COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 119</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2010</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 119 | 2010 | NO. 1 |
| :--- | :--- | :--- |</table-markdown></div>

ON THE BLOW-UP PHENOMENON FOR THE MASS-CRITICAL FOCUSING HARTREE EQUATION IN \mathbb{R}^{4}

BY
CHANGXING MIAO, GUIXIANG XU and LIFENG ZHAO (Beijing)

Abstract

We characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with $H^{1}\left(\mathbb{R}^{4}\right)$ data and $L^{2}\left(\mathbb{R}^{4}\right)$ data, where we make use of the refined Gagliardo-Nirenberg inequality of convolution type and the profile decomposition. Moreover, we analyze the mass concentration phenomenon of such blow-up solutions.

1. Introduction. In this paper, we consider the Cauchy problem for the Hartree equation

$$
\begin{cases}i u_{t}+\Delta u=f(u) & \text { in } \mathbb{R}^{d} \times \mathbb{R} \tag{1.1}\\ u(0)=u_{0}(x) & \text { in } \mathbb{R}^{d}\end{cases}
$$

Here $f(u)=\lambda\left(V *|u|^{2}\right) u, V(x)=|x|^{-\gamma}, 0<\gamma<d$, and $*$ denotes the convolution in \mathbb{R}^{d}. If $\lambda>0$, we call the equation (1.1) defocusing; if $\lambda<0$, we call it focusing. This equation describes the mean-field limit of manybody quantum systems; see, e.g., [6], 7] and [36]. An essential feature of the Hartree equation is that the convolution kernel $V(x)$ still retains the fine structure of micro two-body interactions of the quantum system. By contrast, NLS arises in further limiting regimes where two-body interactions are modeled by a single real parameter in terms of the scattering length. In particular, NLS cannot provide effective models for quantum systems with long-range interactions such as the physically important case of the Coulomb potential $V(x) \sim|x|^{-(d-2)}$ in $d \geq 3$, whose scattering length is infinite.

There are many works on the global well-posedness and scattering of equation (1.1). For the defocusing case with $2<\gamma<\min (4, d)$, J. Ginibre and G. Velo [8 proved the global well-posedness and scattering results in the energy space. Later, K. Nakanishi [32] made use of a new Morawetz estimate to obtain similar results for more general functions $V(x)$. Recently, the present authors have proved the global well-posedness and scattering for

[^0]the defocusing, energy-critical Hartree equation (see [28] and [29]). For the global well-posedness and scattering of the focusing, energy-critical Hartree equation we refer to [17] and [30].

In this paper, we mainly aim to characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with $H^{1}\left(\mathbb{R}^{4}\right)$ data and $L^{2}\left(\mathbb{R}^{4}\right)$ data.

Now we recall the related results about the focusing mass-critical Schrödinger equation

$$
\begin{equation*}
i u_{t}+\Delta u=-|u|^{4 / d} u, \quad u(0)=u_{0}, \tag{1.2}
\end{equation*}
$$

where d is the spatial dimension. Equation (1.2) is called mass-critical due to scaling invariance. If $u_{0} \in H^{1}$ has radial symmetry, the mass concentration phenomenon for the blow-up solution was observed near the blow-up time in [22]. Later on, the radial symmetry assumption was removed by M. Weinstein [35] and Nawa 33]. For a more detailed analysis of the blowup dynamics of (1.2), see [20], 21, [24], 25], 26] and the references therein. If u_{0} only lies in L^{2}, the situation seems quite different because we cannot use the energy conservation law. The pioneering work in this direction is due to J. Bourgain [3] for $d=2$, who proved that there exists a blow-up time T^{*},

$$
\lim _{t \uparrow T^{*}} \sup _{\substack{\operatorname{cobes} I \subset \mathbb{R}^{2}, \operatorname{side}(I)<\left(T^{*}-t\right)^{1 / 2}}}\left(\int_{I}|u(t, x)|^{2} d x\right)^{1 / 2} \geq c\left(\left\|u_{0}\right\|_{L_{x}^{2}}\right)>0,
$$

where $c\left(\left\|u_{0}\right\|_{L_{x}^{2}}\right)$ is a constant depending on the mass of the initial data. A new proof can be found in S. Keraani [12] by means of the profile decomposition in [23]. Bourgain's result was extended to dimension $d=1$ by R. Carles and S. Keraani 4 and to dimension $d \geq 3$ by P. Bégout and A. Vargas [2]. Recently, R. Killip, T. Tao and M. Visan [13] established global well-posedness and scattering for (1.2) with radial data in dimension two and mass strictly smaller than that of the ground state. Later R. Killip, M. Visan and X. Zhang [14] extended those results to $d \geq 3$. We dealt with the corresponding problem for the Hartree equation in [31].

This paper is devoted to the study of the blow-up behavior of the masscritical Hartree equation in dimension four:

$$
\begin{cases}i u_{t}+\Delta u=-\left(|x|^{-2} *|u|^{2}\right) u & \text { in } \mathbb{R}^{4} \times \mathbb{R}, \tag{1.3}\\ u(0)=u_{0}(x) & \text { in } \mathbb{R}^{4} .\end{cases}
$$

The corresponding free equation is

$$
\begin{cases}i u_{t}+\Delta u=0 & \text { in } \mathbb{R}^{4} \times \mathbb{R}, \tag{1.4}\\ u(0)=u_{0}(x) & \text { in } \mathbb{R}^{4} .\end{cases}
$$

Note that $\gamma=2$ is the unique exponent which is mass-critical in the sense
that the natural scaling

$$
u_{\lambda}(t, x)=\lambda^{2} u\left(\lambda^{2} t, \lambda x\right)
$$

leaves mass invariant. At the same time, $|x|^{-2}$ is just the physically important case of Coulomb potential for dimension $d=4$. Moreover, equation (1.3) also has pseudo-conformal symmetry: If $u(t, x)$ solves (1.3), then so does

$$
\begin{equation*}
v(t, x)=\frac{1}{|T-t|^{2}} \bar{u}\left(\frac{1}{t-T}, \frac{x}{t-T}\right) e^{i|x|^{2} / 4(t-T)} \tag{1.5}
\end{equation*}
$$

First we deal with equation 1.3 with data in $H^{1}\left(\mathbb{R}^{4}\right)$. For the solution $u(t) \in H^{1}$ of 1.3 , the following quantities are conserved:

$$
\begin{aligned}
M(u(t)) & =\|u(t)\|_{L_{x}^{2}}=\|u(0)\|_{L_{x}^{2}} \\
E(u(t)) & =\frac{1}{2} \int_{\mathbb{R}^{4}}|\nabla u|^{2} d x-\frac{1}{4} \int_{\mathbb{R}^{4} \mathbb{R}^{4}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|^{2}} d x d y=E(u(0)) .
\end{aligned}
$$

According to the local well-posedness theory [5], 27], the solution $u(t) \in$ $H^{1}\left(\mathbb{R}^{4}\right)$ of 1.3 blows up at finite time T if and only if

$$
\lim _{t \rightarrow T}\|\nabla u(t)\|_{L^{2}}=\infty
$$

The blow-up theory is mainly connected with the notion of ground state, the unique radial positive solution of the elliptic equation

$$
\begin{equation*}
-\Delta Q+Q=\left(V *|Q|^{2}\right) Q \tag{1.6}
\end{equation*}
$$

The existence of the positive solution is proved by the concentration compactness principle at the beginning of Section 3, which is closely related to a refined Gagliardo-Nirenberg inequality of convolution type,

$$
\begin{equation*}
\|u\|_{L^{V}}^{4} \leq \frac{2}{\|Q\|_{L^{2}}^{2}}\|u\|_{L^{2}}^{2}\|\nabla u\|_{L^{2}}^{2} \tag{1.7}
\end{equation*}
$$

where the definition of the L^{V} norm is given in 1.9 below. The radial symmetry of the positive solution can be obtained from [19]. By adapting Lieb's uniqueness proof in [18] for the ground states $\phi \in H^{1}$ of the ChoquardPekar equation $\left(V(x)=|x|^{-1}\right.$ in dimension $\left.d=3\right)$, the analogous result for (1.6) can be obtained. See details in [15]. However, the uniqueness proof strongly depends on the specific features of equation (1.6). It is different from the corresponding results for semilinear elliptic equations in [16]. As our result (Theorem 1.1) depends on the uniqueness of the ground state of equation (1.6), it is the reason why we consider the case $d=4$.

Together with the notion of the ground state Q, the invariance (1.5) yields an explicit blow-up solution such that $\|u\|_{L^{2}}=\|Q\|_{L^{2}}$. One can ask if there are other finite time blow-up solutions of 1.3 with minimal mass
$\|Q\|_{L^{2}}$ and how to characterize the dynamics of such blow-up solutions near the blow-up time.

Now, we can characterize the finite time blow-up solutions with minimal mass in $H^{1}\left(\mathbb{R}^{4}\right)$.

Theorem 1.1. Let $u_{0} \in H^{1}\left(\mathbb{R}^{4}\right)$ be such that $\left\|u_{0}\right\|_{L^{2}}=\|Q\|_{L^{2}}$ and u be a blow-up solution of (1.3) at finite time T. Then there exists $x_{0} \in \mathbb{R}^{4}$ such that $e^{i\left|x-x_{0}\right|^{2} / 4 T} u_{0} \in \mathcal{A}$, where

$$
\mathcal{A}=\left\{\rho^{2} e^{i \theta} Q(\rho x+y): y \in \mathbb{R}^{4}, \rho \in \mathbb{R}_{*}^{+}, \theta \in[0,2 \pi)\right\}
$$

Theorem 1.2. Let u be a solution of (1.3) which blows up at finite time $T>0$ with initial data $u_{0} \in H^{1}\left(\mathbb{R}^{4}\right)$, and $\lambda(t)>0$ such that $\lambda(t)\|\nabla u\|_{L^{2}}$ $\rightarrow \infty$ as $t \uparrow T$. Then there exists $x(t) \in \mathbb{R}^{4}$ such that

$$
\liminf _{t \uparrow T} \int_{|x-x(t)| \leq \lambda(t)}|u(t, x)|^{2} d x \geq \int_{\mathbb{R}^{4}}|Q|^{2} d x
$$

The counterpart of Theorem 1.1 for the Schrödinger equation has been established by F. Merle in [21]. The counterpart of Theorem 1.2 was proved by M. Weinstein in [35]. T. Hmidi and S. Keraani gave a direct and simplified proof of the above results in [9]. The new ingredient for the Hartree equation is the refined Gagliardo-Nirenberg inequality (1.7) of convolution type, whose proof is based on the well-known concentration compactness method and thus one has to deal with the intertwining of convolution and orthogonality.

Next we consider the blow-up behavior of 1.3 with L^{2} data. In [27], we showed that for any $u_{0} \in L^{2}\left(\mathbb{R}^{4}\right)$, there exists a unique maximal solution u to (1.3), with

$$
u \in C\left(\left(-T_{*}, T^{*}\right), L^{2}\left(\mathbb{R}^{4}\right)\right) \cap L_{\mathrm{loc}}^{3}\left(\left(-T_{*}, T^{*}\right), L^{3}\left(\mathbb{R}^{4}\right)\right)
$$

and we have the following alternative: either $T_{*}=T^{*}=\infty$ or

$$
\min \left\{T_{*}, T^{*}\right\}<\infty \quad \text { and } \quad\|u\|_{L_{t}^{3}\left(\left(-T_{*}, T^{*}\right), L_{x}^{3}\right)}=\infty
$$

Moreover, there exists $\delta>0$ such that if

$$
\begin{equation*}
\left\|u_{0}\right\|_{L^{2}}<\delta \tag{1.8}
\end{equation*}
$$

then the initial value problem (1.3) has a unique global solution $u(t, x)$ $\in L_{t, x}^{3}\left(\mathbb{R} \times \mathbb{R}^{4}\right)$. We define δ_{0} as the supremum of δ in 1.8 such that the global existence for the Cauchy problem (1.3) holds, with $u \in$ $\left(C \cap L^{\infty}\right)\left(\mathbb{R}, L^{2}\left(\mathbb{R}^{4}\right)\right) \cap L^{3}\left(\mathbb{R} \times \mathbb{R}^{4}\right)$. Then in the ball $B_{\delta_{0}}:=\left\{u_{0}:\left\|u_{0}\right\|_{L^{2}}<\delta_{0}\right\}$, (1.3) admits a complete scattering theory with respect to the associated linear problem. Similar to the focusing mass-critical Schrödinger equation, we also conjecture that δ_{0} should be $\|Q\|_{L^{2}}$ for the Hartree equation. We have verified the conjecture for radial data in [31]. For general data, it remains open.

