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ON THE BLOW-UP PHENOMENON FOR THE MASS-CRITICAL
FOCUSING HARTREE EQUATION IN R4

BY

CHANGXING MIAO, GUIXIANG XU and LIFENG ZHAO (Beijing)

Abstract. We characterize the dynamics of the finite time blow-up solutions with
minimal mass for the focusing mass-critical Hartree equation withH1(R4) data and L2(R4)
data, where we make use of the refined Gagliardo–Nirenberg inequality of convolution type
and the profile decomposition. Moreover, we analyze the mass concentration phenomenon
of such blow-up solutions.

1. Introduction. In this paper, we consider the Cauchy problem for
the Hartree equation

(1.1)
{
iut +∆u = f(u) in Rd × R,
u(0) = u0(x) in Rd.

Here f(u) = λ(V ∗ |u|2)u, V (x) = |x|−γ , 0 < γ < d, and ∗ denotes the
convolution in Rd. If λ > 0, we call the equation (1.1) defocusing ; if λ < 0,
we call it focusing . This equation describes the mean-field limit of many-
body quantum systems; see, e.g., [6], [7] and [36]. An essential feature of
the Hartree equation is that the convolution kernel V (x) still retains the
fine structure of micro two-body interactions of the quantum system. By
contrast, NLS arises in further limiting regimes where two-body interactions
are modeled by a single real parameter in terms of the scattering length. In
particular, NLS cannot provide effective models for quantum systems with
long-range interactions such as the physically important case of the Coulomb
potential V (x) ∼ |x|−(d−2) in d ≥ 3, whose scattering length is infinite.

There are many works on the global well-posedness and scattering of
equation (1.1). For the defocusing case with 2 < γ < min(4, d), J. Ginibre
and G. Velo [8] proved the global well-posedness and scattering results in
the energy space. Later, K. Nakanishi [32] made use of a new Morawetz
estimate to obtain similar results for more general functions V (x). Recently,
the present authors have proved the global well-posedness and scattering for
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the defocusing, energy-critical Hartree equation (see [28] and [29]). For the
global well-posedness and scattering of the focusing, energy-critical Hartree
equation we refer to [17] and [30].

In this paper, we mainly aim to characterize the dynamics of the finite
time blow-up solutions with minimal mass for the focusing mass-critical
Hartree equation with H1(R4) data and L2(R4) data.

Now we recall the related results about the focusing mass-critical Schrö-
dinger equation

(1.2) iut +∆u = −|u|4/du, u(0) = u0,

where d is the spatial dimension. Equation (1.2) is called mass-critical due
to scaling invariance. If u0 ∈ H1 has radial symmetry, the mass concentra-
tion phenomenon for the blow-up solution was observed near the blow-up
time in [22]. Later on, the radial symmetry assumption was removed by
M. Weinstein [35] and Nawa [33]. For a more detailed analysis of the blow-
up dynamics of (1.2), see [20], [21], [24], [25], [26] and the references therein.
If u0 only lies in L2, the situation seems quite different because we cannot
use the energy conservation law. The pioneering work in this direction is
due to J. Bourgain [3] for d = 2, who proved that there exists a blow-up
time T ∗,

lim
t↑T ∗

sup
cubes I⊂R2,

side(I)<(T ∗−t)1/2

( �
I

|u(t, x)|2 dx
)1/2

≥ c(‖u0‖L2
x
) > 0,

where c(‖u0‖L2
x
) is a constant depending on the mass of the initial data.

A new proof can be found in S. Keraani [12] by means of the profile de-
composition in [23]. Bourgain’s result was extended to dimension d = 1 by
R. Carles and S. Keraani [4] and to dimension d ≥ 3 by P. Bégout and
A. Vargas [2]. Recently, R. Killip, T. Tao and M. Visan [13] established
global well-posedness and scattering for (1.2) with radial data in dimension
two and mass strictly smaller than that of the ground state. Later R. Killip,
M. Visan and X. Zhang [14] extended those results to d ≥ 3. We dealt with
the corresponding problem for the Hartree equation in [31].

This paper is devoted to the study of the blow-up behavior of the mass-
critical Hartree equation in dimension four:

(1.3)
{
iut +∆u = −(|x|−2 ∗ |u|2)u in R4 × R,
u(0) = u0(x) in R4.

The corresponding free equation is

(1.4)
{
iut +∆u = 0 in R4 × R,
u(0) = u0(x) in R4.

Note that γ = 2 is the unique exponent which is mass-critical in the sense
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that the natural scaling

uλ(t, x) = λ2u(λ2t, λx)

leaves mass invariant. At the same time, |x|−2 is just the physically im-
portant case of Coulomb potential for dimension d = 4. Moreover, equa-
tion (1.3) also has pseudo-conformal symmetry: If u(t, x) solves (1.3), then
so does

(1.5) v(t, x) =
1

|T − t|2
u

(
1

t− T
,

x

t− T

)
ei|x|

2/4(t−T ).

First we deal with equation (1.3) with data in H1(R4). For the solution
u(t) ∈ H1 of (1.3), the following quantities are conserved:

M(u(t)) = ‖u(t)‖L2
x

= ‖u(0)‖L2
x
,

E(u(t)) =
1
2

�

R4

|∇u|2 dx− 1
4

�

R4

�

R4

|u(x)|2|u(y)|2

|x− y|2
dx dy = E(u(0)).

According to the local well-posedness theory [5], [27], the solution u(t) ∈
H1(R4) of (1.3) blows up at finite time T if and only if

lim
t→T
‖∇u(t)‖L2 =∞.

The blow-up theory is mainly connected with the notion of ground state,
the unique radial positive solution of the elliptic equation

(1.6) −∆Q+Q = (V ∗ |Q|2)Q.

The existence of the positive solution is proved by the concentration com-
pactness principle at the beginning of Section 3, which is closely related to
a refined Gagliardo–Nirenberg inequality of convolution type,

(1.7) ‖u‖4LV ≤
2

‖Q‖2
L2

‖u‖2L2‖∇u‖2L2 ,

where the definition of the LV norm is given in (1.9) below. The radial sym-
metry of the positive solution can be obtained from [19]. By adapting Lieb’s
uniqueness proof in [18] for the ground states φ ∈ H1 of the Choquard–
Pekar equation (V (x) = |x|−1 in dimension d = 3), the analogous result
for (1.6) can be obtained. See details in [15]. However, the uniqueness proof
strongly depends on the specific features of equation (1.6). It is different
from the corresponding results for semilinear elliptic equations in [16]. As
our result (Theorem 1.1) depends on the uniqueness of the ground state of
equation (1.6), it is the reason why we consider the case d = 4.

Together with the notion of the ground state Q, the invariance (1.5)
yields an explicit blow-up solution such that ‖u‖L2 = ‖Q‖L2 . One can ask
if there are other finite time blow-up solutions of (1.3) with minimal mass
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‖Q‖L2 and how to characterize the dynamics of such blow-up solutions near
the blow-up time.

Now, we can characterize the finite time blow-up solutions with minimal
mass in H1(R4).

Theorem 1.1. Let u0 ∈ H1(R4) be such that ‖u0‖L2 = ‖Q‖L2 and u be
a blow-up solution of (1.3) at finite time T . Then there exists x0 ∈ R4 such
that ei|x−x0|2/4Tu0 ∈ A, where

A = {ρ2eiθQ(ρx+ y) : y ∈ R4, ρ ∈ R+
∗ , θ ∈ [0, 2π)}.

Theorem 1.2. Let u be a solution of (1.3) which blows up at finite time
T > 0 with initial data u0 ∈ H1(R4), and λ(t) > 0 such that λ(t)‖∇u‖L2

→∞ as t ↑ T . Then there exists x(t) ∈ R4 such that

lim inf
t↑T

�

|x−x(t)|≤λ(t)

|u(t, x)|2 dx ≥
�

R4

|Q|2 dx.

