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MINIMALITY OF THE SYSTEM OF ROOT FUNCTIONS

OF STURM–LIOUVILLE PROBLEMS WITH DECREASING

AFFINE BOUNDARY CONDITIONS

BY

Y. N. ALIYEV (Baku)

Abstract. We consider Sturm–Liouville problems with a boundary condition linearly
dependent on the eigenparameter. We study the case of decreasing dependence where
non-real and multiple eigenvalues are possible. By determining the explicit form of a
biorthogonal system, we prove that the system of root (i.e. eigen and associated) functions,
with an arbitrary element removed, is a minimal system in L2(0, 1), except for some cases
where this system is neither complete nor minimal.

Introduction. Consider the following spectral problem:

−y′′ + q(x)y = λy, 0 < x < 1,(0.1)

y′(0) sinβ = y(0) cos β,(0.2)

y′(1) = (aλ + b)y(1),(0.3)

where a, b, β are real constants, 0 ≤ β < π, a < 0, λ is a spectral parameter
and q(x) is a real-valued and continuous function over the interval [0, 1].

It was proved in [2] (see also [1]) that the eigenvalues of the boundary
value problem (0.1)–(0.3) form an infinite sequence accumulating only at ∞
and only the following cases are possible: (a) all eigenvalues are real and
simple; (b) all eigenvalues are real and all, except one double, are simple;
(c) all eigenvalues are real and all, except one triple, are simple; (d) all eigen-
values are simple and all, except a conjugate pair of non-real ones, are real.

Let {vn}∞n=1 be a sequence of elements from L2(0, 1) and Vk the closure
(in the norm of L2(0, 1)) of the linear span of {vn}∞n=1, n 6=k. The system
{vn}∞n=1 is called minimal in L2(0, 1) if vk /∈ Vk for all k = 1, 2, . . . (see
[9, Ch. I, §2]).

The present article concerns the minimality in L2(0, 1) of the system
of root functions of the boundary value problem (0.1)–(0.3). In cases (a)
and (d), we complete the results of [2] by showing that the system of eigen-
functions of (0.1)–(0.3), with an arbitrary element removed, is minimal in
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L2(0, 1). In cases (b) and (c) we discuss all the choices of the removed el-
ement and find necessary and sufficient conditions for the system of root
functions, with one element removed, to be minimal in L2(0, 1). Using the
method of [10–12] one can show that such a minimal system is a basis in
Lp(0, 1) (1 < p < ∞). The precise statements and proofs of our results are
contained in Section 4.

The eigenvalues λn (n ≥ 0) will be listed according to their non-decreas-
ing real part and repeated according to their algebraic multiplicity. The
asymptotics of eigenvalues and oscillations of eigenfunctions of the boundary
value problem (0.1)–(0.3), with the linear function in the boundary condition
replaced by a general rational function, were studied in a recent paper [3].
For an affine (linear) decreasing function this asymptotics is as follows [2]:

(0.4) λn =

{
(n − 1/2)2π2 + O(1) if β 6= 0,

n2π2 + O(1) if β = 0.

This asymptotic formula plays an important role in the passage from mini-
mality theorems to basis properties in L2(0, 1) (cf. [10–12]).

The case a > 0 of our problem is considerably simpler and can be found
as a special case in [10, 11]. In [13] the following boundary value problem
was considered:

−y′′ = λy, 0 < x < 1,(0.5)

y′(0) = 0, y′(1) = aλy(1), a 6= 0.(0.6)

For this problem only cases (a) and (b) are possible, and in [13] a complete
solution of the problem of the basis properties in Lp(0, 1) (1 < p < ∞) of the
system of root functions was given. We shall discuss this problem further in
the last section. The situation for (0.1)–(0.3) is much more complicated, with
the possibility of non-real eigenvalues and of an eigenvalue with algebraic
multiplicity 3.

There is a vast literature on the boundary value problems with a spec-
tral parameter in the boundary conditions (see e.g. [4, 7, 15] and a recent
contribution [5]).

1. Inner products and norms of eigenfunctions. Let yn be an
eigenfunction corresponding to an eigenvalue λn. By (0.1)–(0.3) we have

−y′′n + q(x)yn = λnyn,

y′n(0) sinβ = yn(0) cosβ,

y′n(1) = (aλn + b)yn(1).