Definition 1.1. Let $u_{0} \in L^{2}\left(\mathbb{R}^{4}\right)$. A solution of 1.3 is said to be a blow-up solution for $t>0$ if either $T^{*}<\infty$, or

$$
T^{*}=\infty \quad \text { and } \quad\|u\|_{L_{t}^{3}\left((0, \infty), L_{x}^{3}\right)}=\infty
$$

and similarly for $t<0$.
Now we are in a position to state the existence of blow-up solutions in both time directions with minimal mass in $L^{2}\left(\mathbb{R}^{4}\right)$.

ThEOREM 1.3. There exists an initial data $u_{0} \in L^{2}\left(\mathbb{R}^{4}\right)$ with $\left\|u_{0}\right\|_{L^{2}}=\delta_{0}$ for which the solution of (1.3) blows up for both $t>0$ and $t<0$.

As a direct consequence of the above theorem and the pseudo-conformal transform (1.5), we obtain the existence of finite time blow-up solutions with minimal mass in $L^{2}\left(\mathbb{R}^{4}\right)$.

Corollary 1.1. There exists an initial data $u_{0} \in L^{2}\left(\mathbb{R}^{4}\right)$ with $\left\|u_{0}\right\|_{L^{2}}$ $=\delta_{0}$, for which the solution of (1.3) blows up at finite time $T^{*}>0$.

TheOrem 1.4. Let u be a blow-up solution of (1.3) at finite time $T^{*}>0$ such that $\left\|u_{0}\right\|_{L^{2}}<\sqrt{2} \delta_{0}$. Let $t_{n} \uparrow T^{*}$ as $n \rightarrow \infty$, and let $\lambda(t)>0$ be such that

$$
\frac{\sqrt{T^{*}-t}}{\lambda(t)} \rightarrow 0 \quad \text { as } t \uparrow T^{*}
$$

Then there exist a subsequence of $\left\{t_{n}\right\}_{n=1}^{\infty}$ (still denoted by $\left\{t_{n}\right\}$) and $x(t) \in \mathbb{R}^{4}$ with the following properties.
(i) There exists $\psi \in L^{2}\left(\mathbb{R}^{4}\right)$ with $\|\psi\|_{L^{2}} \geq \delta_{0}$ such that the solution U of (1.3) with initial data ψ blows up for both $t>0$ and $t<0$.
(ii) There exists a sequence $\left\{\rho_{n}, \xi_{n}, x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}_{+}^{*} \times \mathbb{R}^{4} \times \mathbb{R}^{4}$ such that

$$
\rho_{n}^{2} e^{i x \cdot \xi_{n}} u\left(t_{n}, \rho_{n} x+x_{n}\right) \rightharpoonup \psi \quad \text { weakly in } L^{2}
$$

Furthermore,

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}}{\sqrt{T^{*}-t_{n}}} \leq \frac{1}{\sqrt{T^{* *}}}
$$

where $T^{* *}$ denotes the lifespan of U.
(iii) We have

$$
\liminf _{t \uparrow T^{*}} \int_{|x-x(t)| \leq \lambda(t)}|u(x, t)|^{2} d x \geq \delta_{0}^{2}
$$

Corollary 1.2. Let u be a blow-up solution with minimal mass of 1.3 at finite time $T^{*}>0$. Let $t_{n} \uparrow T^{*}$ as $n \rightarrow \infty$. Then there exists a subsequence of $\left\{t_{n}\right\}_{n=1}^{\infty}$ (still denoted by $\left.\left\{t_{n}\right\}_{n=1}^{\infty}\right)$ and $x(t) \in \mathbb{R}^{4}$ with the following properties:
(i) There exists $\psi \in L^{2}\left(\mathbb{R}^{4}\right)$ with $\|\psi\|_{L^{2}} \geq \delta_{0}$ such that the solution U of (1.3) with initial data ψ blows up for both $t>0$ and $t<0$.
(ii) There exists a sequence $\left\{\rho_{n}, \xi_{n}, x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}_{+}^{*} \times \mathbb{R}^{4} \times \mathbb{R}^{4}$ such that

$$
\rho_{n}^{2} e^{i x \cdot \xi_{n}} u\left(t_{n}, \rho_{n} x+x_{n}\right) \rightarrow \psi \quad \text { strongly in } L^{2}
$$

Furthermore,

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}}{\sqrt{T^{*}-t_{n}}} \leq \frac{1}{\sqrt{T^{* *}}}
$$

where $T^{* *}$ denotes the lifespan of U.
(iii) We have

$$
\liminf _{t \uparrow T^{*}} \int_{|x-x(t)| \leq \lambda(t)}|u(x, t)|^{2} d x \geq \delta_{0}^{2}
$$

Similar results for the nonlinear Schrödinger equation have appeared in F. Merle and L. Vega [23] and S. Keraani [12]. Since the nonlinearity is nonlocal for the Hartree equation, we have to introduce a suitable decomposition in physical space to exploit the orthogonality.

We will often use the notations $a \lesssim b$ and $a=O(b)$ to mean that there exists some constant C such that $a \leq C b$. The derivative operator ∇ refers to the derivatives with respect to space variables only. We also occasionally use subscripts to denote the spatial derivatives and use the summation convention over repeated indices.

For $1 \leq p \leq \infty$, we define the dual exponent p^{\prime} by $1 / p+1 / p^{\prime}=1$. For any time interval I, we use $L_{t}^{q} L_{x}^{r}\left(I \times \mathbb{R}^{4}\right)$ to denote the spacetime Lebesgue norm

$$
\|u\|_{L_{t}^{q} L_{x}^{r}\left(I \times \mathbb{R}^{4}\right)}:=\left(\int_{I}\|u\|_{L^{r}\left(\mathbb{R}^{4}\right)}^{q} d t\right)^{1 / q}
$$

with the usual modifications when $q=\infty$. When $q=r$, we abbreviate $L_{t}^{q} L_{x}^{r}$ by $L_{t, x}^{q}$.

We say that a pair (q, r) is admissible if

$$
\frac{2}{q}=4\left(\frac{1}{2}-\frac{1}{r}\right), \quad 2 \leq q \leq \infty
$$

For a spacetime slab $I \times \mathbb{R}^{4}$, we define the Strichartz norms

$$
\|u\|_{\dot{S}^{0}(I)}:=\sup _{(q, r) \text { admissible }}\|u\|_{L_{t}^{q} L_{x}^{r}\left(I \times \mathbb{R}^{4}\right)}, \quad\|u\|_{\dot{S}^{1}(I)}:=\|\nabla u\|_{\dot{S}^{0}(I)}
$$

We also define $\dot{\mathcal{N}}^{0}$ to be the Banach dual space of \dot{S}^{0}.
Throughout this paper, we write

$$
\begin{equation*}
\|u\|_{L^{V}}:=\left(\iint|u(x)|^{2} V(x-y)|u(y)|^{2} d x d y\right)^{1 / 4} \tag{1.9}
\end{equation*}
$$

The rest of this paper is organized as follows: In Section 2, we recall the preliminary estimates such as Strichartz estimates and the virial identity. In Section 3, we prove Theorems 1.1 and 1.2. Section 4 is devoted to the proof of Theorems 1.3 and 1.4 .
2. Preliminaries. We now recall some useful estimates. First, we have the following Strichartz inequalities:

Lemma 2.1 ([5], [10]). Let u be an $\dot{S}^{0}(I)$ solution to the Schrödinger equation in 1.1). Then

$$
\|u\|_{\dot{S}^{0}} \lesssim\left\|u\left(t_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)}+\|f(u)\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}\left(I \times \mathbb{R}^{4}\right)}
$$

for any $t_{0} \in I$ and any admissible pair (q, r). The implicit constant is independent of the choice of the interval I.

By definition, it immediately follows that for any function u on $I \times \mathbb{R}^{4}$,

$$
\|u\|_{L_{t}^{\infty} L_{x}^{2}}+\|u\|_{L_{t, x}^{3}} \lesssim\|u\|_{\dot{S}^{0}}
$$

where all spacetime norms are taken on $I \times \mathbb{R}^{4}$.
Lemma 2.2. Let $f(u)(t, x)= \pm u\left(V *|u|^{2}\right)(t, x)$, where $V(x)=|x|^{-2}$. For any time interval I and $t_{0} \in I$, we have

$$
\left\|\int_{t_{0}}^{t} e^{i(t-s) \Delta} f(u)(s, x) d s\right\|_{\dot{S}^{0}(I)} \lesssim\|u\|_{L_{t, x}^{3}}^{3}
$$

Proof. By the Strichartz estimate, the Hardy-Littlewood-Sobolev inequality and the Hölder inequality, we have

$$
\begin{aligned}
\left\|\int_{t_{0}}^{t} e^{i(t-s) \Delta} f(u)(s, x) d s\right\|_{\dot{S}^{0}(I)} & \lesssim\|f(u)(t, x)\|_{L_{t}^{1} L_{x}^{2}} \lesssim\left\|V *|u|^{2}\right\|_{L_{t}^{3 / 2} L_{x}^{6}}\|u\|_{L_{t, x}^{3}} \\
& \lesssim\|u\|_{L_{t, x}^{3}}^{3} .
\end{aligned}
$$

In addition, we can obtain the virial identity appearing in the proof of the localized Morawetz estimates [28]. Indeed, let $V_{0}^{a}(t)=\int a(x)|u(t, x)|^{2} d x$, where $a(x)$ is real-valued and u is the solution of 1.1 with $f(u)=$ $-\left(|x|^{-\gamma} *|u|^{2}\right) u$. Then we get

$$
M_{0}^{a}(t)=: \partial_{t} V_{0}^{a}(t)=2 \Im \int a_{j} u_{j} \bar{u} d x
$$

and

$$
\begin{align*}
\partial_{t} M_{0}^{a}(t)= & -2 \Im \int a_{j j} u_{t} \bar{u} d x-4 \Im \int a_{j} \bar{u}_{j} u_{t} d x \tag{2.1}\\
= & -\int \Delta \Delta a|u|^{2} d x+4 \Re \int a_{j k} \bar{u}_{j} u_{k} d x \\
& -\iint(\nabla a(x)-\nabla a(y)) \nabla V(x-y)|u(y)|^{2}|u(x)|^{2} d x d y
\end{align*}
$$

LEmma 2.3. If we choose $a(x)=|x|^{2}$, then

$$
\begin{equation*}
\partial_{t} M_{0}^{a}(t)=8 \int|\nabla u|^{2} d x-2 \gamma \iint V(x-y)|u(y)|^{2}|u(x)|^{2} d x d y \tag{2.2}
\end{equation*}
$$

Lemma 2.4. If $a(x)=|x|^{2}$ and $\gamma=2$, we have

$$
\begin{equation*}
\partial_{t}^{2} V_{0}^{a}(t)=16 E(u(0)) \tag{2.3}
\end{equation*}
$$

If $E(u(0))<0$, then the nonnegative function $V_{0}^{a}(t)$ is concave, so the maximal interval of existence is finite. This implies that the solution of (1.3) has to blow up in both directions.
3. The blow-up dynamics of the focusing mass-critical Hartree equation with H^{1} data. Let $V(x)=|x|^{-2}$. We study the minimizing functional

$$
J:=\min \left\{J(u): u \in H^{1}\left(\mathbb{R}^{4}\right)\right\}, \quad \text { where } \quad J(u):=\frac{\|u\|_{L^{2}}^{2}\|\nabla u\|_{L^{2}}^{2}}{\|u\|_{L^{V}}^{4}}
$$

First, we have
Lemma 3.1. If W is a minimizer of $J(u)$, then

$$
\begin{equation*}
\Delta W+\alpha\left(|x|^{-2} *|W|^{2}\right) W=\beta W \tag{3.1}
\end{equation*}
$$

where $\alpha=2 J /\|W\|_{L^{2}}^{2}$ and $\beta=\|\nabla W\|_{L^{2}}^{2} /\|W\|_{L^{2}}^{2}$.
REMARK 3.1. If W is a minimizer of $J(u)$, then $|W|$ is also a minimizer. Hence, we can assume that W is positive. In fact, we have

$$
-|\nabla W| \leq \nabla|W| \leq|\nabla W|
$$

in the sense of distributions. In particular, $|W| \in H^{1}$ and $J(|W|) \leq J(W)$.
Proof of Lemma 3.1. The minimizing function W is in $H^{1}\left(\mathbb{R}^{4}\right)$ and satisfies the Euler-Lagrange equation

$$
\left.\frac{d}{d \varepsilon} J(W+\varepsilon v)\right|_{\varepsilon=0}=0
$$

Equivalently, we have

$$
\begin{aligned}
& \|\nabla W\|_{L^{2}}^{2}\|W\|_{L^{V}}^{4} \int 2 \Re(W \bar{v}) d x+\|W\|_{L^{2}}^{2}\|W\|_{L^{V}}^{4} \int 2 \Re(\nabla W \nabla \bar{v}) d x \\
& \quad-\|\nabla W\|_{L^{2}}^{2}\|W\|_{L^{2}}^{2}\left(\int(V * 2 \Re(W \bar{v}))|W|^{2} d x+\int\left(V *|W|^{2}\right) 2 \Re(W \bar{v}) d x\right)=0
\end{aligned}
$$