The counterpart of Theorem 1.1 for the Schrödinger equation has been
established by F. Merle in [21]. The counterpart of Theorem 1.2 was proved
by M. Weinstein in [35]. T. Hmidi and S. Keraani gave a direct and sim-
plified proof of the above results in [9]. The new ingredient for the Hartree
equation is the refined Gagliardo–Nirenberg inequality (1.7) of convolution
type, whose proof is based on the well-known concentration compactness
method and thus one has to deal with the intertwining of convolution and
orthogonality.

Next we consider the blow-up behavior of (1.3) with L2 data. In [27], we
showed that for any u0 ∈ L2(R4), there exists a unique maximal solution u
to (1.3), with

u ∈ C((−T∗, T ∗), L2(R4)) ∩ L3
loc((−T∗, T ∗), L3(R4)),

and we have the following alternative: either T∗ = T ∗ =∞ or

min{T∗, T ∗} <∞ and ‖u‖L3
t ((−T∗,T ∗),L3

x) =∞.
Moreover, there exists δ > 0 such that if

(1.8) ‖u0‖L2 < δ,

then the initial value problem (1.3) has a unique global solution u(t, x)
∈ L3

t,x(R × R4). We define δ0 as the supremum of δ in (1.8) such that
the global existence for the Cauchy problem (1.3) holds, with u ∈
(C∩L∞)(R, L2(R4))∩L3(R×R4). Then in the ball Bδ0 := {u0 : ‖u0‖L2 < δ0},
(1.3) admits a complete scattering theory with respect to the associated lin-
ear problem. Similar to the focusing mass-critical Schrödinger equation, we
also conjecture that δ0 should be ‖Q‖L2 for the Hartree equation. We have
verified the conjecture for radial data in [31]. For general data, it remains
open.
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Definition 1.1. Let u0 ∈ L2(R4). A solution of (1.3) is said to be a
blow-up solution for t > 0 if either T ∗ <∞, or

T ∗ =∞ and ‖u‖L3
t ((0,∞), L3

x) =∞,
and similarly for t < 0.

Now we are in a position to state the existence of blow-up solutions in
both time directions with minimal mass in L2(R4).

Theorem 1.3. There exists an initial data u0 ∈L2(R4) with ‖u0‖L2 = δ0
for which the solution of (1.3) blows up for both t > 0 and t < 0.

As a direct consequence of the above theorem and the pseudo-conformal
transform (1.5), we obtain the existence of finite time blow-up solutions with
minimal mass in L2(R4).

Corollary 1.1. There exists an initial data u0 ∈ L2(R4) with ‖u0‖L2

= δ0, for which the solution of (1.3) blows up at finite time T ∗ > 0.

Theorem 1.4. Let u be a blow-up solution of (1.3) at finite time T ∗ > 0
such that ‖u0‖L2 <

√
2 δ0. Let tn ↑ T ∗ as n→∞, and let λ(t) > 0 be such

that √
T ∗ − t
λ(t)

→ 0 as t ↑ T ∗.

Then there exist a subsequence of {tn}∞n=1 (still denoted by {tn}) and
x(t) ∈ R4 with the following properties.

(i) There exists ψ ∈ L2(R4) with ‖ψ‖L2 ≥ δ0 such that the solution U
of (1.3) with initial data ψ blows up for both t > 0 and t < 0.

(ii) There exists a sequence {ρn, ξn, xn}∞n=1 ⊂ R∗+ × R4 × R4 such that

ρ2
ne
ix·ξnu(tn, ρnx+ xn) ⇀ ψ weakly in L2.

Furthermore,

lim
n→∞

ρn√
T ∗ − tn

≤ 1√
T ∗∗

where T ∗∗ denotes the lifespan of U .
(iii) We have

lim inf
t↑T ∗

�

|x−x(t)|≤λ(t)

|u(x, t)|2 dx ≥ δ20 .

Corollary 1.2. Let u be a blow-up solution with minimal mass of (1.3)
at finite time T ∗ > 0. Let tn ↑ T ∗ as n→∞. Then there exists a subsequence
of {tn}∞n=1 (still denoted by {tn}∞n=1) and x(t) ∈ R4 with the following
properties:

(i) There exists ψ ∈ L2(R4) with ‖ψ‖L2 ≥ δ0 such that the solution U
of (1.3) with initial data ψ blows up for both t > 0 and t < 0.
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(ii) There exists a sequence {ρn, ξn, xn}∞n=1 ⊂ R∗+ × R4 × R4 such that

ρ2
ne
ix·ξnu(tn, ρnx+ xn)→ ψ strongly in L2.

Furthermore,

lim
n→∞

ρn√
T ∗ − tn

≤ 1√
T ∗∗

where T ∗∗ denotes the lifespan of U .
(iii) We have

lim inf
t↑T ∗

�

|x−x(t)|≤λ(t)

|u(x, t)|2 dx ≥ δ20 .

Similar results for the nonlinear Schrödinger equation have appeared in
F. Merle and L. Vega [23] and S. Keraani [12]. Since the nonlinearity is non-
local for the Hartree equation, we have to introduce a suitable decomposition
in physical space to exploit the orthogonality.

We will often use the notations a . b and a = O(b) to mean that
there exists some constant C such that a ≤ Cb. The derivative operator
∇ refers to the derivatives with respect to space variables only. We also
occasionally use subscripts to denote the spatial derivatives and use the
summation convention over repeated indices.

For 1 ≤ p ≤ ∞, we define the dual exponent p′ by 1/p + 1/p′ = 1. For
any time interval I, we use LqtL

r
x(I ×R4) to denote the spacetime Lebesgue

norm
‖u‖Lq

tL
r
x(I×R4) :=

( �
I

‖u‖q
Lr(R4)

dt
)1/q

with the usual modifications when q =∞. When q = r, we abbreviate LqtL
r
x

by Lqt,x.
We say that a pair (q, r) is admissible if

2
q

= 4
(

1
2
− 1
r

)
, 2 ≤ q ≤ ∞.

For a spacetime slab I × R4, we define the Strichartz norms

‖u‖Ṡ0(I) := sup
(q,r) admissible

‖u‖Lq
tL

r
x(I×R4), ‖u‖Ṡ1(I) := ‖∇u‖Ṡ0(I).

We also define Ṅ 0 to be the Banach dual space of Ṡ0.
Throughout this paper, we write

(1.9) ‖u‖LV :=
( � �
|u(x)|2V (x− y)|u(y)|2 dx dy

)1/4
.

The rest of this paper is organized as follows: In Section 2, we recall the
preliminary estimates such as Strichartz estimates and the virial identity. In
Section 3, we prove Theorems 1.1 and 1.2. Section 4 is devoted to the proof
of Theorems 1.3 and 1.4.
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2. Preliminaries. We now recall some useful estimates. First, we have
the following Strichartz inequalities:

Lemma 2.1 ([5], [10]). Let u be an Ṡ0(I) solution to the Schrödinger
equation in (1.1). Then

‖u‖Ṡ0 . ‖u(t0)‖L2(R4) + ‖f(u)‖
Lq′

t L
r′
x (I×R4)

for any t0 ∈ I and any admissible pair (q, r). The implicit constant is inde-
pendent of the choice of the interval I.

By definition, it immediately follows that for any function u on I × R4,

‖u‖L∞t L2
x

+ ‖u‖L3
t,x

. ‖u‖Ṡ0 ,

where all spacetime norms are taken on I × R4.