Let y(x, λ) be a non-zero solution of (0.1)–(0.2), and consider the char-
acteristic function

(1.1) ̟(λ) = y′(1, λ) − (aλ + b)y(1, λ).
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By (0.3), λn is an eigenvalue of (0.1)–(0.3) if ̟(λn) = 0. It is a simple
eigenvalue if ̟(λn) = 0 6= ̟′(λn), a double eigenvalue if

(1.2) ̟(λk) = ̟′(λk) = 0 6= ̟′′(λk),

and a triple eigenvalue if

(1.3) ̟(λk) = ̟′(λk) = ̟′′(λk) = 0 6= ̟′′′(λk).

We also note that y(x, λ) → y(x, λn) uniformly as λ → λn, because
y(x, λ) is an entire function of λ (see [6, Sect. 10.72]).

Throughout this paper we denote by (·, ·) the scalar product in L2(0, 1).

Lemma 1.1. Let yn, ym be eigenfunctions corresponding to the eigenval-

ues λn, λm (λn 6= λm). Then

(1.4) (yn, ym) = −ayn(1)ym(1).

Proof. To begin we note that

d

dx

[
y(x, λ)y′(x, µ) − y′(x, λ)y(x, µ)

]
= (λ − µ)y(x, λ)y(x, µ).

By integrating this identity from 0 to 1, we obtain

(1.5) (λ − µ)(y(·, λ), y(·, µ)) = (y(x, λ)y′(x, µ) − y′(x, λ)y(x, µ))
∣∣1
0
.

From (0.2), we obtain

(1.6) y(0, λ)y′(0, µ) − y′(0, λ)y(0, µ) = 0.

By (1.1),

y(1, λ)y′(1, µ) − y′(1, λ)y(1, µ) = − a(λ − µ)y(1, λ)y(1, µ)(1.7)

+ y(1, λ)̟(µ) − y(1, µ)̟(λ).

From (1.5)–(1.7), it follows that for λ 6= µ,

(1.8) (y(·, λ), y(·, µ)) = −ay(1, λ)y(1, µ) + y(1, λ)
̟(µ)

λ − µ
− y(1, µ)

̟(λ)

λ − µ
,

which is a generalization of an analogous formula in [6, Sect. 10.72]. Since
λn, λm are eigenvalues of (0.1)–(0.3), we have ̟(λn) = ̟(λm) = 0, hence
by letting λ → λn (µ 6= λn) and then µ → λm we obtain (1.4).

Now we collect some easy facts about inner products of eigenfunctions.

Lemma 1.2. If λn is a real eigenvalue then

(1.9) ‖yn‖2
2 = −ayn(1)2 − yn(1)̟′(λn).

Proof. Since ̟(λn) = 0, we have ̟(λ)/(λ − λn) → ̟′(λn) as λ → λn.
Therefore, by letting µ → λn (λ 6= λn) and then λ → λn in (1.8) we
obtain (1.9).

Corollary 1.1. If λk is a multiple eigenvalue then

(1.10) ‖yk‖2
2 = −ayk(1)2.
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An immediate corollary of (1.4) is the following

Corollary 1.2. If λr is a non-real eigenvalue then

(1.11) ‖yr‖2
2 = −a|yr(1)|2.

Proof. Since λr 6= λr, (1.11) follows at once from (1.4) by replacing
λn, λm by λr.

For the eigenfunction yn define

(1.12) Bn = ‖yn‖2
2 + a|yn(1)|2.

The following corollary of (1.9) and (1.11) will be useful (cf. [1, The-
orem 4.3]).

Corollary 1.3. Bn 6= 0 if and only if the corresponding eigenvalue λn

is real and simple.

If λk is a multiple (double or triple) eigenvalue (λk = λk+1) then
Bk = −yk(1)ω′(λk) = 0 and Bk+1 is not defined, so we set Bk+1 =
−yk(1)ω′′(λk)/2. If λk is a triple eigenvalue (λk = λk+1 = λk+2) then
Bk+1 = 0 and Bk+2 is not defined, so we set Bk+2 = −yk(1)ω′′′(λk)/6.

We conclude this section with the following

Lemma 1.3. If λr and λs = λr are a conjugate pair of non-real eigen-

values then

(1.13) (yr, ys) = −ayr(1)2 − yr(1)̟′(λr).

The proof is similar to the proof of (1.9). We also note that ̟′(λr) 6= 0
in (1.13) since all non-real eigenvalues of (0.1)–(0.3) are simple.

2. Inner products and norms of associated functions. We shall
need the results of this and subsequent sections only for real eigenvalues, so
throughout these sections we assume that all the eigenvalues are real.