Since

$$
\int(V * 2 \Re(W \bar{v}))|W|^{2} d x=\int\left(V *|W|^{2}\right) 2 \Re(W \bar{v}) d x
$$

we have

$$
\Delta W+\frac{2 J}{\|W\|_{L^{2}}^{2}}\left(V *|W|^{2}\right) W=\frac{\|\nabla W\|_{L^{2}}^{2}}{\|W\|_{L^{2}}^{2}} W
$$

Proposition 3.1. J is attained at a function u with the following properties:

$$
u(x)=a Q(\lambda x+b) \quad \text { for some } a \in \mathbb{C}^{*}, \lambda>0, \text { and any } b \in \mathbb{R}^{4}
$$

where Q satisfies (1.6). Moreover,

$$
J=\|Q\|_{L^{2}}^{2} / 2
$$

We prove this proposition by the following profile decomposition.
Lemma 3.2 (Profile decomposition [9]). For a bounded sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ $\subset H^{1}\left(\mathbb{R}^{4}\right)$, there is a subsequence of $\left\{u_{n}\right\}_{n=1}^{\infty}$ (still denoted by $\left\{u_{n}\right\}$) and a sequence $\left\{U^{(j)}\right\}_{j \geq 1}$ in $H^{1}\left(\mathbb{R}^{4}\right)$ and for any $j \geq 1$, a family $\left\{x_{n}^{j}\right\}$ such that:
(i) If $j \neq k$, then $\left|x_{n}^{j}-x_{n}^{k}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
(ii) For every $l \geq 1$,

$$
\begin{equation*}
u_{n}(x)=\sum_{j=1}^{l} U^{(j)}\left(x-x_{n}^{j}\right)+r_{n}^{l}(x) \tag{3.2}
\end{equation*}
$$

where, for any $p \in(2,4)$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|r_{n}^{l}\right\|_{L^{p}\left(\mathbb{R}^{4}\right)} \rightarrow 0 \quad \text { as } l \rightarrow \infty . \tag{3.3}
\end{equation*}
$$

(iii) We have

$$
\begin{align*}
\left\|u_{n}\right\|_{L^{2}}^{2} & =\sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{2}}^{2}+\left\|r_{n}^{l}\right\|_{L^{2}}^{2}+o_{n}(1) \tag{3.4}\\
\left\|\nabla u_{n}\right\|_{L^{2}}^{2} & =\sum_{j=1}^{l}\left\|\nabla U^{(j)}\right\|_{L^{2}}^{2}+\left\|\nabla r_{n}^{l}\right\|_{L^{2}}^{2}+o_{n}(1) .
\end{align*}
$$

Proof of Proposition 3.1. Choose a sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subset H^{1}\left(\mathbb{R}^{4}\right)$ such that $J\left(u_{n}\right) \rightarrow J$. Suppose $\left\|u_{n}\right\|_{L^{2}}=1$ and $\left\|u_{n}\right\|_{L^{V}}=1$. Then

$$
J\left(u_{n}\right)=\int\left|\nabla u_{n}\right|^{2} d x \rightarrow J .
$$

Note that $\left\{u_{n}\right\}_{n=1}^{\infty}$ is bounded in H^{1}, so by Lemma 3.2, we have (3.2)-(3.5). From (3.4) and (3.5), we have

$$
\begin{equation*}
\sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{2}}^{2} \leq 1, \quad \sum_{j=1}^{l}\left\|\nabla U^{(j)}\right\|_{L^{2}}^{2} \leq J \tag{3.6}
\end{equation*}
$$

Moreover, by the Hölder and Young inequalities, we have

$$
\left\|r_{n}^{l}\right\|_{L^{V}}^{4} \leq\left\|r_{n}^{l}\right\|_{L^{8 / 3}}^{4} .
$$

From (3.3), $\lim \sup _{n \rightarrow \infty}\left\|r_{n}^{l}\right\|_{L^{8 / 3}} \xrightarrow{l \rightarrow \infty} 0$. It follows that

$$
\limsup _{n \rightarrow \infty}\left\|r_{n}^{l}\right\|_{L^{V}} \xrightarrow{l \rightarrow \infty} 0 .
$$

Moreover,
$\iint \frac{\left|\sum_{j=1}^{l} U^{(j)}\left(x-x_{n}^{j}\right)\right|^{2}\left|\sum_{j=1}^{l} U^{(j)}\left(y-x_{n}^{j}\right)\right|^{2}}{|x-y|^{2}} d x d y$

$$
\begin{equation*}
\leq \sum_{j=1}^{l} \iint \frac{\left|U^{(j)}\left(x-x_{n}^{j}\right)\right|^{2}\left|U^{(j)}\left(y-x_{n}^{j}\right)\right|^{2}}{|x-y|^{2}} d x d y \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
+\sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{\left|U^{(j)}\left(x-x_{n}^{j}\right)\right|\left|U^{(k)}\left(x-x_{n}^{k}\right)\right|\left(\sum_{i=1}^{l}\left|U^{(i)}\left(y-x_{n}^{i}\right)\right|\right)^{2}}{|x-y|^{2}} d x d y \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
+\sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{\left|U^{(j)}\left(y-x_{n}^{j}\right)\right|\left|U^{(k)}\left(y-x_{n}^{k}\right)\right|\left(\sum_{i=1}^{l}\left|U^{(i)}\left(x-x_{n}^{i}\right)\right|\right)^{2}}{|x-y|^{2}} d x d y \tag{3.9}
\end{equation*}
$$

(3.10) $+\sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{\left|U^{(j)}\left(x-x_{n}^{j}\right)\right|^{2}\left|U^{(k)}\left(y-x_{n}^{k}\right)\right|^{2}}{|x-y|^{2}} d x d y$.

Without loss of generality we can assume that all $U^{(j)}$'s are continuous and compactly supported. Then

$$
3.7=\sum_{j=1}^{l} \iint \frac{\left|U^{(j)}(x)\right|^{2}\left|U^{(j)}(y)\right|^{2}}{|x-y|^{2}} d x d y
$$

and by orthogonality, we have

$$
(3.8) \leq \sum_{i=1}^{l} \sum_{j=1}^{l} \sum_{k \neq j}\left\|U^{(i)}\left(y-x_{n}^{i}\right)\right\|_{L^{8 / 3}}^{2}\left\|U^{(j)}\left(\cdot-x_{n}^{j}\right) U^{(k)}\left(\cdot-x_{n}^{k}\right)\right\|_{L^{4 / 3}} \rightarrow 0
$$

as $n \rightarrow \infty$. 3.9 can be similarly estimated. Finally,

$$
\begin{aligned}
(3.10) & =\sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{\left|U^{(j)}(x)\right|^{2}\left|U^{(k)}(y)\right|^{2}}{\left|x-y-x_{n}^{j}+x_{n}^{k}\right|^{2}} d x d y \\
& \leq \sum_{j=1}^{l} \sum_{k \neq j} \frac{C}{\left|x_{n}^{j}-x_{n}^{k}\right|^{2}}\left\|U^{(j)}\right\|_{L^{2}}^{2}\left\|U^{(k)}\right\|_{L^{2}}^{2} \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Therefore, we conclude

$$
\left\|\sum_{j=1}^{l} U^{(j)}\left(x-x_{n}^{j}\right)\right\|_{L^{V}}^{4} \rightarrow \sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{V}}^{4} \quad \text { as } n \rightarrow \infty
$$

Thus, we have

$$
\lim _{l \rightarrow \infty} \sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{V}}^{4}=1
$$

By the definition of J, we have

$$
J\left\|U^{j}\right\|_{L^{V}}^{4} \leq\left\|U^{(j)}\right\|_{L^{2}}^{2}\left\|\nabla U^{(j)}\right\|_{L^{2}}^{2}
$$

So we get

$$
J \sum_{j=1}^{l}\left\|U^{j}\right\|_{L^{V}}^{4} \leq \sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{2}}^{2}\left\|\nabla U^{(j)}\right\|_{L^{2}}^{2}
$$

On the other hand,

$$
\sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{2}}^{2}\left\|\nabla U^{(j)}\right\|_{L^{2}}^{2} \leq \sum_{j=1}^{l}\left\|U^{(j)}\right\|_{L^{2}}^{2} \sum_{j=1}^{l}\left\|\nabla U^{(j)}\right\|_{L^{2}}^{2} \leq J
$$

Thus we conclude that only one term $U^{\left(j_{0}\right)}$ is nonzero, i.e.

$$
\begin{equation*}
\left\|U^{\left(j_{0}\right)}\right\|_{L^{2}}=1, \quad\left\|U^{\left(j_{0}\right)}\right\|_{L^{V}}=1, \quad\left\|\nabla U^{\left(j_{0}\right)}\right\|_{L^{2}}^{2}=J \tag{3.11}
\end{equation*}
$$

This shows that $U^{\left(j_{0}\right)}$ is a minimizer of $J(u)$. From 3.11, we have

$$
\Delta U^{\left(j_{0}\right)}+2 J\left(|x|^{-2} *\left|U^{\left(j_{0}\right)}\right|^{2}\right) U^{\left(j_{0}\right)}=J U^{\left(j_{0}\right)} .
$$

By Remark 3.1, we can assume that $U^{j_{0}}$ is positive. Let $U^{\left(j_{0}\right)}=a Q(\lambda x+b)$, where Q is the positive solution of $\sqrt{1.6}$. An easy computation gives that $\lambda^{2}=2 a^{2}=J$.

Next we compute the best constant J in terms of Q. Multiplying (1.6) by Q and integrating both sides of the resulting equation, we have

$$
\begin{equation*}
-\int|\nabla Q|^{2} d x+\int\left(V *|Q|^{2}\right)|Q|^{2} d x=\int|Q|^{2} d x \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \int(x \cdot \nabla Q) Q d x=-2 \int|Q|^{2} d x \\
& \int x \cdot \nabla Q \Delta Q d x=-\sum_{i, j} \int\left(\delta_{i j} \partial_{i} Q \partial_{j} Q+x_{i} \partial_{i} \partial_{j} Q \partial_{j} Q\right)=\|\nabla Q\|_{L^{2}}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\int x \cdot \nabla Q & \left(V *|Q|^{2}\right) Q d x=\frac{1}{2} \int x \cdot \nabla Q^{2}\left(V *|Q|^{2}\right) d x \\
& =\frac{1}{2} \int x \cdot \nabla\left(\left(V *|Q|^{2}\right) Q^{2}\right) d x-\frac{1}{2} \int x \cdot\left(\nabla V * Q^{2}\right) Q^{2} d x \\
& =-2 \int\left(V *|Q|^{2}\right) Q^{2} d x+\iint \frac{x \cdot(x-y)}{|x-y|^{4}} Q(x)^{2} Q(y)^{2} d x d y=-\frac{3}{2}\|Q\|_{L^{V}}^{4},
\end{aligned}
$$

we have

$$
\|\nabla Q\|_{L^{2}}^{2}-\frac{3}{2}\|Q\|_{L^{V}}^{4}=-2\|Q\|_{L^{2}}^{2}
$$

Together with 3.12 , this yields $\|\nabla Q\|_{L^{2}}^{2}=\|Q\|_{L^{2}}^{2}$. So,

$$
J=\left\|\nabla U^{\left(j_{0}\right)}\right\|_{L^{2}}^{2}=\|Q\|_{L^{2}}^{2} / 2
$$

So far, we have obtained the existence of a positive solution of 1.6). In addition, Theorem 3 of [15] together with Theorem 1.2 of [19] implies that this positive solution is also radially symmetric and unique in $H^{1}\left(\mathbb{R}^{4}\right)$. Note that the uniqueness proof strongly depends on the specific features of equation (1.6). In fact, the uniqueness of the ground state Q of (1.6) has not be resolved completely for the general potential $V(x)$, and is stated as an open problem in [6].