Lemma 2.2. Let f(u)(t, x) = ±u(V ∗ |u|2)(t, x), where V (x) = |x|−2.
For any time interval I and t0 ∈ I, we have∥∥∥ t�

t0

ei(t−s)∆f(u)(s, x)ds
∥∥∥
Ṡ0(I)

. ‖u‖3L3
t,x
.

Proof. By the Strichartz estimate, the Hardy–Littlewood–Sobolev in-
equality and the Hölder inequality, we have∥∥∥ t�

t0

ei(t−s)∆f(u)(s, x) ds
∥∥∥
Ṡ0(I)

. ‖f(u)(t, x)‖L1
tL

2
x

. ‖V ∗ |u|2‖
L

3/2
t L6

x
‖u‖L3

t,x

. ‖u‖3L3
t,x
.

In addition, we can obtain the virial identity appearing in the proof of
the localized Morawetz estimates [28]. Indeed, let V a

0 (t) =
	
a(x)|u(t, x)|2 dx,

where a(x) is real-valued and u is the solution of (1.1) with f(u) =
−(|x|−γ ∗ |u|2)u. Then we get

Ma
0 (t) =: ∂tV a

0 (t) = 2=
�
ajuju dx

and

∂tM
a
0 (t) = − 2=

�
ajjutu dx− 4=

�
ajujut dx(2.1)

= −
�
∆∆a|u|2 dx+ 4<

�
ajkujuk dx

−
� �

(∇a(x)−∇a(y))∇V (x− y)|u(y)|2|u(x)|2 dx dy.

Lemma 2.3. If we choose a(x) = |x|2, then

(2.2) ∂tM
a
0 (t) = 8

�
|∇u|2 dx− 2γ

� �
V (x− y)|u(y)|2|u(x)|2 dx dy.
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Lemma 2.4. If a(x) = |x|2 and γ = 2, we have

(2.3) ∂2
t V

a
0 (t) = 16E(u(0)).

If E(u(0)) < 0, then the nonnegative function V a
0 (t) is concave, so the

maximal interval of existence is finite. This implies that the solution of (1.3)
has to blow up in both directions.

3. The blow-up dynamics of the focusing mass-critical Hartree
equation with H1 data. Let V (x) = |x|−2. We study the minimizing
functional

J := min{J(u) : u ∈ H1(R4)}, where J(u) :=
‖u‖2L2‖∇u‖2L2

‖u‖4
LV

.

First, we have

Lemma 3.1. If W is a minimizer of J(u), then

(3.1) ∆W + α(|x|−2 ∗ |W |2)W = βW,

where α = 2J/‖W‖2L2 and β = ‖∇W‖2L2/‖W‖2L2.

Remark 3.1. If W is a minimizer of J(u), then |W | is also a minimizer.
Hence, we can assume that W is positive. In fact, we have

−|∇W | ≤ ∇|W | ≤ |∇W |
in the sense of distributions. In particular, |W | ∈ H1 and J(|W |) ≤ J(W ).

Proof of Lemma 3.1. The minimizing function W is in H1(R4) and
satisfies the Euler–Lagrange equation

d

dε
J(W + εv)

∣∣∣∣
ε=0

= 0.

Equivalently, we have

‖∇W‖2L2‖W‖4LV

�
2<(Wv̄) dx+ ‖W‖2L2‖W‖4LV

�
2<(∇W∇v̄) dx

− ‖∇W‖2L2‖W‖2L2

( �
(V ∗ 2<(Wv̄))|W |2 dx+

�
(V ∗ |W |2)2<(Wv̄) dx

)
= 0.

Since �
(V ∗ 2<(Wv̄))|W |2 dx =

�
(V ∗ |W |2)2<(Wv̄) dx,

we have

∆W +
2J
‖W‖2

L2

(V ∗ |W |2)W =
‖∇W‖2L2

‖W‖2
L2

W.

Proposition 3.1. J is attained at a function u with the following prop-
erties:

u(x) = aQ(λx+ b) for some a ∈ C∗, λ > 0, and any b ∈ R4,
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where Q satisfies (1.6). Moreover,

J = ‖Q‖2L2/2.

We prove this proposition by the following profile decomposition.

Lemma 3.2 (Profile decomposition [9]). For a bounded sequence {un}∞n=1

⊂ H1(R4), there is a subsequence of {un}∞n=1 (still denoted by {un}) and a
sequence {U (j)}j≥1 in H1(R4) and for any j ≥ 1, a family {xjn} such that:

(i) If j 6= k, then |xjn − xkn| → ∞ as n→∞.
(ii) For every l ≥ 1,

(3.2) un(x) =
l∑

j=1

U (j)(x− xjn) + rln(x),

where, for any p ∈ (2, 4),

(3.3) lim sup
n→∞

‖rln‖Lp(R4) → 0 as l→∞.

(iii) We have

‖un‖2L2 =
l∑

j=1

‖U (j)‖2L2 + ‖rln‖2L2 + on(1),(3.4)

‖∇un‖2L2 =
l∑

j=1

‖∇U (j)‖2L2 + ‖∇rln‖2L2 + on(1).(3.5)

Proof of Proposition 3.1. Choose a sequence {un}∞n=1 ⊂ H1(R4) such
that J(un)→ J . Suppose ‖un‖L2 = 1 and ‖un‖LV = 1. Then

J(un) =
�
|∇un|2 dx→ J.

Note that {un}∞n=1 is bounded in H1, so by Lemma 3.2, we have (3.2)–(3.5).
From (3.4) and (3.5), we have

(3.6)
l∑

j=1

‖U (j)‖2L2 ≤ 1,
l∑

j=1

‖∇U (j)‖2L2 ≤ J.

Moreover, by the Hölder and Young inequalities, we have

‖rln‖4LV ≤ ‖rln‖4L8/3 .

From (3.3), lim supn→∞ ‖rln‖L8/3
l→∞−−−→ 0. It follows that

lim sup
n→∞

‖rln‖LV
l→∞−−−→ 0.
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Moreover,
� � |∑l

j=1 U
(j)(x− xjn)|2|

∑l
j=1 U

(j)(y − xjn)|2

|x− y|2
dx dy

≤
l∑

j=1

� � |U (j)(x− xjn)|2|U (j)(y − xjn)|2

|x− y|2
dx dy(3.7)

+
l∑

j=1

∑
k 6=j

� � |U (j)(x−xjn)| |U (k)(x−xkn)|(
∑l

i=1 |U (i)(y−xin)|)2

|x−y|2
dx dy(3.8)

+
l∑

j=1

∑
k 6=j

� � |U (j)(y−xjn)| |U (k)(y−xkn)|(
∑l

i=1 |U (i)(x−xin)|)2

|x−y|2
dx dy(3.9)

+
l∑

j=1

∑
k 6=j

� � |U (j)(x− xjn)|2|U (k)(y − xkn)|2

|x− y|2
dx dy.(3.10)

Without loss of generality we can assume that all U (j)’s are continuous and
compactly supported. Then

(3.7) =
l∑

j=1

� � |U (j)(x)|2|U (j)(y)|2

|x− y|2
dx dy,

and by orthogonality, we have

(3.8) ≤
l∑

i=1

l∑
j=1

∑
k 6=j
‖U (i)(y − xin)‖2

L8/3‖U (j)(· − xjn)U (k)(· − xkn)‖L4/3 → 0

as n→∞. (3.9) can be similarly estimated. Finally,

(3.10) =
l∑

j=1

∑
k 6=j

� � |U (j)(x)|2|U (k)(y)|2

|x− y − xjn + xkn|2
dx dy

≤
l∑

j=1

∑
k 6=j

C

|xjn − xkn|2
‖U (j)‖2L2‖U (k)‖2L2 → 0, n→∞.

Therefore, we conclude∥∥∥ l∑
j=1

U (j)(x− xjn)
∥∥∥4

LV
→

l∑
j=1

‖U (j)‖4LV as n→∞.