If λk is a double eigenvalue (λk = λk+1) then for the associated function
yk+1 corresponding to the eigenfunction yk, the following relations hold:

−y′′k+1 + q(x)yk+1 = λkyk+1 + yk,

y′k+1(0) sinβ = yk+1(0) cosβ,

y′k+1(1) = (aλk + b)yk+1(1) + ayk(1).

If λk is a triple eigenvalue (λk = λk+1 = λk+2) then together with the
associated function yk+1 there exists a second associated function yk+2 for
which

−y′′k+2 + q(x)yk+2 = λkyk+2 + yk+1,

y′k+2(0) sinβ = yk+2(0) cosβ,

y′k+2(1) = (aλk + b)yk+2(1) + ayk+1(1).

The following well known properties of associated functions play an im-
portant role in our investigation. The functions yk+1 + cyk and yk+2 + dyk,
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where c and d are arbitrary constants, are also associated functions of the
first and second order respectively. Next we observe that if we replace the
associated function yk+1 by yk+1 + cyk, then the associated function yk+2

changes to yk+2 + cyk+1. For a fuller discussion of the theory of associated
functions see [14, Ch. I, §2].

From (0.1), (0.2) and (1.1) we obtain

−y′′λ + q(x)yλ = λyλ + y,

y′λ(0) sinβ = yλ(0) cosβ,

̟′(λ) = y′λ(1) − (aλ + b)yλ(1) − ay(1),

where the subscript denotes differentiation with respect to λ.

Let λk be a multiple (double or triple) eigenvalue of (0.1)–(0.3). Since
̟(λk) = ̟′(λk) = 0 it follows that y(x, λ) → yk and yλ(x, λ) → ỹk+1 as
λ → λk, where ỹk+1 = yk+1 + c̃yk is an associated function of the first order,
and c̃ = (ỹk+1(1) − yk+1(1))/yk(1).

Similarly, we may write

−y′′λλ + q(x)yλλ = λyλλ + 2yλ,

y′λλ(0) sinβ = yλλ(0) cosβ,

̟′′(λ) = y′λλ(1) − (aλ + b)yλλ(1) − 2ayλ(1).

We note again that if λk is a triple eigenvalue of (0.1)–(0.3) then ̟′′(λk) = 0,

hence yλλ → 2ỹk+2 as λ → λk, where ỹk+2 = yk+2 + c̃yk+1 + d̃yk is an
associated function of the second order corresponding to the first associated
function ỹk+1, and d̃ = (ỹk+2(1) − yk+2(1) − c̃yk+1(1))/yk(1). We shall use
the fact that the functions y(x, λ), yλ(x, λ), yλλ(x, λ) are continuous in both
x and λ (see [8, Ch. 3, §4]). So, differentiation and subsequent limit passages
in the integrals below are meaningful.

Lemma 2.1. If λk is a multiple eigenvalue and λn 6= λk then

(2.1) (yk+1, yn) = −ayk+1(1)yn(1).

Proof. Differentiating (1.8) with respect to λ we obtain

(2.2) (yλ(·, λ), y(·, µ)) = −ayλ(1, λ)y(1, µ) + yλ(1, λ)
̟(µ)

λ − µ

− y(1, λ)
̟(µ)

(λ − µ)2
− y(1, µ)

̟′(λ)

λ − µ
+ y(1, µ)

̟(λ)

(λ − µ)2
.

Letting µ → λn (λ 6= λn) and then λ → λk in (2.2) we obtain (ỹk+1, yn) =
−aỹk+1(1)yn(1). We note that ỹk+1 = yk+1 + c̃yk. Therefore,

(yk+1, yn) + c̃(yk, yn) = −ayk+1(1)yn(1) − ac̃yk(1)yn(1).

Combining this with (yk, yn) = −ayk(1)yn(1) we obtain (2.1).
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Lemma 2.2. If λk is a multiple eigenvalue then

(2.3) (yk+1, yk) = −ayk+1(1)yk(1) − yk(1)
̟′′(λk)

2
.

Proof. Letting µ → λk (λ 6= λk) and then λ → λk in (2.2) we obtain

(ỹk+1, yk) = −aỹk+1(1)yk(1) − yk(1)
̟′′(λk)

2
.

In analogy with the previous lemma, using (1.10), we obtain (2.3).