We first make use of the ground state Q to give a sufficient condition for the global existence of 1.3 , which together with 1.5 implies that $\|Q\|_{L^{2}}$ is the minimal mass of blow-up solutions.

TheOrem 3.1. If $u_{0} \in H^{1}\left(\mathbb{R}^{4}\right)$ and $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$, then the solution $u(t)$ of 1.3) is global in time.

Proof. By the local well-posedness theory, it suffices to prove that for every $t \in \mathbb{R}$, we have

$$
\|\nabla u(t)\|_{L^{2}}<\infty
$$

Now from Proposition 3.1 and the conservation of mass, we have

$$
\begin{align*}
E(u(t)) & =\frac{1}{2} \int|\nabla u(t)|^{2} d x-\frac{1}{4} \int\left(V *|u(t)|^{2}\right)|u(t)|^{2} d x \tag{3.13}\\
& \geq \frac{1}{2}\|\nabla u(t)\|_{L^{2}}^{2}-\frac{1}{4} \frac{2}{\|Q\|_{L^{2}}^{2}}\|u(t)\|_{L^{2}}^{2}\|\nabla u(t)\|_{L^{2}}^{2} \\
& =\frac{1}{2}\|\nabla u(t)\|_{L^{2}}^{2}\left(1-\frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{\|Q\|_{L^{2}}^{2}}\right)
\end{align*}
$$

Since $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$, we have the uniform bound of $\|\nabla u(t)\|_{L^{2}}^{2}$. This proves the global existence.

Before we prove Theorem 1.1, we state a proposition in two equivalent forms.

Proposition 3.2 (Static version). If $u \in H^{1}\left(\mathbb{R}^{4}\right)$ is such that $\|u\|_{L^{2}}=$ $\|Q\|_{L^{2}}$ and $E(u)=0$, then

$$
u(x)=e^{i \theta} \lambda^{2} Q(\lambda x+b) \quad \text { for some } \theta \in \mathbb{R}, \lambda>0, b \in \mathbb{R}^{4}
$$

Proof. Since $E(u)=0$, we have $\|\nabla u\|_{L^{2}}^{2}=\frac{1}{2}\|u\|_{L^{V}}^{4}$. So we get

$$
J(u)=\frac{\|Q\|_{L^{2}}^{2}\|\nabla u\|_{L^{2}}^{2}}{\|u\|_{L^{V}}^{4}}=\frac{1}{2}\|Q\|_{L^{2}}^{2}=J
$$

By Proposition 3.1 and the uniqueness of the ground state Q, u is of the form $u(x)=a Q(\lambda x+b)$. The condition $\|u\|_{L^{2}}=\|Q\|_{L^{2}}$ ensures that $|a|=\lambda^{2}$. So $u(x)=e^{i \theta} \lambda^{2} Q(\lambda x+b)$.

Proposition 3.3 (Dynamic version). Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be a sequence in $H^{1}\left(\mathbb{R}^{4}\right)$ such that $\left\|u_{n}\right\|_{L^{2}}=\|Q\|_{L^{2}}, E\left(u_{n}\right) \leq M$ and $\left\|\nabla u_{n}\right\|_{L^{2}} \rightarrow \infty$. Define

$$
\lambda_{n}:=\frac{\left\|\nabla u_{n}\right\|_{L^{2}}}{\|\nabla Q\|_{L^{2}}} .
$$

Then there exists a subsequence (still denoted by $\left\{u_{n}\right\}$), a sequence $\left\{y_{n}\right\} \subset$ \mathbb{R}^{4} and a real number θ such that

$$
\begin{equation*}
e^{i \theta} \lambda_{n}^{-2} u_{n}\left(\lambda_{n}^{-1} x+y_{n}\right) \rightarrow Q(x) \quad \text { strongly in } H^{1} . \tag{3.14}
\end{equation*}
$$

Proof. Let

$$
\tilde{u}_{n}(x)=\frac{1}{\lambda_{n}^{2}} u_{n}\left(\frac{x}{\lambda_{n}}\right)
$$

Then $\left\|\tilde{u}_{n}\right\|_{L^{2}}=\|Q\|_{L^{2}}$ and $\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}=\|\nabla Q\|_{L^{2}}$. Moreover,

$$
E\left(\tilde{u}_{n}\right)=E\left(u_{n}\right) / \lambda_{n}^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

So we have

$$
J\left(\tilde{u}_{n}\right)=\|Q\|_{L^{2}}^{2} \frac{\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}^{2}}{\left\|\tilde{u}_{n}\right\|_{L^{V}}^{4}}=\|Q\|_{L^{2}}^{2} \frac{\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}^{2}}{2\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}^{2}-4 E\left(\tilde{u}_{n}\right)} \rightarrow \frac{\|Q\|_{L^{2}}^{2}}{2}=J
$$

as $n \rightarrow \infty$. Therefore, by Lemma 3.2 , we can choose a subsequence $\left\{\tilde{u}_{n}\right\}$ and $\left\{x_{n}\right\} \subset \mathbb{R}^{4}$ such that $\tilde{u}_{n}\left(x+x_{n}\right) \rightarrow a Q(\lambda x+b)$ in H^{1}. The conditions $\left\|\tilde{u}_{n}\right\|_{L^{2}}=\|Q\|_{L^{2}}$ and $\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}=\|\nabla Q\|_{L^{2}}$ imply $|a|=\lambda=1$, so we have (3.14) for $y_{n}=\lambda_{n}^{-1}\left(x_{n}-b\right)$.

In order to prove Theorem 1.1, we also need the following lemma. The proof relies heavily on the techniques of V. Banica [1].

Lemma 3.3. Suppose $u \in H^{1}\left(\mathbb{R}^{4}\right)$ and $\|u\|_{L^{2}}=\|Q\|_{L^{2}}$. Then for all real functions $w \in C^{1}$ with bounded ∇w, we have

$$
\left|\int_{\mathbb{R}^{4}} \nabla w(x) \Im(u \nabla u)(x) d x\right| \leq \sqrt{2} E(u)^{1 / 2}\left(\int|u|^{2}|\nabla w|^{2} d x\right)^{1 / 2}
$$

Proof. Since

$$
\left\|u e^{i s w(x)}\right\|_{L^{2}}=\|u\|_{L^{2}}=\|Q\|_{L^{2}}
$$

for any $s \in \mathbb{R}$, by 3.13 we know that $E\left(u e^{i s w(x)}\right) \geq 0$. So, for any s,

$$
\frac{1}{2} \int_{\mathbb{R}^{4}}|\nabla u+i s u \nabla w|^{2} d x-\frac{1}{4} \int_{\mathbb{R}^{4}}\left(V *|u|^{2}\right)|u|^{2} d x \geq 0
$$

Hence

$$
E(u)+s \int_{\mathbb{R}^{4}} \nabla w \Im(u \nabla u) d x+\frac{s^{2}}{2} \int_{\mathbb{R}^{4}}|u|^{2}|\nabla w|^{2} d x \geq 0
$$

As this holds for any s, the discriminant is nonpositive. Hence we get the result.

Now we turn to the proof of Theorems 1.1 and 1.2, which is borrowed from [9].

Proof of Theorem 1.1. Suppose $u(t, x)$ is the solution of $\sqrt{1.3}$ which blows up at T and let $t_{n} \uparrow T$. Let $u_{n}=u\left(t_{n}\right)$. By Proposition 3.3,

$$
e^{i \theta} \lambda_{n}^{-2} u_{n}\left(\lambda_{n}^{-1} x+y_{n}\right) \rightarrow Q(x) \quad \text { strongly in } H^{1}
$$

From this we get

$$
\begin{equation*}
\left|u\left(t_{n}, x\right)\right|^{2} d x-\|Q\|_{L^{2}}^{2} \delta_{x=y_{n}} \rightharpoonup 0 \tag{3.15}
\end{equation*}
$$

where $y_{n} \rightarrow 0$ (up to translation) or $y_{n} \rightarrow \infty$.
Now let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ be a nonnegative radial function such that

$$
\phi(x)=|x|^{2} \quad \text { if }|x|<1 \quad \text { and } \quad|\nabla \phi|^{2} \leq C \phi(x)
$$

For every $p \in \mathbb{N}^{*}$ we define

$$
\phi_{p}(x)=p^{2} \phi(x / p) \quad \text { and } \quad g_{p}(t)=\int \phi_{p}(x)|u(t, x)|^{2} d x
$$

By Lemma 3.3, for every $t \in[0, T)$, we have

$$
\begin{aligned}
\left|\dot{g}_{p}(t)\right| & =2\left|\int_{\mathbb{R}^{4}} \nabla \phi_{p}(x) \Im(u \nabla u)(x) d x\right| \leq 2 \sqrt{2} E\left(u_{0}\right)^{1 / 2}\left(\int|u|^{2}\left|\nabla \phi_{p}(x)\right|^{2} d x\right)^{1 / 2} \\
& \leq C E\left(u_{0}\right)^{1 / 2}\left(\int|u|^{2} \phi_{p}(x) d x\right)^{1 / 2} \leq C\left(u_{0}\right) \sqrt{g_{p}(t)}
\end{aligned}
$$

Integrating with respect to t, we get

$$
\left|\sqrt{g_{p}(t)}-\sqrt{g_{p}\left(t_{n}\right)}\right| \leq C\left(u_{0}\right)\left|t_{n}-t\right|
$$

If $y_{n} \rightarrow 0$, then $g_{p}\left(t_{n}\right) \rightarrow\|Q\|_{L^{2}}^{2} \phi_{p}(0)=0$ by 3.15 ; if $\left|y_{n}\right| \rightarrow \infty$, also $g_{p}\left(t_{n}\right) \rightarrow 0$ since ϕ_{p} is compactly supported. So, if we let $n \rightarrow \infty$, we have

$$
g_{p}(t) \leq C\left(u_{0}\right)(T-t)^{2}
$$

Now fix $t \in[0, T)$ and let $p \rightarrow \infty$. Then by 2.3 we get

$$
\begin{equation*}
8 t^{2} E\left(e^{i|x|^{2} / 4 t} u_{0}\right)=\int|x|^{2}|u(t, x)|^{2} d x \leq C\left(u_{0}\right)(T-t)^{2} \tag{3.16}
\end{equation*}
$$

Hence $\left|y_{n}\right|^{2}\|Q\|_{L^{2}}^{2} \leq C\left(u_{0}\right) T^{2}$. Thus y_{n} cannot go to infinity. This implies that $\left\{y_{n}\right\}$ converges to 0 . Letting t go to T, from 3.16 we get $E\left(e^{i|x|^{2} / 4 T} u_{0}\right)$ $=0$. Note also that $\left\|e^{i|x|^{2} / 4 T} u_{0}\right\|_{L^{2}}=\|Q\|_{L^{2}}$. By Proposition 3.2, we conclude that $e^{i|x|^{2} / 4 T} u_{0} \in \mathcal{A}$.

