies weak
continuity if (as in the assumptions of Theorem 1) p < ∞.

(i) Proposition 10(ii) shows that A extends to a bounded operator Ar

on Lr(Ω) for r ∈ [p, q], r < ∞. In the case q = ∞, Lemma 7(iii) implies
that A has a unique weak∗-continuous extension A∞ : L∞(Ω) → L∞(Ω).
The operators Ar are consistent since L∞,c(Ω) is dense in Lr(Ω)∩Ls(Ω) if
L∞(Ω) is endowed with the weak∗-topology.

(ii) If ̺ ∈ P (ε, M) for some ε < ε0 and M ≥ 1 then ̺A̺−1 extends
to a bounded operator A̺ : Lq(Ω) → Lq(Ω) by Proposition 10(i). In the
case q = ∞, again A̺ : L∞(Ω) → L∞(Ω) is the unique weak∗-continuous
extension. In case ̺ = ̺ε,z for some |ε| < ε0, z ∈ Ω′ we write Aε,z for A̺ε,z .

(iii) If an operator A is defined on D(A) ⊃ L∞,c(Ω), we also write
‖A‖p→q,ε instead of ‖A↾L∞,c(Ω)‖p→q,ε. If A : Lp(Ω) → Lq(Ω) is bounded
(weak∗-continuous in case p = ∞), then ‖̺ε,zAf‖q ≤ ‖A‖p→q,ε‖̺ε,zf‖p for
all f ∈ Lp(Ω). Therefore, if B : Lq(Ω) → Lr(Ω) is a bounded operator
(weak∗-continuous in case q = ∞), then ‖BA‖p→r,ε ≤ ‖A‖p→q,ε‖B‖q→r,ε.

The crucial part in the proof of Theorem 1 is the following estimate
which implies convergence of weighted operators (cf. [16, Lemma 3.2.3] or
[15, Prop. 5(iii)]).

Proposition 12. There exist δε0,ε > 0 with δε0,ε → 0 (ε → 0) such that

‖̺A̺−1 − A‖s→t ≤ δε0,ε‖A‖p→q,ε0

for all p ≤ s ≤ t ≤ q, 0 ≤ ε < ε0 and ̺ ∈ P (ε, 1).

Proof. First note that ‖A‖s→t,ε1
≤ Cε0,ε1

‖A‖p→q,ε0
for all 0 < ε1 < ε0

by Proposition 10(ii). Hence it suffices to treat the case s = p, t = q. Using
Lemma 9, for f ∈ L∞,c(Ω) we have

(13) ‖(̺A̺−1 − A)f‖q ≤ cq,ε0+ε

∥

∥u 7→ ‖̺ε0+ε,u(̺A̺−1 − A)f‖q

∥

∥

q
.

We now write

̺A̺−1 − A = ̺̺(u)−1A(̺(u)̺−1 − 1) + (̺̺(u)−1 − 1)A,

insert this into (13), use the triangle inequality and estimate the two result-
ing terms separately. For the second we have, using (12) and (11),

∥

∥u 7→ ‖̺ε0+ε,u(̺̺(u)−1 − 1)Af‖q

∥

∥

q
≤ nq(̺ε0+ε(̺−ε − 1))‖A‖p→q‖f‖p.
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Using (12) and (11) again, the first term can be estimated by
∥

∥u 7→ ‖̺ε0+ε,u̺̺(u)−1A(̺(u)̺−1 − 1)f‖q

∥

∥

q

≤
∥

∥u 7→ ‖̺ε0,uA(̺(u)̺−1 − 1)f‖q

∥

∥

q

≤ ‖A‖p→q,ε0

∥

∥u 7→ ‖̺ε0,u(̺−ε,u − 1)f‖p

∥

∥

q

≤ ‖A‖p→q,ε0
nq(̺ε0

(̺−ε − 1))‖f‖p.

The claim follows after noting that ‖A‖p→q ≤ Cε0,0‖A‖p→q,ε0
and

nq(̺ε0
(̺−ε − 1)) ≤ nq(̺ε0/2) sup

r≥0
e−ε0r/2(eεr − 1) → 0 (ε → 0),

where we used ̺ε0
= ̺2

ε0/2.

The following consequence of Proposition 12 will be used in the proof of
Theorem 1.

Corollary 13. Let A be an operator on Lq(Ω) satisfying ‖A‖q→q,ε0
<∞

for some ε0 > 0. In the case q = ∞ assume that A is weak∗-continuous.