Lemma 2.3. If λk is a multiple eigenvalue then

‖yk+1‖2
2 = (yk+1, yk+1)(2.4)

= −ayk+1(1)2 − ŷk+1(1)
̟′′(λk)

2
− yk(1)

̟′′′(λk)

6
,

where ŷk+1 = yk+1 − c̃yk.

Proof. Differentiating (2.2) with respect to µ we obtain

(2.5) (yλ(·, λ), yµ(·, µ)) = −ayλ(1, λ)yµ(1, µ) + yλ(1, λ)
̟′(µ)

λ − µ

+ yλ(1, λ)
̟(µ)

(λ − µ)2
− y(1, λ)

̟′(µ)

(λ − µ)2
− y(1, λ)

2̟(µ)

(λ − µ)3
− yµ(1, µ)

̟′(λ)

λ − µ

− y(1, µ)
̟′(λ)

(λ − µ)2
+ yµ(1, µ)

̟(λ)

(λ − µ)2
+ y(1, µ)

2̟(λ)

(λ − µ)3
.

Letting µ → λk (λ 6= λk) and then λ → λk we obtain

(ỹk+1, ỹk+1) = −aỹk+1(1)2 − ỹk+1(1)
̟′′(λk)

2
− yk(1)

̟′′′(λk)

6
.

As in the previous lemmas, substituting ỹk+1 = yk+1 + c̃yk, after some
computations we get (2.4).

Lemma 2.4. If λk is a triple eigenvalue and λn 6= λk then

(2.6) (yk+2, yn) = −ayk+2(1)yn(1).

Proof. Differentiating (2.2) with respect to λ we obtain

(yλλ(·, λ), y(·, µ)) = −ayλλ(1, λ)y(1, µ) + yλλ(1, λ)
̟(µ)

λ − µ
− yλ(1, λ)

2̟(µ)

(λ − µ)2

+ y(1, λ)
2̟(µ)

(λ − µ)3
− y(1, µ)

̟′′(λ)

λ − µ
+ y(1, µ)

2̟′(λ)

(λ − µ)2
− y(1, µ)

2̟(λ)

(λ − µ)3
.

Letting λ → λk (µ 6= λk) we obtain

(ỹk+2, y(·, µ)) = − aỹk+2(1)y(1, µ) + ỹk+2(1)
̟(µ)

λk − µ
(2.7)

− ỹk+1(1)
̟(µ)

(λk − µ)2
+ yk(1)

̟(µ)

(λk − µ)3
.
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Letting µ → λn gives (ỹk+2, yn) = −aỹk+2(1)yn(1), from which applying

ỹk+2 = yk+2 + c̃yk+1 + d̃yk, (yk, yn) = −ayk(1)yn(1) and (2.1) we ob-
tain (2.6).

Lemma 2.5. If λk is a triple eigenvalue then

(2.8) (yk+2, yk) = −ayk+2(1)yk(1) − yk(1)
̟′′′(λk)

6
.

Proof. Letting µ → λk in (2.7) and applying (1.3) we obtain

(ỹk+2, yk) = −aỹk+2(1)yk(1) − yk(1)
̟′′′(λk)

6
.

Similar to the previous lemma, using (2.3) and (1.3) yields (2.8).

Lemma 2.6. If λk is a triple eigenvalue then

(2.9) (yk+2, yk+1) = −ayk+2(1)yk+1(1)− ŷk+1(1)
̟′′′(λk)

6
−yk(1)

̟IV (λk)

24
.

Proof. Differentiating (2.7) with respect to µ we obtain

(ỹk+2, yµ(·, µ)) = − aỹk+2(1)yµ(1, µ)(2.10)

+ ỹk+2(1)
̟′(µ)

λk − µ
+ ỹk+2(1)

̟(µ)

(λk − µ)2

− ỹk+1(1)
̟′(µ)

(λk − µ)2
− ỹk+1(1)

2̟(µ)

(λk − µ)3

+ yk(1)
̟′(µ)

(λk − µ)3
+ yk(1)

3̟(µ)

(λk − µ)4
.

Letting µ → λk, after simplifications we obtain (2.9).

Lemma 2.7. If λk is a triple eigenvalue then

‖yk+2‖2
2 = − ayk+2(1)2(2.11)

− ŷk+2(1)
̟′′′(λk)

6
− ŷk+1(1)

̟IV (λk)

24
−yk(1)

̟V (λk)

120
,

where ŷk+2 = yk+2 − c̃ ŷk+1 − d̃yk.