Proof of Theorem 1.2. We define

$$
\rho(t)=\|\nabla Q\|_{L^{2}} /\|\nabla u\|_{L^{2}} \quad \text { and } \quad v(t, x)=\rho^{2} u(t, \rho x)
$$

Let $t_{n} \uparrow T$, and set $v_{n}(x)=v\left(t_{n}, x\right)$. Then by mass conservation and the
definition of $\rho(t)$, we have

$$
\left\|v_{n}\right\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}} \quad \text { and } \quad\left\|\nabla v_{n}\right\|_{L^{2}}=\|\nabla Q\|_{L^{2}} .
$$

Since u blows up at time T, we have $\rho\left(t_{n}\right) \rightarrow 0$ as $t_{n} \rightarrow T$. Hence

$$
E\left(v_{n}\right)=\rho_{n}^{2} E\left(u_{0}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

In particular,

$$
\left\|v_{n}\right\|_{L^{V}}^{4} \rightarrow 2\|\nabla Q\|_{L^{2}}^{2} \quad \text { as } n \rightarrow \infty .
$$

According to Lemma 3.2, the sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ can be written, up to a subsequence, as

$$
v_{n}(x)=\sum_{j=1}^{l} U^{(j)}\left(x-x_{n}^{j}\right)+r_{n}^{l}(x)
$$

so that (3.3)-(3.5) hold. This implies, in particular, that

$$
2\|\nabla Q\|_{L^{2}}^{2} \leq \limsup _{n \rightarrow \infty}\left\|v_{n}\right\|_{L^{V}}^{4}=\limsup _{n \rightarrow \infty}\left\|\sum_{j=1}^{\infty} U^{j}\left(\cdot-x_{n}^{j}\right)\right\|_{L^{V}}^{4}
$$

As in the proof of Proposition 3.1, the pairwise orthogonality of the family $\left\{x^{j}\right\}_{j=1}^{\infty}$, together with (1.6) and (3.5), gives

$$
\begin{aligned}
2\|\nabla Q\|_{L^{2}}^{2} & \leq \sum_{j=1}^{\infty}\left\|U^{j}\right\|_{L^{V}}^{4} \leq \sum_{j=1}^{\infty} \frac{2}{\|Q\|_{L^{2}}^{2}}\left\|U^{j}\right\|_{L^{2}}^{2}\left\|\nabla U^{j}\right\|_{L^{2}}^{2} \\
& \leq \frac{2}{\|Q\|_{L^{2}}^{2}} \sup _{j \geq 1}\left\|U^{j}\right\|_{L^{2}}^{2} \sum_{j=1}^{\infty}\left\|\nabla U^{j}\right\|_{L^{2}}^{2} \leq \frac{2}{\|Q\|_{L^{2}}^{2}}\left\|\nabla v_{n}\right\|_{L^{2}}^{2} \sup _{j \geq 1}\left\|U^{j}\right\|_{L^{2}}^{2} \\
& =\frac{2}{\|Q\|_{L^{2}}^{2}}\|\nabla Q\|_{L^{2}}^{2} \sup _{j \geq 1}\left\|U^{j}\right\|_{L^{2}}^{2} .
\end{aligned}
$$

Therefore,

$$
\sup _{j \geq 1}\left\|U^{j}\right\|_{L^{2}}^{2} \geq\|Q\|_{L^{2}}^{2} .
$$

Since $\sum\left\|U^{j}\right\|_{L^{2}}^{2}$ converges, the supremum above is attained. In particular, there exists j_{0} such that

$$
\left\|U^{j_{0}}\right\|_{L^{2}}^{2} \geq\|Q\|_{L^{2}}^{2}
$$

On the other hand, a change of variables gives

$$
v_{n}\left(x+x_{n}^{j_{0}}\right)=U^{j_{0}}(x)+\sum_{\substack{1 \leq j \leq l \\ j \neq j_{0}}} U^{j}\left(x+x_{n}^{j_{0}}-x_{n}^{j}\right)+\tilde{r}_{n}^{l}(x),
$$

where $\tilde{r}_{n}^{l}(x)=r_{n}^{l}\left(x+x_{n}^{j_{0}}\right)$. The pairwise orthogonality of the family $\left\{x^{j}\right\}_{j=1}^{\infty}$ implies $U^{j}\left(\cdot+x_{n}^{j_{0}}-x_{n}^{j}\right) \rightharpoonup 0$ weakly for every $j \neq j_{0}$. Hence we get

$$
r_{n}\left(\cdot+x_{n}^{j_{0}}\right) \rightharpoonup U^{j_{0}}+\tilde{r}^{l},
$$

where \tilde{r}^{l} denotes the weak limit of $\left\{\tilde{r}_{n}^{l}\right\}_{n=1}^{\infty}$. However,

$$
\left\|\tilde{r}^{l}\right\|_{L^{V}} \leq \limsup _{n \rightarrow \infty}\left\|\tilde{r}_{n}^{l}\right\|_{L^{V}}=\limsup _{n \rightarrow \infty}\left\|r_{n}^{l}\right\|_{L^{V}} \xrightarrow{l \rightarrow \infty} 0
$$

By uniqueness of the weak limit, we get $\tilde{r}^{l}=0$ for every $l \neq j_{0}$ so that $r_{n}\left(\cdot+x_{n}^{j_{0}}\right) \rightharpoonup U^{j_{0}}$ in H^{1}, that is,

$$
\rho_{n}^{2} u\left(t_{n}, \rho_{n} \cdot+x_{n}^{j_{0}}\right) \rightharpoonup U^{j_{0}} \in H^{1} \quad \text { weakly. }
$$

Thus for every $A>0$,

$$
\liminf _{n \rightarrow \infty} \int_{|x| \leq A} \rho_{n}^{4}\left|u\left(t_{n}, \rho_{n} x+x_{n}\right)\right|^{2} d x \geq \int_{|x| \leq A}\left|U^{j_{0}}\right|^{2} d x
$$

In view of the assumption $\lambda\left(t_{n}\right) / \rho_{n} \rightarrow \infty$, this gives immediately

$$
\liminf _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda\left(t_{n}\right)}\left|u\left(t_{n}, x\right)\right|^{2} d x \geq \int_{|x| \leq A}\left|U^{j_{0}}\right|^{2} d x
$$

for every $A>0$, which means that

$$
\liminf _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda\left(t_{n}\right)}\left|u\left(t_{n}, x\right)\right|^{2} d x \geq \int\left|U^{j 0}\right|^{2} d x \geq \int|Q|^{2} d x .
$$

Since the sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ is arbitrary, we infer

$$
\liminf _{t \rightarrow T} \sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda(t)}|u(t, x)|^{2} d x \geq \int|Q|^{2} d x .
$$

But for every $t \in[0, T)$, the function $y \mapsto \int_{|x-y| \leq \lambda(t)}|u(t, x)|^{2} d x$ is continuous and goes to 0 at infinity. As a result, we get

$$
\sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda(t)}|u(t, x)|^{2} d x=\int_{|x-x(t)| \leq \lambda(t)}|u(t, x)|^{2} d x
$$

for some $x(t) \in \mathbb{R}^{4}$, and Theorem 1.2 is proved.
4. The blow-up dynamics of the focusing mass-critical Hartree equation with L^{2} data. In this section we prove Theorems 1.3 and 1.4

Definition 4.1. For every sequence $\boldsymbol{\Gamma}_{n}=\left\{\rho_{n}, t_{n}, \xi_{n}, x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}_{+}^{*} \times$ $\mathbb{R} \times \mathbb{R}^{4} \times \mathbb{R}^{4}$, we define the isometric operator $\boldsymbol{\Gamma}_{n}$ on $L_{t, x}^{3}\left(\mathbb{R} \times \mathbb{R}^{4}\right)$ by

$$
\boldsymbol{\Gamma}_{n}(f)(t, x)=\rho_{n}^{2} e^{i x \cdot \xi_{n}} e^{-i t\left|\xi_{n}\right|^{2}} f\left(\rho_{n}^{2} t+t_{n}, \rho_{n}\left(x-t \xi_{n}\right)+x_{n}\right)
$$

Two sequences $\boldsymbol{\Gamma}_{n}^{j}=\left\{\rho_{n}^{j}, t_{n}^{j}, \xi_{n}^{j}, x_{n}^{j}\right\}_{n=1}^{\infty}$ and $\boldsymbol{\Gamma}_{n}^{k}=\left\{\rho_{n}^{k}, t_{n}^{k}, \xi_{n}^{k}, x_{n}^{k}\right\}_{n=1}^{\infty}$ are said to be orthogonal if

$$
\frac{\rho_{n}^{j}}{\rho_{n}^{k}}+\frac{\rho_{n}^{k}}{\rho_{n}^{j}} \rightarrow \infty
$$

or

$$
\rho_{n}^{j}=\rho_{n}^{k} \quad \text { and } \quad \frac{\left|\xi_{n}^{j}-\xi_{n}^{k}\right|}{\rho_{n}^{j}}+\left|t_{n}^{j}-t_{n}^{k}\right|+\left|\frac{\xi_{n}^{j}-\xi_{n}^{k}}{\rho_{n}^{j}} t_{n}^{j}+x_{n}^{j}-x_{n}^{k}\right| \rightarrow \infty
$$

LEMMA 4.1 (Linear profile decomposition [2]). Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in $L^{2}\left(\mathbb{R}^{4}\right)$. Then there exists a subsequence of $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ (still denoted by $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$) with the following properties: there exists a family $\left\{V^{j}\right\}_{j=1}^{\infty}$ of solutions of (1.4) and a family of pairwise orthogonal sequences $\boldsymbol{\Gamma}^{j}=\left\{\rho_{n}^{j}, t_{n}^{j}, \xi_{n}^{j}, x_{n}^{j}\right\}_{n=1}^{\infty}$ such that for every $(t, x) \in \mathbb{R} \times \mathbb{R}^{4}$,

$$
\begin{equation*}
e^{i t \Delta} \varphi_{n}(x)=\sum_{j=1}^{l} \boldsymbol{\Gamma}_{n}^{j} V^{j}(t, x)+w_{n}^{l}(t, x) \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|w_{n}^{l}\right\|_{L^{3}\left(\mathbb{R} \times \mathbb{R}^{4}\right)} \rightarrow 0 \quad \text { as } l \rightarrow \infty \tag{4.2}
\end{equation*}
$$

Moreover, for every $l \geq 1$,

$$
\begin{equation*}
\left\|\varphi_{n}\right\|_{L^{2}}^{2}=\sum_{j=1}^{l}\left\|V^{j}\right\|_{L^{2}}^{2}+\left\|w_{n}^{l}\right\|_{L^{2}}^{2}+o_{n}(1) \tag{4.3}
\end{equation*}
$$

Definition 4.2. Let $\boldsymbol{\Gamma}_{n}=\left\{\rho_{n}, t_{n}, \xi_{n}, x_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathbb{R}_{+}^{*} \times \mathbb{R}$ $\times \mathbb{R}^{4} \times \mathbb{R}^{4}$ such that $\left\{t_{n}\right\}_{n=1}^{\infty}$ has a limit in $[-\infty, \infty]$ as $n \rightarrow \infty$. Let V be a solution of the linear Schrödinger equation (1.4). We say that U is the nonlinear profile associated to $\left\{V, \boldsymbol{\Gamma}_{n}\right\}_{n=1}^{\infty}$ if U is the unique maximal solution of 1.3 satisfying

$$
\left\|(U-V)\left(t_{n}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

In order to prove Theorems 1.3 and 1.4 , we first state a key theorem, which is similar to that in [11] and [12].

Theorem 4.1 (Nonlinear profile decomposition). Let $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ be a bounded family in $L^{2}\left(\mathbb{R}^{4}\right)$ and $\left\{u_{n}\right\}_{n=1}^{\infty}$ the corresponding family of solutions to (1.3) with initial data $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$. Let $\left\{V^{j}, \boldsymbol{\Gamma}_{n}^{j}\right\}_{j=1}^{\infty}$ be the family of linear profiles associated to $\left\{\varphi_{n}\right\}_{j=1}^{\infty}$ via Lemma 4.1 and $\left\{U^{j}\right\}_{j=1}^{\infty}$ the family of nonlinear profiles associated to $\left\{V^{j}, \boldsymbol{\Gamma}_{n}^{j}\right\}_{j=1}^{\infty}$ via Definition 4.2. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a family of intervals containing the origin 0 . Then the following statements are equivalent:
(i) For every $j \geq 1$,

$$
\lim _{n \rightarrow \infty}\left\|\boldsymbol{\Gamma}_{n}^{j} U^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}<\infty
$$

(ii) We have

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}<\infty
$$

Moreover, if (i) or (ii) holds, then

$$
\begin{equation*}
u_{n}=\sum_{j=1}^{l} \boldsymbol{\Gamma}_{n}^{j} U^{j}+w_{n}^{l}+r_{n}^{l} \tag{4.4}
\end{equation*}
$$

where w_{n}^{l} is as in 4.2 and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\sup _{t \in I_{n}}\left\|r_{n}^{l}\right\|_{L^{2}}\right) \rightarrow 0 \quad \text { as } l \rightarrow \infty \tag{4.5}
\end{equation*}
$$

Proof. Step 1. We prove 4.4 and 4.5 provided that (i) or (ii) holds. Let

$$
r_{n}^{l}=u_{n}-\sum_{j=1}^{l} U_{n}^{j}-w_{n}^{l}, \quad \text { where } \quad U_{n}^{j}:=\boldsymbol{\Gamma}_{n}^{j} U^{j}
$$

and let $V_{n}^{j}:=\boldsymbol{\Gamma}_{n}^{j} V^{j}$. Then r_{n}^{l} satisfies the equation

$$
\left\{\begin{array}{l}
i \partial_{t} r_{n}^{l}+\Delta r_{n}^{l}=f_{n}^{l} \tag{4.6}\\
r_{n}^{l}(0)=\sum_{j=1}^{l}\left(V_{n}^{j}-U_{n}^{j}\right)(0, x)
\end{array}\right.
$$

where

$$
\begin{aligned}
f_{n}^{l} & :=p\left(W_{n}^{l}+w_{n}^{l}+r_{n}^{l}\right)-\sum_{j=1}^{l} p\left(U_{n}^{j}\right) \\
p(z) & :=-\left(|x|^{-2} *|z|^{2}\right) z, \quad W_{n}^{l}:=\sum_{j=1}^{l} U_{n}^{j}
\end{aligned}
$$