Then for all λ ∈ ̺(A) there exists ε > 0 such that λ ∈ ̺(Aε,z) for all z ∈ Ω′,
and ‖R(λ, A)‖q→q,ε < ∞.

Proof. Let λ ∈ ̺(A). By assumption we have ‖λ−A‖q→q,ε0
< ∞. Apply-

ing Proposition 12 and recalling that inversion is continuous in the open set
of invertible elements in L(Lq(Ω)), we deduce for some ε > 0 that λ − Aε,z

is invertible for all z ∈ Ω′ (that is, the first claim), and that

(14) sup
z∈Ω′

‖R(λ, Aε,z)‖q→q < ∞.

To prove ‖R(λ, A)‖q→q,ε < ∞ observe that for all z ∈ Ω′ the func-
tion ̺−1

ε,z : D(̺−1
ε,z , Lq) → Lq is surjective since ̺ε,z is bounded. Hence

R(λ, Aε,z)↾D(̺−1
ε,z ,Lq) = ̺ε,zR(λ, A)̺−1

ε,z , and we are done by (14).

Proof of Theorem 1. In Remark 11(i) it is shown that A extends to con-
sistent bounded operators Ar on Lr(Ω) (p ≤ r ≤ q, A∞ weak∗-continuous if
q = ∞). So we need to prove the inclusion ̺(Ar) ⊂ ̺(As) for all r, s ∈ [p, q].
Let λ ∈ ̺(Ar).

First we treat the case λ 6= 0. Then we can rewrite the resolvent R(λ) of
Ar as follows:

R(λ) = λ−1I + λ−2Ar + λ−2ArR(λ)Ar.

We have to show that λ ∈ ̺(As), which by Corollary 8 amounts to showing
Ls-boundedness of R(λ)↾L∞,c(Ω).

It is clear that λ−1I + λ−2A is Ls-bounded; we will show that ArR(λ)A
is Ls-bounded. According to Corollary 13 we have ‖R(λ)‖r→r,ε < ∞ for
some 0 < ε < ε0. Moreover, ‖A‖p→r,ε +‖A‖r→q,ε < ∞ by Proposition 10(ii).
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Remark 11(iii) implies ‖ArR(λ)A‖p→q,ε < ∞. Another application of Propo-
sition 10(ii) gives Ls-boundedness of ArR(λ)A.

In the case λ = 0 we simply write R(λ) = ArR(λ)3Ar. Hence by the
above we have ‖R(λ)‖p→q,ε < ∞, and again ‖R(λ)‖s→s < ∞ by Proposi-
tion 10(ii).

Remark 14. (i) Let Ap be a bounded operator on Lp(Ω) with 0 ∈ ̺(Ap)
and ‖Ap‖p→q < ∞. Then ‖I : Lp(Ω) → Lq(Ω)‖ ≤ ‖A−1

p ‖p→p‖Ap‖p→q < ∞.
Therefore (Ω, µ) cannot contain a sequence (Mn) of subsets satisfying Mn ⊃
Mn+1 (n ∈ N) and 0 < µ(Mn) → 0 (n → ∞).

Then Ω =
⋃∞

n=0 Mn where µ(M0) = 0, Mn are pairwise disjoint atoms
of (Ω, µ) (n ≥ 1) and infn≥1 µ(Mn) > 0. Therefore, for all s < ∞, the
space Ls(Ω) is isometrically isomorphic to the weighted space of sequences
{(xn);

∑

n |xn|sµ(Mn) < ∞}, and L∞(Ω) is isometrically isomorphic to l∞.
In this case we have ‖Ap↾L1(Ω)∩Lp(Ω)‖1→∞ < ∞.

(ii) Let ϕ : Ω′ → (0,∞) be a subexponential weight function, i.e., for all
ε > 0 there exists M > 0 such that ̺(x)/̺(y) ≤ M exp(εd(x, y)) for all
x, y ∈ Ω′. Using Lemma 6, Proposition 10(i) and Corollary 13, one easily
proves the following version of Theorem 1 for the weighted space Lp(ϕ) :=
{f ; ϕf ∈ Lp(Ω)}, where 1 ≤ p < ∞.

Assume that (1), (2) and (3) hold. Let A be a bounded operator on
Lp(Ω) satisfying ‖A‖p→p,ε0

< ∞ for some ε0 > 0. Then A↾Lp∩Lp(ϕ) extends
to a bounded operator Aϕ on Lp(ϕ), and σ(Aϕ) = σ(A).
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