Proof. Differentiating (2.10) with respect to µ we obtain

(ỹk+2, yµµ(·, µ)) = −aỹk+2(1)yµµ(1, µ)

+ ỹk+2(1)
̟′′(µ)

λk − µ
+ ỹk+2(1)

2̟′(µ)

(λk − µ)2
+ ỹk+2(1)

2̟(µ)

(λk − µ)3

− ỹk+1(1)
̟′′(µ)

(λk − µ)2
− ỹk+1(1)

4̟′(µ)

(λk − µ)3
− ỹk+1(1)

6̟(µ)

(λk − µ)4

+ yk(1)
̟′′(µ)

(λk − µ)3
+ yk(1)

6̟′(µ)

(λk − µ)4
+ yk(1)

12̟(µ)

(λk − µ)5
.
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Letting µ → λk, after elementary but lengthy computations, we ob-
tain (2.11).

3. Existence of auxiliary associated functions. In this section, we
shall prove the existence of some associated functions which have the proper-
ties of an eigenfunction in inner products with original associated functions.
In the proof of these results, we shall require some facts about the inner
products of root functions, which have been gathered in Sections 1 and 2.

Lemma 3.1. If λk is a double eigenvalue then there exists an associated

function of the form y∗k+1 = yk+1 + c1yk, where c1 is a constant , such that

(3.1) (y∗k+1, yk+1) = −ay∗k+1(1)yk+1(1).

Proof. Adding (2.4) to (2.3) multiplied by c1 we obtain

(yk+1 + c1yk, yk+1) = − a(yk+1(1) + c1yk(1))yk+1(1)

− (ŷk+1(1) + c1yk(1))
̟′′(λk)

2
− yk(1)

̟′′′(λk)

6
.

The equality (3.1) holds true if we take

c1 = −yk(1)̟′′′(λk) + 3ŷk+1(1)̟′′(λk)

3yk(1)̟′′(λk)
.

Here, it should be pointed out that y∗k+1(1) = 0 if and only if ̟′′′(λk) =
3c̟̃′′(λk). We shall not need y∗k+1 in the triple eigenvalue case, but it is
worthwhile to note that nothing of the kind exists if λk is a triple eigenvalue.
Before proceeding, we also note that for λn 6= λk,

(y∗k+1, yn) = −ay∗k+1(1)yn(1),(3.2)

(y∗k+1, yk) = −ay∗k+1(1)yk(1) − yk(1)
̟′′(λk)

2
.(3.3)

We shall now concentrate on the triple eigenvalue case.

Lemma 3.2. If λk is a triple eigenvalue then there exist associated func-

tions of the form y∗∗k+1 = yk+1 + c2yk, y∗∗k+2 = yk+2 + c2yk+1, where c2 is a

constant , such that

(y∗∗k+1, yk+2) = −ay∗∗k+1(1)yk+2(1),(3.4)

(y∗∗k+2, yk+1) = −ay∗∗k+2(1)yk+1(1).(3.5)

Proof. The reasoning is very similar to that in the proof of Lemma 3.1,
so we only sketch it. Adding (2.9) to (2.8) multiplied by c2, and (2.9) to
(2.4) multiplied by c2, where

c2 = −yk(1)̟IV (λk) + 4ŷk+1(1)̟′′′(λk)

4yk(1)̟′′′(λk)
,

we obtain (3.4) and (3.5), respectively.
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We now indicate some relations between y∗∗k+1, y∗∗k+2 and other root func-
tions:

(y∗∗k+1, yn) = −ay∗∗k+1(1)yn(1) (n 6= k + 1, k + 2),(3.6)

(y∗∗k+1, yk+1) = −ay∗∗k+1(1)yk+1(1) − yk(1)
̟′′′(λk)

6
,(3.7)

(y∗∗k+2, yn) = −ay∗∗k+2(1)yn(1) (n 6= k, k + 1, k + 2),(3.8)

(y∗∗k+2, yk) = −ay∗∗k+2(1)yk(1) − yk(1)
̟′′′(λk)

6
.(3.9)

Since y∗∗k+1 and y∗∗k+2 are associated functions, the equalities (3.6) and (3.8)
are obvious from (2.1) ((2.3) if n = k) and (2.6), respectively. By adding (2.4)
and (2.8) to (2.3) multiplied by c2, and applying (1.3), we obtain (3.7) and
(3.9), respectively.

It is worthwhile to note that y∗∗k+1(1) = 0 if and only if ̟IV (λk) =
4c̟̃′′′(λk).