Thus, we have

lim
l→∞

l∑
j=1

‖U (j)‖4LV = 1.
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By the definition of J , we have

J‖U j‖4LV ≤ ‖U (j)‖2L2‖∇U (j)‖2L2 .

So we get

J

l∑
j=1

‖U j‖4LV ≤
l∑

j=1

‖U (j)‖2L2‖∇U (j)‖2L2 .

On the other hand,
l∑

j=1

‖U (j)‖2L2‖∇U (j)‖2L2 ≤
l∑

j=1

‖U (j)‖2L2

l∑
j=1

‖∇U (j)‖2L2 ≤ J.

Thus we conclude that only one term U (j0) is nonzero, i.e.

(3.11) ‖U (j0)‖L2 = 1, ‖U (j0)‖LV = 1, ‖∇U (j0)‖2L2 = J.

This shows that U (j0) is a minimizer of J(u). From (3.11), we have

∆U (j0) + 2J(|x|−2 ∗ |U (j0)|2)U (j0) = JU (j0).

By Remark 3.1, we can assume that U j0 is positive. Let U (j0) = aQ(λx+ b),
where Q is the positive solution of (1.6). An easy computation gives that
λ2 = 2a2 = J .

Next we compute the best constant J in terms of Q. Multiplying (1.6)
by Q and integrating both sides of the resulting equation, we have

(3.12) −
�
|∇Q|2 dx+

�
(V ∗ |Q|2)|Q|2 dx =

�
|Q|2 dx.

Since �
(x · ∇Q)Qdx = −2

�
|Q|2 dx,

�
x · ∇Q∆Qdx = −

∑
i,j

�
(δij∂iQ∂jQ+ xi∂i∂jQ∂jQ) = ‖∇Q‖2L2 ,

and
�
x · ∇Q(V ∗ |Q|2)Qdx =

1
2

�
x · ∇Q2(V ∗ |Q|2) dx

=
1
2

�
x · ∇((V ∗ |Q|2)Q2) dx− 1

2

�
x · (∇V ∗Q2)Q2 dx

= −2
�
(V ∗ |Q|2)Q2 dx+

� � x · (x−y)
|x− y|4

Q(x)2Q(y)2 dx dy = −3
2
‖Q‖4LV ,

we have

‖∇Q‖2L2 −
3
2
‖Q‖4LV = −2‖Q‖2L2 .
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Together with (3.12), this yields ‖∇Q‖2L2 = ‖Q‖2L2 . So,

J = ‖∇U (j0)‖2L2 = ‖Q‖2L2/2.

So far, we have obtained the existence of a positive solution of (1.6).
In addition, Theorem 3 of [15] together with Theorem 1.2 of [19] implies
that this positive solution is also radially symmetric and unique in H1(R4).
Note that the uniqueness proof strongly depends on the specific features of
equation (1.6). In fact, the uniqueness of the ground state Q of (1.6) has
not be resolved completely for the general potential V (x), and is stated as
an open problem in [6].

We first make use of the ground state Q to give a sufficient condition for
the global existence of (1.3), which together with (1.5) implies that ‖Q‖L2

is the minimal mass of blow-up solutions.

Theorem 3.1. If u0 ∈ H1(R4) and ‖u0‖L2 < ‖Q‖L2, then the solu-
tion u(t) of (1.3) is global in time.

Proof. By the local well-posedness theory, it suffices to prove that for
every t ∈ R, we have

‖∇u(t)‖L2 <∞.
Now from Proposition 3.1 and the conservation of mass, we have

E(u(t)) =
1
2

�
|∇u(t)|2 dx− 1

4

�
(V ∗ |u(t)|2)|u(t)|2 dx(3.13)

≥ 1
2
‖∇u(t)‖2L2 −

1
4

2
‖Q‖2

L2

‖u(t)‖2L2‖∇u(t)‖2L2

=
1
2
‖∇u(t)‖2L2

(
1−
‖u0‖2L2

‖Q‖2
L2

)
.

Since ‖u0‖L2 < ‖Q‖L2 , we have the uniform bound of ‖∇u(t)‖2L2 . This proves
the global existence.

Before we prove Theorem 1.1, we state a proposition in two equivalent
forms.

Proposition 3.2 (Static version). If u ∈ H1(R4) is such that ‖u‖L2 =
‖Q‖L2 and E(u) = 0, then

u(x) = eiθλ2Q(λx+ b) for some θ ∈ R, λ > 0, b ∈ R4.

Proof. Since E(u) = 0, we have ‖∇u‖2L2 = 1
2‖u‖

4
LV . So we get

J(u) =
‖Q‖2L2‖∇u‖2L2

‖u‖4
LV

=
1
2
‖Q‖2L2 = J.

By Proposition 3.1 and the uniqueness of the ground state Q, u is of the form
u(x) = aQ(λx+ b). The condition ‖u‖L2 = ‖Q‖L2 ensures that |a| = λ2. So
u(x) = eiθλ2Q(λx+ b).
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Proposition 3.3 (Dynamic version). Let {un}∞n=1 be a sequence in
H1(R4) such that ‖un‖L2 = ‖Q‖L2, E(un) ≤M and ‖∇un‖L2 →∞. Define

λn :=
‖∇un‖L2

‖∇Q‖L2

.

Then there exists a subsequence (still denoted by {un}), a sequence {yn} ⊂
R4 and a real number θ such that

(3.14) eiθλ−2
n un(λ−1

n x+ yn)→ Q(x) strongly in H1.

Proof. Let

ũn(x) =
1
λ2
n

un

(
x

λn

)
.

Then ‖ũn‖L2 = ‖Q‖L2 and ‖∇ũn‖L2 = ‖∇Q‖L2 . Moreover,

E(ũn) = E(un)/λ2
n → 0 as n→∞.

So we have

J(ũn) = ‖Q‖2L2

‖∇ũn‖2L2

‖ũn‖4LV

= ‖Q‖2L2

‖∇ũn‖2L2

2‖∇ũn‖2L2 − 4E(ũn)
→
‖Q‖2L2

2
= J

as n → ∞. Therefore, by Lemma 3.2, we can choose a subsequence {ũn}
and {xn} ⊂ R4 such that ũn(x + xn) → aQ(λx + b) in H1. The conditions
‖ũn‖L2 = ‖Q‖L2 and ‖∇ũn‖L2 = ‖∇Q‖L2 imply |a| = λ = 1, so we have
(3.14) for yn = λ−1

n (xn − b).
In order to prove Theorem 1.1, we also need the following lemma. The

proof relies heavily on the techniques of V. Banica [1].

Lemma 3.3. Suppose u ∈ H1(R4) and ‖u‖L2 = ‖Q‖L2. Then for all real
functions w ∈ C1 with bounded ∇w, we have∣∣∣ �

R4

∇w(x)=(u∇u)(x) dx
∣∣∣ ≤ √2E(u)1/2

( �
|u|2|∇w|2 dx

)1/2
.

Proof. Since
‖ueisw(x)‖L2 = ‖u‖L2 = ‖Q‖L2

for any s ∈ R, by (3.13) we know that E(ueisw(x)) ≥ 0. So, for any s,
1
2

�

R4

|∇u+ isu∇w|2 dx− 1
4

�

R4

(V ∗ |u|2)|u|2 dx ≥ 0.

Hence

E(u) + s
�

R4

∇w=(u∇u) dx+
s2

2

�

R4

|u|2|∇w|2 dx ≥ 0.

As this holds for any s, the discriminant is nonpositive. Hence we get the
result.
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Now we turn to the proof of Theorems 1.1 and 1.2, which is borrowed
from [9].