It suffices to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\sup _{t \in I_{n}}\left\|r_{n}^{l}\right\|_{L^{2}}\right) \xrightarrow{l \rightarrow \infty} 0 \tag{4.7}
\end{equation*}
$$

By the Strichartz estimates and the Young inequality, we have

$$
\begin{align*}
\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\sup _{t \in I_{n}}\left\|r_{n}^{l}\right\|_{L^{2}} \lesssim & \left\|p\left(W_{n}^{l}+w_{n}^{l}+r_{n}^{l}\right)-\sum_{j=1}^{l} p\left(U_{n}^{j}\right)\right\|_{\dot{\mathcal{N}^{0}\left[I_{n}\right]}}+\left\|r_{n}^{l}(0, \cdot)\right\|_{L^{2}} \\
\text { (4.8) } & \begin{aligned}
& -\left\|p\left(W_{n}^{l}\right)-\sum_{j=1}^{l} p\left(U_{n}^{j}\right)\right\|_{\dot{\mathcal{N}^{0}}\left[I_{n}\right]} \\
& +\left\|p\left(W_{n}^{l}+w_{n}^{l}\right)-p\left(W_{n}^{l}\right)\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} \\
& +\left\|p\left(W_{n}^{l}+w_{n}^{l}+r_{n}^{l}\right)-p\left(W_{n}^{l}+w_{n}^{l}\right)\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} \\
& \\
& +\left\|r_{n}^{l}(0, \cdot)\right\|_{L^{2}}
\end{aligned} \tag{4.8}
\end{align*}
$$

We will estimate the three terms. First, we estimate 4.8 from above by

$$
\begin{align*}
& \sum_{j_{1}=1}^{l} \sum_{j_{2} \neq j_{1}}\left\|\left(|x|^{-2} *\left|U_{n}^{j_{1}}\right|^{2}\right) U_{n}^{j_{2}}\right\|_{L_{t, x}^{3 / 2}\left[I_{n}\right]} \tag{4.11}\\
& +\sum_{j_{1}=1}^{l} \sum_{j_{2} \neq j_{1}} \sum_{j_{3}=1}^{l}\left\|\left(|x|^{-2} *\left(U_{n}^{j_{1}} U_{n}^{j_{2}}\right)\right) U_{n}^{j_{3}}\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} . \tag{4.12}
\end{align*}
$$

Without loss of generality we can assume that both $U^{j_{1}}$ and $U^{j_{2}}$ have compact support in t and x. Let $V(x)=|x|^{-2}$. Then

$$
\begin{aligned}
& \iint\left|\left(V *\left|U_{n}^{j_{1}}\right|^{2}\right) U_{n}^{j_{2}}\right|^{3 / 2} d x d t \\
& =\left.\iint\left|\int\left(\rho_{n}^{j_{1}}\right)^{4}\right| U^{j_{1}}\left(\left(\rho_{n}^{j_{1}}\right)^{2} t+t_{n}^{j_{1}}, \rho_{n}^{j_{1}}\left(x-y-t \xi_{n}^{j_{1}}\right)+x_{n}^{j_{1}}\right)\right|^{2} V(y) d y \\
& \qquad \times\left.\left(\rho_{n}^{j_{2}}\right)^{2} U^{j_{2}}\left(\left(\rho_{n}^{j_{2}}\right)^{2} t+t_{n}^{j_{2}}, \rho_{n}^{j_{2}}\left(x-t \xi_{n}^{j_{2}}\right)+x_{n}^{j_{2}}\right)\right|^{3 / 2} d x d t \\
& =\left.\left(\frac{\rho_{n}^{j_{2}}}{\rho_{n}^{j_{1}}}\right)^{3} \iint\left|\int\right| U^{j_{1}}(\tilde{t}, \tilde{x}-\tilde{y})\right|^{2} V(\tilde{y}) d \tilde{y} U^{j_{2}}\left(\left(\frac{\rho_{n}^{j_{2}}}{\rho_{n}^{j_{1}}}\right)^{2} \tilde{t}-\left(\frac{\rho_{n}^{j_{2}}}{\rho_{n}^{j_{1}}}\right)^{2} t_{n}^{j_{1}}+t_{n}^{j_{2}},\right. \\
& \left.\quad \frac{\rho_{n}^{j_{2}}}{\rho_{n}^{j_{1}}} \tilde{x}+\frac{\rho_{n}^{j_{2}}\left(\xi_{n}^{1}-\xi_{n}^{2}\right)}{\left(\rho_{n}^{j_{1}}\right)^{2}} \tilde{t}-\frac{\rho_{n}^{j_{2}}\left(\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}\right)}{\left(\rho_{n}^{j_{1}}\right)^{2}} t_{n}^{j_{1}}-\frac{\rho_{n}^{j_{2}} x_{n}^{j_{1}}}{\rho_{n}^{j_{1}}}+x_{n}^{j_{2}}\right)\left.\right|^{3 / 2} d \tilde{x} d \tilde{t} .
\end{aligned}
$$

If $\rho_{n}^{j_{2}} / \rho_{n}^{j_{1}}+\rho_{n}^{j_{1}} / \rho_{n}^{j_{2}} \rightarrow \infty$ or $\left|t_{n}^{j_{1}}-t_{n}^{j_{2}}\right| \rightarrow \infty$, by the compact support assumption on t, we conclude that the quantity 4.11 converges to 0 as $n \rightarrow \infty$. Otherwise, by orthogonality we have

$$
\begin{equation*}
\frac{\left|\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}\right|}{\rho_{n}^{j_{1}}}+\left|\frac{\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}}{\rho_{n}^{j_{1}}} t_{n}^{j_{1}}+x_{n}^{j_{1}}-x_{n}^{j_{2}}\right| \rightarrow \infty \tag{4.13}
\end{equation*}
$$

Without loss of generality, we may assume that $\rho_{n}^{j_{2}} / \rho_{n}^{j_{1}} \rightarrow 1$. Then the complicated expression of the function $U^{j_{2}}$ of \tilde{t} and \tilde{x} can be simplified to

$$
U^{j_{2}}\left(\tilde{t}-t_{n}^{j_{1}}+t_{n}^{j_{2}}, \frac{\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}}{\rho_{n}^{j_{1}}} \tilde{t}+\tilde{x}-x_{n}^{j_{1}}+x_{n}^{j_{2}}-\frac{\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}}{\rho_{n}^{j_{1}}} t_{n}^{j_{1}}\right)
$$

Meanwhile, we have

$$
\begin{aligned}
\int\left|U^{j_{1}}(\tilde{t}, \tilde{x}-\tilde{y})\right|^{2} V(\tilde{y}) d \tilde{y} \leq & \int_{|\tilde{y}| \leq 1}\left|U^{j_{1}}(\tilde{t}, \tilde{x}-\tilde{y})\right|^{2} V(\tilde{y}) d \tilde{y} \\
& +\sum_{j=0}^{\infty} \int_{2^{j} \leq|\tilde{y}| \leq 2^{j+1}}\left|U^{j_{1}}(\tilde{t}, \tilde{x}-\tilde{y})\right|^{2} V(\tilde{y}) d \tilde{y}
\end{aligned}
$$

Note that $U^{j_{1}}$ is compactly supported in x, so for any fixed j,

$$
\int_{2^{j} \leq|\tilde{y}| \leq 2^{j+1}}\left|U^{j_{1}}(\tilde{t}, \cdot-\tilde{y})\right|^{2} V(\tilde{y}) d \tilde{y}
$$

is also compactly supported. Thus (4.13) implies that for any $j_{1} \neq j_{2}$,

$$
\begin{aligned}
&\left.\lim _{n \rightarrow \infty} \iint\left|\int_{2^{j} \leq|\tilde{y}| \leq 2^{j+1}}\right| U^{j_{1}}(\tilde{t},-\tilde{y})\right|^{2} V(\tilde{y}) d \tilde{y} U^{j_{2}}\left(\tilde{t}-t_{n}^{j_{1}}+t_{n}^{j_{2}}\right. \\
&\left.\frac{\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}}{\rho_{n}^{j_{1}}} \tilde{t}+\tilde{x}-x_{n}^{j_{1}}+x_{n}^{j_{2}}-\frac{\xi_{n}^{j_{1}}-\xi_{n}^{j_{2}}}{\rho_{n}^{j_{1}}} t_{n}^{j_{1}}\right)\left.\right|^{3 / 2} d \tilde{x} d \tilde{t}=0
\end{aligned}
$$

Therefore, the quantity 4.11) converges to 0 as $n \rightarrow \infty$.
On the other hand,

$$
\left\|\left(|x|^{-2} *\left(U_{n}^{j_{1}} U_{n}^{j_{2}}\right)\right) U_{n}^{j_{3}}\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} \leq C\left\|U_{n}^{j_{1}} U_{n}^{j_{2}}\right\|_{L_{t, x}^{3 / 2}}\left\|U_{n}^{j_{3}}\right\|_{L_{t, x}^{3}}
$$

By orthogonality, $\left\|U_{n}^{j_{1}} U_{n}^{j_{2}}\right\|_{L_{t, x}^{3 / 2}} \rightarrow 0$ as $n \rightarrow \infty$. Because $\left\|U_{n}^{j_{3}}\right\|_{L_{t, x}^{3}}$ is bounded, we see that the quantity 4.12 also converges to 0 as $n \rightarrow \infty$.

Next, we prove that

$$
\lim _{l \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left\|W_{n}^{l}+w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}\right) \leq C
$$

From (4.3), we have

$$
\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \leq C\left\|w_{n}^{l}(0)\right\|_{L^{2}} \leq C\left\|\varphi_{n}\right\|_{L^{2}}
$$

It suffices to verify

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left\|W_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}\right) \leq C \tag{4.14}
\end{equation*}
$$

From the orthogonality of Γ_{n}^{j}, as in [11], we can see that for every $l \geq 1$,

$$
\left\|W_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{3}=\left\|\sum_{j=1}^{l} U_{n}^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{3} \rightarrow \sum_{j=1}^{l}\left\|U_{n}^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{3} \quad \text { as } n \rightarrow \infty
$$

Meanwhile by $\left(4.3\right.$, the series $\sum\left\|V^{j}\right\|_{L^{2}}^{2}$ converges. Thus for every $\epsilon>0$, there exists $l(\epsilon)$ such that

$$
\left\|V^{j}\right\|_{L^{2}} \leq \epsilon, \quad \forall j>l(\epsilon)
$$

The theory of small data asserts that, for ϵ sufficiently small, U^{j} is global and $\left\|U^{j}\right\|_{L_{t, x}^{3}} \lesssim\left\|V^{j}\right\|_{L^{2}}$, which yields

$$
\sum_{j>l(\epsilon)}\left\|U^{j}\right\|_{L_{t, x}^{3}}^{3}<\infty
$$

So we have to deal only with a finite number of nonlinear profiles $\left\{U^{j}\right\}_{1 \leq j \leq l(\epsilon)}$. But in view of the pairwise orthogonality of $\left\{\boldsymbol{\Gamma}_{n}^{j}\right\}_{j=1}^{\infty}$, one has

$$
\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{l(\epsilon)} U_{n}^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \leq \sum_{j=1}^{l(\epsilon)} \lim _{n \rightarrow \infty}\left\|U_{n}^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}<\infty
$$

and thus 4.14 follows.