Lemma 3.3. If λk is a triple eigenvalue then there exists an associated

function of the form y#
k+2 = yk+2 + d1yk, where d1 is a constant , such that

(3.10) (y#
k+2, yk+2) = −ay#

k+2(1)yk+2(1).

Proof. Adding (2.11) to (2.8) multiplied by d1, where

d1 = −yk(1)̟V (λk) + 5ŷk+1(1)̟IV (λk) + 20ŷk+2(1)̟′′′(λk)

20yk(1)̟′′′(λk)
,

we obtain (3.10).

With the above notations, we also have

(y#
k+2, yn) = −ay#

k+2(1)yn(1) (n 6= k, k + 1, k + 2),(3.11)

(y#
k+2, yk) = −ay#

k+2(1)yk(1) − yk(1)
̟′′′(λk)

6
.(3.12)

Indeed, by adding (2.6), the equality (yk, yn) = −ayk(1)yn(1) multiplied
by d1, and (2.8) to (1.10) multiplied by d1, we obtain (3.11) and (3.12),
respectively.

Lemma 3.4. If λk is a triple eigenvalue then there exists an associated

function of the form y##
k+2 = y∗∗k+2 + d2yk, where d2 is a constant , such that

(y##
k+2, yk+1) = −ay##

k+2(1)yk+1(1),(3.13)

(y##
k+2, yk+2) = −ay##

k+2(1)yk+2(1).(3.14)

Proof. By adding (3.5) to (2.3) multiplied by d2, and applying (1.3), we
obtain (3.13). Note that for (3.13) the value of d2 is not important.
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By adding (2.11) to (2.9) multiplied by c2, we obtain

(y∗∗k+2, yk+2) = −ay∗∗k+2(1)yk+2(1) − Qk,

where

Qk = ŷk+2(1)
̟′′′(λk)

6
+ ŷk+1(1)

̟IV (λk)

24
+ yk(1)

̟V (λk)

120

+ c2

(
ŷk+1(1)

̟′′′(λk)

6
+ yk(1)

̟IV (λk)

24

)
.

By adding this equality to (2.8) multiplied by d2, where

d2 = − 6Qk

yk(1)̟′′′(λk)
,

we obtain (3.14).

Note also that, for y##
k+2, the counterparts of (3.11), (3.12) are true:

(y##
k+2, yn) = − ay##

k+2(1)yn(1) (n 6= k, k + 1, k + 2),(3.15)

(y##
k+2, yk) = − ay##

k+2(1)yk(1) − yk(1)
̟′′′(λk)

6
.(3.16)

These follow from (3.8) and (3.9), respectively.

We remark that y##
k+2(1) = 0 if and only if

5̟IV (λk)(̟
IV (λk) − 4c̟̃′′′(λk)) = 4̟′′′(λk)(̟

V (λk) − 20d̟̃′′′(λk)).

4. Minimality of the system of root functions. We discuss various
cases. In each case we determine the explicit form of a biorthogonal system.

Case (a).

Theorem 4.1. If all the eigenvalues of (0.1)–(0.3) are real and simple

then the system

(4.1) {yn} (n = 0, 1, . . . ; n 6= l),

where l is any non-negative integer , is minimal in L2(0, 1).

Proof. It suffices to show the existence of a system (see Theorem 2 in
[9, Ch. I, §2])

(4.2) {un} (n = 0, 1, . . . ; n 6= l),

biorthogonal to (4.1). We define

(4.3) un(x) =
yn(x) − yn(1)

yl(1) yl(x)

Bn

.

It remains to note that, by (1.4), (1.9) and (1.12),

(4.4) (un, ym) = δnm,

where δnm (n, m = 0, 1, . . . ; n, m 6= l) is Kronecker’s symbol.
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Case (b).

Theorem 4.2. If λk is a double eigenvalue then the system

{yn} (n = 0, 1, . . . ; n 6= k + 1)

is minimal in L2(0, 1).

Proof. In this case, the biorthogonal system is defined by (n 6= k, k + 1)

un(x) =
yn(x) − yn(1)

yk(1)yk(x)

Bn

,(4.5)

uk(x) =
yk+1(x) − yk+1(1)

yk(1) yk(x)

Bk+1
.

Using (1.4), (1.9), (1.10), (1.12), (2.1), (2.3) one can easily verify (4.4) for
n, m = 0, 1, . . . (n, m 6= k + 1).

Theorem 4.3. If λk is a double eigenvalue, and if y∗k+1(1) 6= 0, then

the system

(4.6) {yn} (n = 0, 1, . . . ; n 6= k)

is minimal in L2(0, 1).