Proof of Theorem 1.1. Suppose u(t, x) is the solution of (1.3) which
blows up at T and let tn ↑ T . Let un = u(tn). By Proposition 3.3,

eiθλ−2
n un(λ−1

n x+ yn)→ Q(x) strongly in H1.

From this we get

(3.15) |u(tn, x)|2 dx− ‖Q‖2L2δx=yn ⇀ 0

where yn → 0 (up to translation) or yn →∞.
Now let φ ∈ C∞0 (R4) be a nonnegative radial function such that

φ(x) = |x|2 if |x| < 1 and |∇φ|2 ≤ Cφ(x).

For every p ∈ N∗ we define

φp(x) = p2φ(x/p) and gp(t) =
�
φp(x)|u(t, x)|2 dx.

By Lemma 3.3, for every t ∈ [0, T ), we have

|ġp(t)| = 2
∣∣∣ �

R4

∇φp(x)=(u∇u)(x) dx
∣∣∣ ≤ 2

√
2E(u0)1/2

( �
|u|2|∇φp(x)|2 dx

)1/2

≤ CE(u0)1/2
( �
|u|2φp(x) dx

)1/2
≤ C(u0)

√
gp(t).

Integrating with respect to t, we get

|
√
gp(t)−

√
gp(tn)| ≤ C(u0)|tn − t|.

If yn → 0, then gp(tn) → ‖Q‖2L2φp(0) = 0 by (3.15); if |yn| → ∞, also
gp(tn)→ 0 since φp is compactly supported. So, if we let n→∞, we have

gp(t) ≤ C(u0)(T − t)2.

Now fix t ∈ [0, T ) and let p→∞. Then by (2.3) we get

(3.16) 8t2E(ei|x|
2/4tu0) =

�
|x|2|u(t, x)|2 dx ≤ C(u0)(T − t)2.

Hence |yn|2‖Q‖2L2 ≤ C(u0)T 2. Thus yn cannot go to infinity. This implies
that {yn} converges to 0. Letting t go to T , from (3.16) we get E(ei|x|

2/4Tu0)
= 0. Note also that ‖ei|x|2/4Tu0‖L2 = ‖Q‖L2 . By Proposition 3.2, we con-
clude that ei|x|

2/4Tu0 ∈ A.

Proof of Theorem 1.2. We define

ρ(t) = ‖∇Q‖L2/‖∇u‖L2 and v(t, x) = ρ2u(t, ρx).

Let tn ↑ T , and set vn(x) = v(tn, x). Then by mass conservation and the
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definition of ρ(t), we have

‖vn‖L2 = ‖u0‖L2 and ‖∇vn‖L2 = ‖∇Q‖L2 .

Since u blows up at time T , we have ρ(tn)→ 0 as tn → T. Hence

E(vn) = ρ2
nE(u0)→ 0 as n→∞.

In particular,
‖vn‖4LV → 2‖∇Q‖2L2 as n→∞.

According to Lemma 3.2, the sequence {vn}∞n=1 can be written, up to a
subsequence, as

vn(x) =
l∑

j=1

U (j)(x− xjn) + rln(x)

so that (3.3)–(3.5) hold. This implies, in particular, that

2‖∇Q‖2L2 ≤ lim sup
n→∞

‖vn‖4LV = lim sup
n→∞

∥∥∥ ∞∑
j=1

U j(· − xjn)
∥∥∥4

LV
.

As in the proof of Proposition 3.1, the pairwise orthogonality of the family
{xj}∞j=1, together with (1.6) and (3.5), gives

2‖∇Q‖2L2 ≤
∞∑
j=1

‖U j‖4LV ≤
∞∑
j=1

2
‖Q‖2

L2

‖U j‖2L2‖∇U j‖2L2

≤ 2
‖Q‖2

L2

sup
j≥1
‖U j‖2L2

∞∑
j=1

‖∇U j‖2L2 ≤
2

‖Q‖2
L2

‖∇vn‖2L2 sup
j≥1
‖U j‖2L2

=
2

‖Q‖2
L2

‖∇Q‖2L2 sup
j≥1
‖U j‖2L2 .

Therefore,
sup
j≥1
‖U j‖2L2 ≥ ‖Q‖2L2 .

Since
∑
‖U j‖2L2 converges, the supremum above is attained. In particular,

there exists j0 such that

‖U j0‖2L2 ≥ ‖Q‖2L2 .

On the other hand, a change of variables gives

vn(x+ xj0n ) = U j0(x) +
∑

1≤j≤l
j 6=j0

U j(x+ xj0n − xjn) + r̃ln(x),

where r̃ln(x) = rln(x+xj0n ). The pairwise orthogonality of the family {xj}∞j=1

implies U j(·+ xj0n − xjn) ⇀ 0 weakly for every j 6= j0. Hence we get

rn(·+ xj0n ) ⇀ U j0 + r̃l,



38 C. X. MIAO ET AL.

where r̃l denotes the weak limit of {r̃ln}∞n=1. However,

‖r̃l‖LV ≤ lim sup
n→∞

‖r̃ln‖LV = lim sup
n→∞

‖rln‖LV
l→∞−−−→ 0.

By uniqueness of the weak limit, we get r̃l = 0 for every l 6= j0 so that
rn(·+ xj0n ) ⇀ U j0 in H1, that is,

ρ2
nu(tn, ρn ·+xj0n ) ⇀ U j0 ∈ H1 weakly.

Thus for every A > 0,

lim inf
n→∞

�

|x|≤A

ρ4
n|u(tn, ρnx+ xn)|2 dx ≥

�

|x|≤A

|U j0 |2 dx.

In view of the assumption λ(tn)/ρn →∞, this gives immediately

lim inf
n→∞

sup
y∈R4

�

|x−y|≤λ(tn)

|u(tn, x)|2 dx ≥
�

|x|≤A

|U j0 |2 dx

for every A > 0, which means that

lim inf
n→∞

sup
y∈R4

�

|x−y|≤λ(tn)

|u(tn, x)|2 dx ≥
�
|U j0 |2 dx ≥

�
|Q|2 dx.

Since the sequence {tn}∞n=1 is arbitrary, we infer

lim inf
t→T

sup
y∈R4

�

|x−y|≤λ(t)

|u(t, x)|2 dx ≥
�
|Q|2 dx.

But for every t ∈ [0, T ), the function y 7→
	
|x−y|≤λ(t) |u(t, x)|2 dx is continu-

ous and goes to 0 at infinity. As a result, we get

sup
y∈R4

�

|x−y|≤λ(t)

|u(t, x)|2 dx =
�

|x−x(t)|≤λ(t)

|u(t, x)|2 dx

for some x(t) ∈ R4, and Theorem 1.2 is proved.

4. The blow-up dynamics of the focusing mass-critical Hartree
equation with L2 data. In this section we prove Theorems 1.3 and 1.4.

Definition 4.1. For every sequence Γn = {ρn, tn, ξn, xn}∞n=1 ⊂ R∗+ ×
R× R4 × R4, we define the isometric operator Γn on L3

t,x(R× R4) by

Γn(f)(t, x) = ρ2
ne
ix·ξne−it|ξn|

2
f(ρ2

nt+ tn, ρn(x− tξn) + xn).

Two sequences Γjn = {ρjn, tjn, ξjn, xjn}∞n=1 and Γkn = {ρkn, tkn, ξkn, xkn}∞n=1 are
said to be orthogonal if

ρjn
ρkn

+
ρkn

ρjn
→∞
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or

ρjn = ρkn and
|ξjn − ξkn|

ρjn
+ |tjn − tkn|+

∣∣∣∣ξjn − ξkn
ρjn

tjn + xjn − xkn
∣∣∣∣→∞.