Now, we estimate (4.9):

$$
\begin{aligned}
\| p\left(W_{n}^{l}+\right. & \left.w_{n}^{l}\right)-p\left(W_{n}^{l}\right) \|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} \\
\lesssim & \left\|\left(|x|^{-2} *\left|W_{n}^{l}+w_{n}^{l}\right|^{2}\right) w_{n}^{l}\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]}+\left\|\left(|x|^{-2} *\left(W_{n}^{l} w_{n}^{l}\right)\right) w_{n}^{l}\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} \\
& \quad+\left\|\left(|x|^{-2} *\left|w_{n}^{l}\right|^{2}\right) W_{n}^{l}\right\|_{L_{t}^{1} L_{x}^{2}\left[I_{n}\right]} \\
& \lesssim\left\|W_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{2}\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{2}\left(\left\|W_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}\right) \\
= & o_{n}(1) .
\end{aligned}
$$

The last equality is due to 4.14 and the fact that $\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \rightarrow 0$ as $l \rightarrow \infty$.
(4.10) can be estimated similarly:

$$
\begin{aligned}
(4.10) & \left\|W_{n}^{l}+w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{2}\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\left\|W_{n}^{l}+w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{2} \\
& +\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{3}
\end{aligned}
$$

Now we can prove 4.7). Collecting all the previous facts, we have

$$
\begin{equation*}
\sup _{t \in I_{n}}\left\|r_{n}^{l}\right\|_{L^{2}}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \tag{4.15}
\end{equation*}
$$

$$
\begin{aligned}
\leq & C\left(\left\|W_{n}^{l}+w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{3}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{2}+\left\|r_{n}^{l}(0, \cdot)\right\|_{L^{2}}\right) \\
& +o_{n}(1)
\end{aligned}
$$

As in [12], for every $\varepsilon>0$ we can divide $I_{n}^{+}=I_{n} \cap \mathbb{R}_{+}$into finitely many n-dependent intervals, namely,

$$
I_{n}^{+}=\left[0, a_{n}^{1}\right] \cup\left[a_{n}^{1}, a_{n}^{2}\right] \cup \cdots \cup\left[a_{n}^{p-1}, a_{n}^{p}\right)
$$

with each interval denoted by $I_{n}^{i}(i=1, \ldots, p)$, so that for every $1 \leq i \leq p$ and every $l \geq 1$,

$$
\limsup _{n \rightarrow \infty}\left\|W_{n}^{l}+w_{n}^{l}\right\|_{L_{t, x}^{3}\left(I_{n}^{i} \times \mathbb{R}^{4}\right)} \leq \varepsilon
$$

The $I_{n}^{-}=I_{n} \cap \mathbb{R}_{-}$can be similarly dealt with. Applying 4.15 on I_{n}^{1}, it follows that

$$
\begin{aligned}
& \sup _{t \in I_{n}^{1}}\left\|r_{n}^{l}\right\|_{L^{2}}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]} \\
& \quad \lesssim \epsilon\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]}^{3}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]}^{2}+\left\|r_{n}^{l}(0, \cdot)\right\|_{L^{2}}+o_{n}(1)
\end{aligned}
$$

By choosing ϵ sufficiently small, we obtain

$$
\sup _{t \in I_{n}^{1}}\left\|r_{n}^{l}\right\|_{L^{2}}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]} \lesssim\left\|r_{n}^{l}(0, \cdot)\right\|_{L^{2}}+\sum_{\alpha=2}^{3}\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]}^{\alpha}+o(1)
$$

Observe that, by the definition of the nonlinear profile U_{n}^{j}, we have

$$
\lim _{n \rightarrow \infty}\left\|r_{n}^{l}(0, \cdot)\right\|_{L^{2}}=0
$$

for every $l \geq 1$. This fact and a standard bootstrap argument show easily that

$$
\lim _{n \rightarrow \infty}\left(\sup _{t \in I_{n}^{1}}\left\|r_{n}^{l}\right\|_{L^{2}}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}^{1}\right]} \xrightarrow{l \rightarrow \infty} 0 .\right.
$$

This gives in particular

$$
\lim _{n \rightarrow \infty}\left\|r_{n}^{l}\left(a_{n}^{1}, \cdot\right)\right\|_{L^{2}} \xrightarrow{l \rightarrow \infty} 0
$$

and allows us to repeat the same argument for I_{n}^{2}. We iterate the same process for every $1 \leq i \leq p$. Since $I=I_{n}^{1} \cup I_{n}^{2} \cup \cdots \cup I_{n}^{p}$ and p is finite independently of n and l, we get

$$
\lim _{n \rightarrow \infty}\left(\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\sup _{t \in I_{n}}\left\|r_{n}^{l}\right\|_{L^{2}}\right) \rightarrow 0
$$

as $l \rightarrow \infty$, which is 4.7).
Step 2. Now we prove the equivalence of (i) and (ii).
(i) \Rightarrow (ii). Suppose that for all $j, \lim _{n \rightarrow \infty}\left\|\boldsymbol{\Gamma}_{n}^{j} U^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}<\infty$. Then

$$
\left\|u_{n}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \leq \sum_{j=1}^{l}\left\|U_{n}^{j}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}+\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}
$$

From (4.2), we have

$$
\limsup _{n \rightarrow \infty}\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \xrightarrow{l \rightarrow \infty} 0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|r_{n}^{l}\right\|_{L_{t, x}^{3}\left[I_{n}\right]} \xrightarrow{l \rightarrow \infty} 0 .
$$

It immediately follows that

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}<\infty .
$$

(ii) \Rightarrow (i). If (i) does not hold, there exists a family of $\tilde{I}_{n} \subset I_{n}$ with 0 included such that

$$
\sum_{j=1}^{\infty} \lim _{n \rightarrow \infty}\left\|U_{n}^{j}\right\|_{L_{t, x}^{3}\left[\tilde{I}_{n}\right]}^{3}>M
$$

for arbitrarily large M and

$$
\left\|u_{n}\right\|_{L_{t, x}^{3}\left[\tilde{I}_{n}\right]}<\infty .
$$

By orthogonality, we have

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3}\left[\tilde{I}_{n}\right]}^{3} \geq \sum_{j=1}^{\infty} \lim _{n \rightarrow \infty}\left\|U_{n}^{j}\right\|_{L_{t, x}^{3}\left[\tilde{I}_{n}\right]}^{3}>M
$$

This leads to

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}^{3} \geq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3}\left[\tilde{I}_{n}\right]}^{3}>M,
$$

which implies that

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3}\left[I_{n}\right]}=\infty
$$

This contradicts (ii) and completes the proof of Theorem 4.1 .
Proof of Theorem 1.3. We choose $\left\{u_{0, n}\right\}$ such that $\left\|u_{0, n}\right\|_{L^{2}} \downarrow \delta_{0}$, and let u_{n} be the solution of (1.3) with data $u_{0, n}$. By the definition of δ_{0}, we can assume that the interval of existence for u_{n} is finite. By the time translation symmetry and scaling, we may assume that $\left\{u_{n}\right\}_{n=1}^{\infty}$ is well defined on $[0,1]$, and

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t}^{3}\left([0,1], L_{x}^{3}\right)}=\infty
$$

Let $\left\{U^{j}, V^{j}, \rho_{n}^{j}, s_{n}^{j}, \xi_{n}^{j}, x_{n}^{j}\right\}$ be the family of linear and nonlinear profiles associated to $\left\{u_{n}\right\}_{n=1}^{\infty}$ via Lemma 4.1 and Theorem 4.1. Then the equivalence in Theorem 4.1 implies that there exists a j_{0} such that $U^{j_{0}}$ blows up. On one hand, by the definition of $B_{\delta_{0}}$,

$$
\left\|V^{j_{0}}\right\|_{L^{2}} \geq \delta_{0}
$$

On the other hand, we have

$$
\sum_{j \geq 0}\left\|V^{j_{0}}\right\|_{L^{2}}^{2} \leq \lim _{n \rightarrow \infty}\left\|u_{0, n}\right\|_{L^{2}}^{2}=\delta_{0}^{2}
$$

Thus by mass conservation and the definition of nonlinear profile, we have

$$
\left\|U^{j_{0}}\right\|_{L^{2}}=\left\|V^{j_{0}}\right\|_{L^{2}} \leq \delta_{0} .
$$

Therefore,

$$
\left\|U^{j_{0}}\right\|_{L^{2}}=\delta_{0}
$$

because $U^{j_{0}}$ is the solution of (1.3) satisfying $U\left(s^{j_{0}}, x\right)=V\left(s^{j_{0}}, x\right)$, where $s^{j_{0}}=\lim _{n \rightarrow \infty} s_{n}^{j_{0}}$. If $s^{j_{0}}$ is finite, then $U^{j_{0}}$ is the blow-up solution with minimal mass. If $s^{j_{0}}=\infty$, we can use the pseudo-conformal transformation to get a blow-up solution with minimal mass. This shows the existence of initial data such that the solution of (1.3) blows up in finite time for $t>0$. In the proof of Theorem 1.4 we will show that there exists an initial data $u_{0} \in L^{2}\left(\mathbb{R}^{4}\right)$ with $\left\|u_{0}\right\|_{L^{2}}=\delta_{0}$ such that the solution u of (1.3) blows up for both $t>0$ and $t<0$.

Proof of Theorem 1.4 (i) Suppose u is a solution of 1.3) which blows up at finite time $T^{*}>0$ and $t_{n} \uparrow T^{*}$ as $n \rightarrow \infty$. Let

$$
u_{n}(t, x)=u\left(t_{n}+t, x\right) .
$$

Then $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a family of solutions on $I_{n}=\left[-t_{n}, T^{*}-t_{n}\right)$. Moreover,

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3} \in\left[0, T^{*}-t_{n}\right)}=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{3} \in\left[-t_{n}, 0\right]}=\infty
$$

Since $\left\|u_{n}\right\|_{L^{2}}$ is bounded due to L^{2} conservation, we can apply Lemma 4.1 and then Theorem 4.1] on $I_{n}=\left[0, T^{*}-t_{n}\right)$ to deduce that there exists some j_{0} such that the nonlinear profile $\left\{U^{j_{0}}, \rho_{n}^{j_{0}}, s_{n}^{j_{0}}, \xi_{n}^{j_{0}}, x_{n}^{j_{0}}\right\}$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|U^{j_{0}}\right\|_{L_{t, x}^{3}\left[I_{n}^{j_{0}}\right]}=\infty \tag{4.16}
\end{equation*}
$$

where

$$
I_{n}^{j_{0}}:=\left[s_{n}^{j_{0}},\left(\rho_{n}^{j_{0}}\right)^{2}\left(T^{*}-t_{n}\right)+s_{n}^{j_{0}}\right)
$$

In fact, let $s^{j_{0}}=\lim _{n \rightarrow \infty} s_{n}^{j_{0}}$. Then $s^{j_{0}} \neq \infty$, since otherwise $I_{n}^{j_{0}} \rightarrow \emptyset$ and (4.16) is impossible. This implies either $s^{j_{0}}=-\infty$ or $s^{j_{0}}=0$ (up to translation). If $s^{j_{0}}=0$, let $U^{j_{0}}$ be the solution of 1.4 with initial data $V^{j_{0}}$. Then 4.16 implies that $U^{j_{0}}$ blows up at time $T_{j_{0}}^{*} \in(0, \infty)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\rho_{n}^{j_{0}}\right)^{2}\left(T^{*}-t_{n}\right) \geq T_{j_{0}}^{*} \tag{4.17}
\end{equation*}
$$

If we also assume that $\left\|u_{0}\right\|_{L^{2}}<\sqrt{2} \delta_{0}$, then there is at most one linear profile with L^{2} norm greater than δ_{0} thanks to 4.3 . That means that the profile $U^{j_{0}}$ found above is the only blow-up nonlinear profile (since all the other profiles have L^{2} norm less than δ_{0} and so they are global). By repeating the same argument in $I_{n}=\left[-t_{n}, 0\right]$, we get

$$
\lim _{n \rightarrow \infty}\left\|U^{j_{0}}\right\|_{L_{t, x}^{3}\left[I_{n}^{j_{0}}\right]}=\infty, \quad I_{n}^{j_{0}}=\left[-\left(\rho_{n}^{j_{0}}\right)^{2} t_{n}+s_{n}^{j_{0}}, s_{n}^{j_{0}}\right]
$$

This implies that $s^{j_{0}} \neq-\infty$. Hence $s^{j_{0}}=0$ and the solution $U^{j_{0}}$ of 1.3) with initial data $V^{j_{0}}(0, \cdot)$ blows up also for $t<0$. Thus the nonlinear profile $U^{j_{0}}$ is the solution of 1.3 which blows up for both $t<0$ and $t>0$.
(ii) The linear decomposition yields

$$
\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1}\left(e^{i t \Delta}\left(u\left(t_{n}, \cdot\right)\right)\right)=V^{j_{0}}+\sum_{1 \leq j \leq l, j \neq j_{0}}\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1} \boldsymbol{\Gamma}_{n}^{j} V^{j}+\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1} w_{n}^{l}
$$

The family $\left\{\boldsymbol{\Gamma}_{n}^{j}\right\}_{j=1}^{\infty}$ is pairwise orthogonal, so for every $j \neq j_{0}$,

$$
\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1} \boldsymbol{\Gamma}_{n}^{j} V^{j} \xrightarrow{n \rightarrow \infty} 0 \quad \text { weakly in } L^{2}
$$

Then

$$
\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1}\left(e^{i t \Delta}\left(u\left(t_{n}, \cdot\right)\right)\right) \xrightarrow{n \rightarrow \infty} V^{j_{0}}+\tilde{w}^{l} \quad \text { weakly }
$$

where \tilde{w}^{l} denotes the weak limit of $\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1} w_{n}^{l}$. However,

$$
\left\|\tilde{w}^{l}\right\|_{L_{t, x}^{3}} \leq \lim _{n \rightarrow \infty}\left\|w_{n}^{l}\right\|_{L_{t, x}^{3}} \xrightarrow{l \rightarrow \infty} 0
$$

By uniqueness of the weak limit, we get $\tilde{w}^{l}=0$ for every $l \geq j_{0}$. Hence,

$$
\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1}\left(e^{i t \Delta}\left(u\left(t_{n}, \cdot\right)\right)\right) \xrightarrow{n \rightarrow \infty} V^{j_{0}}
$$

We need the following lemma:
LEMMA $4.2([23])$. Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ and φ be in $L^{2}\left(\mathbb{R}^{4}\right)$. The following statements are equivalent:
(1) $\varphi_{n} \rightharpoonup \varphi$ weakly in $L^{2}\left(\mathbb{R}^{4}\right)$.
(2) $e^{i t \Delta} \varphi_{n} \rightharpoonup e^{i t \Delta} \varphi$ in $L_{t, x}^{3}\left(\mathbb{R}^{4+1}\right)$.