Proof. The elements of the biorthogonal system are defined as follows
(n 6= k, k + 1):

un(x) =
yn(x) − yn(1)

y∗

k+1
(1)y

∗
k+1(x)

Bn

, uk+1(x) =
yk(x) − yk(1)

y∗

k+1
(1)y

∗
k+1(x)

Bk+1
.

The relation (4.4) for n, m 6= k follows from (1.4), (1.9), (1.12), (2.1), (2.3),
(3.1), (3.2).

Remark 4.3. Before proceeding we comment on the condition y∗k+1(1)
6= 0 above. Let y∗k+1(1) = 0. Then by (3.1), (3.2) the function y∗k+1 is or-
thogonal to all the elements of the system (4.6). Therefore this system is
not complete (cf. [13, Theorem 3]) in L2(0.1). It is not minimal either. In-
deed, otherwise using the method of [10–12] and the asymptotic formula
(0.4), we could prove that (4.6) is a basis in L2(0, 1), which contradicts its
incompleteness.

Theorem 4.4. If λk is a double eigenvalue then the system

{yn} (n = 0, 1, . . . ; n 6= l),

where l 6= k, k + 1 is a non-negative integer , is minimal in L2(0, 1).

Proof. The biorthogonal system is given by (4.3) for n 6= k, k + 1, and

uk+1(x) =
yk(x) − yk(1)

yl(1) yl(x)

Bk+1
, uk(x) =

y∗k+1(x) − y∗

k+1
(1)

yl(1) yl(x)

Bk+1
.
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The relation (4.4) for n, m 6= l follows from (1.4), (1.9), (1.10), (1.12), (2.1),
(2.3), (3.1)–(3.3).

Case (c).

Theorem 4.5. If λk is a triple eigenvalue then the system

{yn} (n = 0, 1, . . . ; n 6= k + 2)

is minimal in L2(0, 1).

Proof. The biorthogonal system is given by (4.5) for n 6= k, k + 1, k + 2,
and

uk+1(x) =
yk+1(x) − yk+1(1)

yk(1) yk(x)

Bk+2
, uk(x) =

y∗∗k+2(x) − y∗∗

k+2
(1)

yk(1) yk(x)

Bk+2
.

The relation (4.4) for n, m 6= k +2 follows from the above mentioned results
of Sections 1 and 2, and formulas (3.5), (3.8), (3.9).

Theorem 4.6. If λk is a triple eigenvalue, and if y∗∗k+1(1) 6= 0, then the

system

(4.7) {yn} (n = 0, 1, . . . ; n 6= k + 1)

is minimal in L2(0, 1).

Proof. In this case, the elements of the biorthogonal system are (n 6=
k, k + 1, k + 2)

un(x) =
yn(x) − yn(1)

y∗∗

k+1
(1)y

∗∗
k+1(x)

Bn

,

uk+2(x) =
yk(x) − yk(1)

y∗∗

k+1
(1)y

∗∗
k+1(x)

Bk+2
,

uk(x) =
y#

k+2(x) − y
#

k+2
(1)

y∗∗

k+1
(1)y

∗∗
k+1(x)

Bk+2
.(4.8)

The relation (4.4) for n, m 6= k+1 can be verified using the above mentioned
results of Sections 1 and 2, and formulas (3.4), (3.6), (3.10)–(3.12).

Using the reasoning of Remark 4.3, we can show that if y∗∗k+1(1) = 0 then
y∗∗k+1 is orthogonal to all elements of (4.7); hence the system (4.7) is neither
complete nor minimal.

Theorem 4.7. If λk is a triple eigenvalue, and if y##
k+2(1) 6= 0, then the

system

(4.9) {yn} (n = 0, 1, . . . ; n 6= k)

is minimal in L2(0, 1).
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Proof. We define, for n 6= k, k + 1, k + 2,

un(x) =

yn(x) − yn(1)

y
##

k+2
(1)

y##
k+2(x)

Bn

,

uk+2(x) =

yk(x) − yk(1)

y
##

k+2
(1)

y##
k+2(x)

Bk+2
, uk+1(x) =

yk+1(x) − yk+1(1)

y
##

k+2
(1)

y##
k+2(x)

Bk+2
.

The relation (4.4) for n, m 6= k follows from the results of Sections 1 and 2,
and formulas (3.13)–(3.15).

Note that, again, for y##
k+2(1) = 0, the system (4.9) is neither complete

nor minimal.