Lemma 4.1 (Linear profile decomposition [2]). Let {ϕn}n∈N be a bound-
ed sequence in L2(R4). Then there exists a subsequence of {ϕn}∞n=1 (still
denoted by {ϕn}∞n=1) with the following properties: there exists a family
{V j}∞j=1 of solutions of (1.4) and a family of pairwise orthogonal sequences
Γj = {ρjn, tjn, ξjn, xjn}∞n=1 such that for every (t, x) ∈ R× R4,

(4.1) eit∆ϕn(x) =
l∑

j=1

ΓjnV
j(t, x) + wln(t, x)

with

(4.2) lim sup
n→∞

‖wln‖L3(R×R4) → 0 as l→∞.

Moreover, for every l ≥ 1,

(4.3) ‖ϕn‖2L2 =
l∑

j=1

‖V j‖2L2 + ‖wln‖2L2 + on(1).

Definition 4.2. Let Γn = {ρn, tn, ξn, xn}∞n=1 be a sequence in R∗+ × R
× R4 × R4 such that {tn}∞n=1 has a limit in [−∞,∞] as n → ∞. Let V
be a solution of the linear Schrödinger equation (1.4). We say that U is
the nonlinear profile associated to {V,Γn}∞n=1 if U is the unique maximal
solution of (1.3) satisfying

‖(U − V )(tn, ·)‖L2(R4) → 0 as n→∞.
In order to prove Theorems 1.3 and 1.4, we first state a key theorem,

which is similar to that in [11] and [12].

Theorem 4.1 (Nonlinear profile decomposition). Let {ϕn}∞n=1 be a
bounded family in L2(R4) and {un}∞n=1 the corresponding family of solu-
tions to (1.3) with initial data {ϕn}∞n=1. Let {V j ,Γjn}∞j=1 be the family of
linear profiles associated to {ϕn}∞j=1 via Lemma 4.1 and {U j}∞j=1 the fam-
ily of nonlinear profiles associated to {V j ,Γjn}∞j=1 via Definition 4.2. Let
{In}∞n=1 be a family of intervals containing the origin 0. Then the following
statements are equivalent:

(i) For every j ≥ 1,

lim
n→∞

‖ΓjnU j‖L3
t,x[In] <∞.

(ii) We have
lim
n→∞

‖un‖L3
t,x[In] <∞.
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Moreover, if (i) or (ii) holds, then

(4.4) un =
l∑

j=1

ΓjnU
j + wln + rln,

where wln is as in (4.2) and

(4.5) lim
n→∞

(‖rln‖L3
t,x[In] + sup

t∈In
‖rln‖L2)→ 0 as l→∞.

Proof. Step 1. We prove (4.4) and (4.5) provided that (i) or (ii) holds.
Let

rln = un −
l∑

j=1

U jn − wln, where U jn := ΓjnU
j ,

and let V j
n := ΓjnV

j . Then rln satisfies the equation

(4.6)

{
i∂tr

l
n +∆rln = f ln,

rln(0) =
∑l

j=1(V j
n − U jn)(0, x),

where

f ln := p(W l
n + wln + rln)−

l∑
j=1

p(U jn),

p(z) := −(|x|−2 ∗ |z|2)z, W l
n :=

l∑
j=1

U jn.

It suffices to prove that

(4.7) lim
n→∞

(‖rln‖L3
t,x[In] + sup

t∈In
‖rln‖L2) l→∞−−−→ 0.

By the Strichartz estimates and the Young inequality, we have

‖rln‖L3
t,x[In]+sup

t∈In
‖rln‖L2 .

∥∥∥p(W l
n+wln+rln)−

l∑
j=1

p(U jn)
∥∥∥
Ṅ 0[In]

+‖rln(0, ·)‖L2

(4.8) . −
∥∥∥p(W l

n)−
l∑

j=1

p(U jn)
∥∥∥
Ṅ 0[In]

(4.9) + ‖p(W l
n + wln)− p(W l

n)‖L1
tL

2
x[In]

(4.10) + ‖p(W l
n + wln + rln)− p(W l

n + wln)‖L1
tL

2
x[In]

+ ‖rln(0, ·)‖L2 .
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We will estimate the three terms. First, we estimate (4.8) from above by
l∑

j1=1

∑
j2 6=j1

‖(|x|−2 ∗ |U j1n |2)U j2n ‖L3/2
t,x [In]

(4.11)

+
l∑

j1=1

∑
j2 6=j1

l∑
j3=1

‖(|x|−2 ∗ (U j1n U
j2
n ))U j3n ‖L1

tL
2
x[In].(4.12)

Without loss of generality we can assume that both U j1 and U j2 have com-
pact support in t and x. Let V (x) = |x|−2. Then� �
|(V ∗ |U j1n |2)U j2n |3/2 dx dt

=
� � ∣∣∣ � (ρj1n )4|U j1((ρj1n )2t+ tj1n , ρ

j1
n (x− y − tξj1n ) + xj1n )|2V (y) dy

× (ρj2n )2U j2((ρj2n )2t+ tj2n , ρ
j2
n (x− tξj2n ) + xj2n )

∣∣∣3/2 dx dt
=
(
ρj2n

ρj1n

)3 � � ∣∣∣∣ � |U j1(t̃, x̃− ỹ)|2V (ỹ) dỹ U j2
((

ρj2n

ρj1n

)2

t̃−
(
ρj2n

ρj1n

)2

tj1n + tj2n ,

ρj2n

ρj1n
x̃+

ρj2n (ξ1n − ξ2n)

(ρj1n )2
t̃− ρj2n (ξj1n − ξj2n )

(ρj1n )2
tj1n −

ρj2n x
j1
n

ρj1n
+ xj2n

)∣∣∣∣3/2 dx̃ dt̃.
If ρj2n /ρ

j1
n + ρj1n /ρ

j2
n → ∞ or |tj1n − tj2n | → ∞, by the compact support

assumption on t, we conclude that the quantity (4.11) converges to 0 as
n→∞. Otherwise, by orthogonality we have

(4.13)
|ξj1n − ξj2n |

ρj1n
+
∣∣∣∣ξj1n − ξj2n

ρj1n
tj1n + xj1n − xj2n

∣∣∣∣→∞.
Without loss of generality, we may assume that ρj2n /ρ

j1
n → 1. Then the

complicated expression of the function U j2 of t̃ and x̃ can be simplified to

U j2
(
t̃− tj1n + tj2n ,

ξj1n − ξj2n
ρj1n

t̃+ x̃− xj1n + xj2n −
ξj1n − ξj2n
ρj1n

tj1n

)
.

Meanwhile, we have�
|U j1(t̃, x̃− ỹ)|2V (ỹ) dỹ ≤

�

|ỹ|≤1

|U j1(t̃, x̃− ỹ)|2V (ỹ) dỹ

+
∞∑
j=0

�

2j≤|ỹ|≤2j+1

|U j1(t̃, x̃− ỹ)|2V (ỹ) dỹ.

Note that U j1 is compactly supported in x, so for any fixed j,�

2j≤|ỹ|≤2j+1

|U j1(t̃, · − ỹ)|2V (ỹ) dỹ
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is also compactly supported. Thus (4.13) implies that for any j1 6= j2,

lim
n→∞

� � ∣∣∣∣ �

2j≤|ỹ|≤2j+1

|U j1(t̃, · − ỹ)|2V (ỹ) dỹ U j2
(
t̃− tj1n + tj2n ,

ξj1n − ξj2n
ρj1n

t̃+ x̃− xj1n + xj2n −
ξj1n − ξj2n
ρj1n

tj1n

)∣∣∣∣3/2 dx̃ dt̃ = 0.