Applying this lemma to $\left(\boldsymbol{\Gamma}_{n}^{j_{0}}\right)^{-1}\left(e^{i t \Delta}\left(u\left(t_{n}, \cdot\right)\right)\right)$, we get

$$
e^{-i s_{n} \Delta}\left(\rho_{n}^{2} e^{i x \cdot \xi_{n}} e^{i \theta_{n}} u\left(t_{n}, \rho_{n} x+x_{n}\right)\right) \rightharpoonup V^{j_{0}}(0, \cdot)
$$

with

$$
s_{n}=s_{n}^{j_{0}}, \quad \rho_{n}=\frac{1}{\rho_{n}^{j_{0}}}, \quad \theta_{n}=\frac{x_{n}^{j_{0}} \xi_{n}^{j_{0}}}{\rho_{n}^{j_{0}}}, \quad x_{n}=\frac{-x_{n}^{j_{0}}}{\rho_{n}^{j_{0}}}, \quad \xi_{n}=-\frac{\xi_{n}^{j_{0}}}{\rho_{n}^{j_{0}}}
$$

Up to a subsequence, we can assume that $e^{i \theta_{n}} \rightarrow e^{i \theta}$. Since $s_{n} \rightarrow 0$, we get

$$
\begin{equation*}
\rho_{n}^{2} e^{i x \cdot \xi_{n}} u\left(t_{n}, \rho_{n} x+x_{n}\right) \rightharpoonup e^{-i \theta} V^{j_{0}}(0, \cdot) \tag{4.18}
\end{equation*}
$$

The associated solution is $e^{-i \theta} U^{j_{0}}$. 4.17) gives

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}}{\sqrt{T^{*}-t_{n}}} \leq \frac{1}{\sqrt{T_{j_{0}}^{*}}}
$$

This completes the proof of Theorem 1.4 (ii).
(iii) Let u be a solution of 1.1 with $\left\|u_{0}\right\|_{L^{2}}<\sqrt{2} \delta_{0}$ which blows up at finite time $T^{*}>0$. Let $t_{n} \uparrow T^{*}$ as $n \rightarrow \infty$. So there exists $V \in L^{2}\left(\mathbb{R}^{4}\right)$ with $\|V\|_{L^{2}} \geq \delta_{0}$ and a sequence $\left\{\rho_{n}, \xi_{n}, x_{n}\right\} \subset \mathbb{R}_{+}^{*} \times \mathbb{R}^{4} \times \mathbb{R}^{4}$ such that up to a subsequence,

$$
\left(\rho_{n}\right)^{2} e^{i x \cdot \xi_{n}} u\left(t_{n}, \rho_{n} x+x_{n}\right) \stackrel{n \rightarrow \infty}{ } V
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}}{\sqrt{T^{*}-t_{n}}} \leq A
$$

for some $A \geq 0$. Thus we have

$$
\lim _{n \rightarrow \infty} \rho_{n}^{4} \int_{|x| \leq R}\left|u\left(t_{n}, \rho_{n} x+x_{n}\right)\right|^{2} d x \geq \int_{|x| \leq R}|V|^{2} d x
$$

for every $R \geq 0$. This implies that

$$
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq R \rho_{n}}\left|u\left(t_{n}, x\right)\right|^{2} d x \geq \int_{|x| \leq R}|V|^{2} d x
$$

Since $\sqrt{T^{*}-t} / \lambda(t) \rightarrow 0$ as $t \uparrow T^{*}$, it follows that $\rho_{n} / \lambda\left(t_{n}\right) \rightarrow 0$ and then

$$
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda\left(t_{n}\right)}\left|u\left(t_{n}, x\right)\right|^{2} d x \geq \int|V|^{2} d x \geq \delta_{0}^{2}
$$

Since $\left\{t_{n}\right\}_{n=1}^{\infty}$ is an arbitrary sequence, we infer

$$
\liminf _{t \rightarrow T} \sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda(t)}|u(t, x)|^{2} d x \geq \delta_{0}^{2} .
$$

However, for every $t \in[0, T)$, the function $y \mapsto \int_{|x-y| \leq \lambda(t)}|u(t, x)|^{2} d x$ is continuous and goes to 0 at infinity. As a consequence,

$$
\sup _{y \in \mathbb{R}^{4}} \int_{|x-y| \leq \lambda(t)}|u(t, x)|^{2} d x=\int_{|x-x(t)| \leq \lambda(t)}|u(t, x)|^{2} d x
$$

for some $x(t) \in \mathbb{R}^{4}$, and this completes the proof of Theorem 1.4 .
Proof of Corollary 1.2. In the context of the proof of Theorem 1.4 we also assume that

$$
\left\|u_{n}\right\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}}=\delta_{0} .
$$

(4.3) gives $\left\|V^{j_{0}}\right\|_{L^{2}} \leq \delta_{0}$. It follows that $\left\|V^{j_{0}}\right\|_{L^{2}}=\delta_{0}$. This implies that there exists a unique profile $V^{j_{0}}$ and the weak limit in (4.18) is strong.

Acknowledgements. The authors thank Professor S. Keraani for several lectures on his work [9 and helpful discussions, and thank Pin Yu for a helpful discussion. C. Miao, G. Xu and L. Zhao were partly supported by the NSF of China (No. 10725102, No. 10801015 and No. 10901148).

REFERENCES

[1] V. Banica, Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 139-170.
[2] P. Bégout and A. Vargas, Mass concentration phenomena for the L^{2}-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), 5257-5282.
[3] J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Notices 1998, no. 8, 253-283.
[4] R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equation II. The L^{2}-critical case, Trans. Amer. Math. Soc. 359 (2007), 33-62.
[5] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Math. 10, Courant Inst. Math. Sci., New York Univ., New York, 2003.
[6] J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, in: Séminaire: Équations aux Dérivées Partielles 2003-2004, exp. 19, École Polytech., Palaiseau, 2004, 26 pp.
[7] J. Ginibre, An introduction to nonlinear Schrödinger equations, in: Nonlinear Waves (Sapporo, 1995), GAKUTO Int. Ser. Math. Sci. Appl. 10, Gakkōtosho, Tokyo, 1997, 85-133.
[8] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of Hartree equations, in: Nonlinear Wave Equations (Providence, RI, 1998), Contemp. Math. 263, Amer. Math. Soc., Providence, RI, 2000, 29-60.
[9] T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Notices 2005, no. 46, 2815-2828.
［10］M．Keel and T．Tao，Endpoint Strichartz estimates，Amer．J．Math． 120 （1998）， 955－980．
［11］S．Keraani，On the defect of compactness for the Strichartz estimates of the Schrö－ dinger equations，J．Differential Equations 175 （2001），353－392．
［12］－，On the blow up phenomenon of the critical nonlinear Schrödinger equation， J．Funct．Anal． 235 （2006），171－192．
［13］R．Killip，T．Tao and M．Visan，The cubic nonlinear Schrödinger equation in two dimensions with radial data，J．Eur．Math．Soc． 11 （2009），1203－1258．
［14］R．Killip，M．Visan and X．Zhang，The mass－critical nonlinear Schrödinger equation with radial data in dimensions three and higher，Anal．PDE 1 （2008），229－266．
［15］J．Krieger，E．Lenzmann and P．Raphael，On stability of pseudo－conformal blowup for L^{2}－critical Hartree equation，arXiv：0808．2324．
［16］M．K．Kwong，Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in \mathbb{R}^{n} ，Arch． Ration．Mech．Anal． 105 （1989），243－266．
［17］D．Li，C．Miao and X．Zhang，The focusing energy－critical Hartree equation，J． Differential Equations 246 （2009），1139－163．
［18］E．H．Lieb，Existence and uniqueness of the minimizing solution of Choquar＇s non－ linear equation，Stud．Appl．Math． 57 （1977），93－105．
［19］S．Liu，Regularity，symmetry，and uniqueness of some integral type quasilinear equations，Nonlinear Anal． 71 （2009），1796－1806．
［20］F．Merle，Blow－up phenomena for critical nonlinear Schrödinger and Zakharov equa－ tions，in：Proc．Int．Congress of Mathematicians（Berlin，1998），Doc．Math．Extra Vol．III（1998），57－66．
［21］－，Determination of blow－up solutions with minimal mass for nonlinear Schrödinger equations with critical power，Duke Math．J． 69 （1993），427－454．
［22］F．Merle and Y．Tsutsumi，L^{2} concentration of blow－up solutions for the nonlinear Schrödinger equation with critical power nonlinearity，J．Differential Equations 84 （1990），205－214．
［23］F．Merle and L．Vega，Compactness at blow－up time for L^{2} solutions of the critical nonlinear Schrödinger equation in 2D，Int．Math．Res．Notices 1998，no．8，399－425．
［24］F．Merle and P．Raphael，Sharp upper bound on the blow－up rate for the critical nonlinear Schrödinger equation，Geom．Funct．Anal． 13 （2003），591－642．
［25］－，一，On universality of blow－up profile for L^{2} critical nonlinear Schrödinger equa－ tion，Invent．Math． 156 （2004），565－672．
［26］－，一，On a sharp lower bound on the blow－up rate for the L^{2} critical nonlinear Schrödinger equation，J．Amer．Math．Soc． 19 （2005），37－90．
［27］C．Miao，G．Xu and L．Zhao，The Cauchy problem of the Hartree equation，J．Partial Differential Equations 21 （2008），22－44．
［28］—，一，一，Global well－posedness and scattering for the energy－critical，defocusing Hartree equation for radial data，J．Funct．Anal． 253 （2007），605－627．
［29］—，一，一，Global well－posedness and scattering for the energy－critical，defocusing Hartree equation in \mathbb{R}^{1+n} ，preprint．
［30］－，一，一，Global well－posedness，scattering and blow－up for the energy－cri－ tical，focusing Hartree equation in the radial case，Colloq．Math． 114 （2009）， 213－236．
［31］—，一，一，Global well－posedness and scattering for the mass－critical Hartree equation with radial data，J．Math．Pures Appl． 91 （2009），49－79．
［32］K．Nakanishi，Energy scattering for Hartree equations，Math．Res．Lett． 6 （1999）， 107－118．
[33] H. Nawa, "Mass concentration" phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity, Funkcial. Ekvac. 35 (1992), 1-18.
[34] T. Tao, M. Visan, and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS , Forum Math. 20 (2008), 881-919.
[35] M. Weinstein, The nonlinear Schrödinger equation-singularity formation, stability and dispersion, in: The Connection between Infinite-Dimensional and FiniteDimensional Dynamical Systems, Contemp. Math. 99, Amer. Math. Soc., Providence, RI, 1989, 213-232.
[36] http://tosio.math.toronto.edu/wiki/index.php/Hartree equation.

Changxing Miao, Guixiang Xu Institute of Applied Physics and Computational Mathematics
P.O. Box 8009

Beijing, China, 100088
E-mail: miao_changxing@iapcm.ac.cn
xu_guixiang@iapcm.ac.cn
Received 18 March 2009;
revised 24 April 2009

[^0]: 2010 Mathematics Subject Classification: 35Q40, 35Q55, $47 J 35$.
 Key words and phrases: blow-up, focusing, Hartree equation, mass-critical, mass concentration, profile decomposition.