Theorem 4.8. If λk is a triple eigenvalue then the system

{yn} (n = 0, 1, . . . ; n 6= l),

where l 6= k, k + 1, k + 2 is a non-negative integer , is minimal in L2(0, 1).

Proof. The elements of the biorthogonal system can be represented by
(4.3) for n 6= k, k + 1, k + 2, l, and by

uk+2(x) =
yk(x) − yk(1)

yl(1) yl(x)

Bk+2
,

uk+1(x) =
y∗∗k+1(x) − y∗∗

k+1
(1)

yl(1) yl(x)

Bk+2
, uk(x) =

y##
k+2(x) − y

##

k+2
(1)

yl(1) yl(x)

Bk+2
.

The relation (4.4) for n, m 6= l follows from the results of Sections 1 and 2
and formulas (3.4), (3.6), (3.7), (3.13)–(3.16).

Case (d).

Theorem 4.9. If λr and λs = λr are a conjugate pair of non-real eigen-

values then each of the systems

{yn} (n = 0, 1, . . . ; n 6= r),(4.10)

{yn} (n = 0, 1, . . . ; n 6= l),(4.11)

where l 6= r, s is a non-negative integer , is minimal in L2(0, 1).

Proof. The biorthogonal system for (4.10) is as follows (n 6= r, s):

(4.12)

un(x) =
yn(x) − yn(1)

ys(1) ys(x)

Bn

,

us(x) =
yr(x) − yr(1)

ys(1)ys(x)

−yr(1)̟′(λr)
.
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The equality (4.4) for n, m 6= r can be verified using (1.4), (1.9),
(1.11)–(1.13).

The biorthogonal system for (4.11) is defined by (4.3) for n 6= r, s, by
(4.12), and

ur(x) =
ys(x) − ys(1)

yr(1)yr(x)

−ys(1)̟′(λs)
.

In conclusion, we note that in some cases it is possible to define the
elements of the biorthogonal system in a different way. For example the
element (4.8) of the biorthogonal system of (4.7) can be replaced by

uk(x) =
y##

k+2(x) − y
##

k+2
(1)

y∗∗

k+1
(1)y

∗∗
k+1(x)

Bk+2
.

But using the equality d2 = d1 + c2
2, which is easily verified, we can show

that this representation coincides with (4.8). This observation agrees with
the well known fact that the biorthogonal system of a basis is unique.

5. Example. Let us illustrate the above theory by a particular result for
the problem (0.5), (0.6). It was noted in [13] that if a = −1 then λ0 = λ1 = 0
is a double eigenvalue and the eigenvalues 0 < λ2 < λ3 < · · · are solutions
of the equation tan

√
λ =

√
λ. Eigenfunctions are y0 = 1, yn = cos

√
λnx

(n ≥ 2) and an associated function corresponding to y0 is y1 = −1
2x2 + c,

where c is an arbitrary constant. We look for an auxiliary associated function
in the form y∗1 = −1

2x2 + c′. That is, c1 = c′ − c. By (3.1),

1\
0

(
−1

2
x2 + c

)(
−1

2
x2 + c′

)
dx =

(
−1

2
+ c

)(
−1

2
+ c′

)
.

From this equality we obtain c′ = −c + 3
5 , so y∗1(1) = c − 1

10 . Therefore

the above condition y∗1(1) = 0 in Theorem 4.3 is equivalent to c = 1
10 . This

result coincides with [13, Theorem 3] if we note that the definition of the
first associated function in [13] differs from ours in sign.

We shall now indicate another approach to this problem. Note that
y(x, λ) = cos

√
λx is a solution of (0.5), satisfying the first boundary condi-

tion in (0.6), hence yλ(x, λ) = −x sin
√

λx

2
√

λ
. In particular, ỹ1 = limλ→0 yλ(x, λ)

= −x2/2. Let y1 = −1
2x2 + c. Then c̃ = −c. Note also that ̟(λ) =

λ cos
√

λ −
√

λ sin
√

λ, and consequently

̟′′(0) = lim
λ→0

̟′′(λ) = −2/3, ̟′′′(0) = lim
λ→0

̟′′′(λ) = 1/5.

As was pointed out in the comments following the proof of Lemma 3.1, the
condition y∗1(1) = 0 is equivalent to ̟′′′(λk) = 3c̟̃′′(λk), from which we
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obtain, once again, c = 1
10 . These calculations are in perfect agreement with

our result stated in Theorem 4.3.
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