Therefore, the quantity (4.11) converges to 0 as n→∞.
On the other hand,

‖(|x|−2 ∗ (U j1n U
j2
n ))U j3n ‖L1

tL
2
x[In] ≤ C‖U j1n U j2n ‖L3/2

t,x
‖U j3n ‖L3

t,x
.

By orthogonality, ‖U j1n U j2n ‖L3/2
t,x
→ 0 as n → ∞. Because ‖U j3n ‖L3

t,x
is

bounded, we see that the quantity (4.12) also converges to 0 as n→∞.
Next, we prove that

lim
l→∞

( lim
n→∞

‖W l
n + wln‖L3

t,x[In]) ≤ C.

From (4.3), we have

‖wln‖L3
t,x[In] ≤ C‖wln(0)‖L2 ≤ C‖ϕn‖L2 .

It suffices to verify

(4.14) lim
l→∞

( lim
n→∞

‖W l
n‖L3

t,x[In]) ≤ C.

From the orthogonality of Γjn, as in [11], we can see that for every l ≥ 1,

‖W l
n‖3L3

t,x[In] =
∥∥∥ l∑
j=1

U jn

∥∥∥3

L3
t,x[In]

→
l∑

j=1

‖U jn‖3L3
t,x[In] as n→∞.

Meanwhile by (4.3), the series
∑
‖V j‖2L2 converges. Thus for every ε > 0,

there exists l(ε) such that

‖V j‖L2 ≤ ε, ∀j > l(ε).

The theory of small data asserts that, for ε sufficiently small, U j is global
and ‖U j‖L3

t,x
. ‖V j‖L2 , which yields∑

j>l(ε)

‖U j‖3L3
t,x
<∞.

So we have to deal only with a finite number of nonlinear profiles {U j}1≤j≤l(ε).
But in view of the pairwise orthogonality of {Γjn}∞j=1, one has

lim
n→∞

∥∥∥ l(ε)∑
j=1

U jn

∥∥∥
L3

t,x[In]
≤

l(ε)∑
j=1

lim
n→∞

‖U jn‖L3
t,x[In] <∞,

and thus (4.14) follows.
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Now, we estimate (4.9):

‖p(W l
n + wln)− p(W l

n)‖L1
tL

2
x[In]

. ‖(|x|−2 ∗ |W l
n + wln|2)wln‖L1

tL
2
x[In] + ‖(|x|−2 ∗ (W l

nw
l
n))wln‖L1

tL
2
x[In]

+ ‖(|x|−2 ∗ |wln|2)W l
n‖L1

tL
2
x[In]

. ‖W l
n‖2L3

t,x[In]‖w
l
n‖L3

t,x[In] + ‖wln‖2L3
t,x[In](‖W

l
n‖L3

t,x[In] + ‖wln‖L3
t,x[In])

= on(1).

The last equality is due to (4.14) and the fact that ‖wln‖L3
t,x[In] → 0 as

l→∞.
(4.10) can be estimated similarly:

(4.10) . ‖W l
n + wln‖2L3

t,x[In]‖r
l
n‖L3

t,x[In] + ‖W l
n + wln‖L3

t,x[In]‖rln‖2L3
t,x[In]

+ ‖rln‖3L3
t,x[In].

Now we can prove (4.7). Collecting all the previous facts, we have

(4.15) sup
t∈In
‖rln‖L2 + ‖rln‖L3

t,x[In]

≤ C(‖W l
n+wln‖L3

t,x[In]‖rln‖L3
t,x[In] +‖rln‖3L3

t,x[In] +‖r
l
n‖2L3

t,x[In] +‖r
l
n(0, ·)‖L2)

+ on(1).

As in [12], for every ε > 0 we can divide I+
n = In ∩ R+ into finitely many

n-dependent intervals, namely,

I+
n = [0, a1

n] ∪ [a1
n, a

2
n] ∪ · · · ∪ [ap−1

n , apn),

with each interval denoted by Iin (i = 1, . . . , p), so that for every 1 ≤ i ≤ p
and every l ≥ 1,

lim sup
n→∞

‖W l
n + wln‖L3

t,x(Ii
n×R4) ≤ ε.

The I−n = In ∩ R− can be similarly dealt with. Applying (4.15) on I1
n, it

follows that

sup
t∈I1n
‖rln‖L2 + ‖rln‖L3

t,x[I1n]

. ε‖rln‖L3
t,x[I1n] + ‖rln‖3L3

t,x[I1n] + ‖rln‖2L3
t,x[I1n] + ‖rln(0, ·)‖L2 + on(1).

By choosing ε sufficiently small, we obtain

sup
t∈I1n
‖rln‖L2 + ‖rln‖L3

t,x[I1n] . ‖rln(0, ·)‖L2 +
3∑

α=2

‖rln‖αL3
t,x[I1n] + o(1).
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Observe that, by the definition of the nonlinear profile U jn, we have

lim
n→∞

‖rln(0, ·)‖L2 = 0

for every l ≥ 1. This fact and a standard bootstrap argument show easily
that

lim
n→∞

(sup
t∈I1n
‖rln‖L2 + ‖rln‖L3

t,x[I1n])
l→∞−−−→ 0.

This gives in particular

lim
n→∞

‖rln(a1
n, ·)‖L2

l→∞−−−→ 0

and allows us to repeat the same argument for I2
n. We iterate the same

process for every 1 ≤ i ≤ p. Since I = I1
n ∪ I2

n ∪ · · · ∪ I
p
n and p is finite

independently of n and l, we get

lim
n→∞

(‖rln‖L3
t,x[In] + sup

t∈In
‖rln‖L2)→ 0

as l→∞, which is (4.7).

Step 2. Now we prove the equivalence of (i) and (ii).
(i)⇒(ii). Suppose that for all j, limn→∞ ‖ΓjnU j‖L3

t,x[In] <∞. Then

‖un‖L3
t,x[In] ≤

l∑
j=1

‖U jn‖L3
t,x[In] + ‖rln‖L3

t,x[In] + ‖wln‖L3
t,x[In].

From (4.2), we have

lim sup
n→∞

‖wln‖L3
t,x[In]

l→∞−−−→ 0 and lim
n→∞

‖rln‖L3
t,x[In]

l→∞−−−→ 0.

It immediately follows that

lim
n→∞

‖un‖L3
t,x[In] <∞.

(ii)⇒(i). If (i) does not hold, there exists a family of Ĩn ⊂ In with 0
included such that

∞∑
j=1

lim
n→∞

‖U jn‖3L3
t,x[Ĩn]

> M

for arbitrarily large M and

‖un‖L3
t,x[Ĩn] <∞.

By orthogonality, we have

lim
n→∞

‖un‖3L3
t,x[Ĩn]

≥
∞∑
j=1

lim
n→∞

‖U jn‖3L3
t,x[Ĩn]

> M.
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This leads to

lim
n→∞

‖un‖3L3
t,x[In] ≥ lim

n→∞
‖un‖3L3

t,x[Ĩn]
> M,

which implies that
lim
n→∞

‖un‖L3
t,x[In] =∞.

This contradicts (ii) and completes the proof of Theorem 4.1.

Proof of Theorem 1.3. We choose {u0,n} such that ‖u0,n‖L2 ↓ δ0, and let
un be the solution of (1.3) with data u0,n. By the definition of δ0, we can
assume that the interval of existence for un is finite. By the time translation
symmetry and scaling, we may assume that {un}∞n=1 is well defined on [0, 1],
and

lim
n→∞

‖un‖L3
t ([0,1],L3

x) =∞.

Let {U j , V j , ρjn, s
j
n, ξ

j
n, x

j
n} be the family of linear and nonlinear profiles as-

sociated to {un}∞n=1 via Lemma 4.1 and Theorem 4.1. Then the equivalence
in Theorem 4.1 implies that there exists a j0 such that U j0 blows up. On
one hand, by the definition of Bδ0 ,

‖V j0‖L2 ≥ δ0.

On the other hand, we have∑
j≥0

‖V j0‖2L2 ≤ lim
n→∞

‖u0,n‖2L2 = δ20 .

Thus by mass conservation and the definition of nonlinear profile, we have

‖U j0‖L2 = ‖V j0‖L2 ≤ δ0.

Therefore,
‖U j0‖L2 = δ0,

because U j0 is the solution of (1.3) satisfying U(sj0 , x) = V (sj0 , x), where
sj0 = limn→∞ s

j0
n . If sj0 is finite, then U j0 is the blow-up solution with

minimal mass. If sj0 =∞, we can use the pseudo-conformal transformation
to get a blow-up solution with minimal mass. This shows the existence of
initial data such that the solution of (1.3) blows up in finite time for t > 0.
In the proof of Theorem 1.4 we will show that there exists an initial data
u0 ∈ L2(R4) with ‖u0‖L2 = δ0 such that the solution u of (1.3) blows up for
both t > 0 and t < 0.

Proof of Theorem 1.4. (i) Suppose u is a solution of (1.3) which blows
up at finite time T ∗ > 0 and tn ↑ T ∗ as n→∞. Let

un(t, x) = u(tn + t, x).
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Then {un}∞n=1 is a family of solutions on In = [−tn, T ∗ − tn). Moreover,

lim
n→∞

‖un‖L3
t,x∈[0,T ∗−tn) = lim

n→∞
‖un‖L3

t,x∈[−tn,0] =∞.

Since ‖un‖L2 is bounded due to L2 conservation, we can apply Lemma 4.1
and then Theorem 4.1 on In = [0, T ∗− tn) to deduce that there exists some
j0 such that the nonlinear profile {U j0 , ρj0n , sj0n , ξj0n , xj0n } satisfies

(4.16) lim
n→∞

‖U j0‖
L3

t,x[I
j0
n ]

=∞,

where
Ij0n := [sj0n , (ρ

j0
n )2(T ∗ − tn) + sj0n ).

In fact, let sj0 = limn→∞ s
j0
n . Then sj0 6= ∞, since otherwise Ij0n → ∅

and (4.16) is impossible. This implies either sj0 = −∞ or sj0 = 0 (up to
translation). If sj0 = 0, let U j0 be the solution of (1.4) with initial data V j0 .
Then (4.16) implies that U j0 blows up at time T ∗j0 ∈ (0,∞) and

(4.17) lim
n→∞

(ρj0n )2(T ∗ − tn) ≥ T ∗j0 .

If we also assume that ‖u0‖L2 <
√

2 δ0, then there is at most one linear
profile with L2 norm greater than δ0 thanks to (4.3). That means that the
profile U j0 found above is the only blow-up nonlinear profile (since all the
other profiles have L2 norm less than δ0 and so they are global). By repeating
the same argument in In = [−tn, 0], we get

lim
n→∞

‖U j0‖
L3

t,x[I
j0
n ]

=∞, Ij0n = [−(ρj0n )2tn + sj0n , s
j0
n ].

This implies that sj0 6= −∞. Hence sj0 = 0 and the solution U j0 of (1.3)
with initial data V j0(0, ·) blows up also for t < 0. Thus the nonlinear profile
U j0 is the solution of (1.3) which blows up for both t < 0 and t > 0.

(ii) The linear decomposition yields

(Γj0n )−1(eit∆(u(tn, ·))) = V j0 +
∑

1≤j≤l, j 6=j0

(Γj0n )−1ΓjnV
j + (Γj0n )−1wln.

The family {Γjn}∞j=1 is pairwise orthogonal, so for every j 6= j0,

(Γj0n )−1ΓjnV
j

n→∞
−−−−⇀ 0 weakly in L2.

Then
(Γj0n )−1(eit∆(u(tn, ·)))

n→∞
−−−−⇀ V j0 + w̃l weakly,

where w̃l denotes the weak limit of (Γj0n )−1wln. However,

‖w̃l‖L3
t,x
≤ lim

n→∞
‖wln‖L3

t,x

l→∞−−−→ 0.

By uniqueness of the weak limit, we get w̃l = 0 for every l ≥ j0. Hence,

(Γj0n )−1(eit∆(u(tn, ·)))
n→∞
−−−−⇀ V j0 .
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We need the following lemma:

Lemma 4.2 ([23]). Let {ϕn}n≥1 and ϕ be in L2(R4). The following state-
ments are equivalent:

(1) ϕn ⇀ ϕ weakly in L2(R4).
(2) eit∆ϕn ⇀ eit∆ϕ in L3

t,x(R4+1).

Applying this lemma to (Γj0n )−1(eit∆(u(tn, ·))), we get

e−isn∆(ρ2
ne
ix·ξneiθnu(tn, ρnx+ xn)) ⇀ V j0(0, ·)

with

sn = sj0n , ρn =
1

ρj0n
, θn =

xj0n ξ
j0
n

ρj0n
, xn =

−xj0n
ρj0n

, ξn = −ξ
j0
n

ρj0n
.

Up to a subsequence, we can assume that eiθn → eiθ. Since sn → 0, we get

(4.18) ρ2
ne
ix·ξnu(tn, ρnx+ xn) ⇀ e−iθV j0(0, ·).

The associated solution is e−iθU j0 . (4.17) gives

lim
n→∞

ρn√
T ∗ − tn

≤ 1√
T ∗j0

.

This completes the proof of Theorem 1.4(ii).
(iii) Let u be a solution of (1.1) with ‖u0‖L2 <

√
2 δ0 which blows up at

finite time T ∗ > 0. Let tn ↑ T ∗ as n→∞. So there exists V ∈ L2(R4) with
‖V ‖L2 ≥ δ0 and a sequence {ρn, ξn, xn} ⊂ R∗+ × R4 × R4 such that up to a
subsequence,

(ρn)2eix·ξnu(tn, ρnx+ xn)
n→∞
−−−−⇀ V

and
lim
n→∞

ρn√
T ∗ − tn

≤ A

for some A ≥ 0. Thus we have

lim
n→∞

ρ4
n

�

|x|≤R

|u(tn, ρnx+ xn)|2 dx ≥
�

|x|≤R

|V |2 dx

for every R ≥ 0. This implies that

lim
n→∞

sup
y∈R4

�

|x−y|≤Rρn

|u(tn, x)|2 dx ≥
�

|x|≤R

|V |2 dx.

Since
√
T ∗ − t/λ(t)→ 0 as t ↑ T ∗, it follows that ρn/λ(tn)→ 0 and then

lim
n→∞

sup
y∈R4

�

|x−y|≤λ(tn)

|u(tn, x)|2 dx ≥
�
|V |2 dx ≥ δ20 .
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Since {tn}∞n=1 is an arbitrary sequence, we infer

lim inf
t→T

sup
y∈R4

�

|x−y|≤λ(t)

|u(t, x)|2 dx ≥ δ20 .

However, for every t ∈ [0, T ), the function y 7→
	
|x−y|≤λ(t) |u(t, x)|2 dx is

continuous and goes to 0 at infinity. As a consequence,

sup
y∈R4

�

|x−y|≤λ(t)

|u(t, x)|2 dx =
�

|x−x(t)|≤λ(t)

|u(t, x)|2 dx

for some x(t) ∈ R4, and this completes the proof of Theorem 1.4.

Proof of Corollary 1.2. In the context of the proof of Theorem 1.4 we
also assume that

‖un‖L2 = ‖u0‖L2 = δ0.

(4.3) gives ‖V j0‖L2 ≤ δ0. It follows that ‖V j0‖L2 = δ0. This implies that
there exists a unique profile V j0 and the weak limit in (4.18) is strong.
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