VOL. 119

2010

NO. 1

ON THE BLOW-UP PHENOMENON FOR THE MASS-CRITICAL FOCUSING HARTREE EQUATION IN \mathbb{R}^4

ΒY

CHANGXING MIAO, GUIXIANG XU and LIFENG ZHAO (Beijing)

Abstract. We characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with $H^1(\mathbb{R}^4)$ data and $L^2(\mathbb{R}^4)$ data, where we make use of the refined Gagliardo–Nirenberg inequality of convolution type and the profile decomposition. Moreover, we analyze the mass concentration phenomenon of such blow-up solutions.

1. Introduction. In this paper, we consider the Cauchy problem for the Hartree equation

(1.1)
$$\begin{cases} iu_t + \Delta u = f(u) & \text{in } \mathbb{R}^d \times \mathbb{R}, \\ u(0) = u_0(x) & \text{in } \mathbb{R}^d. \end{cases}$$

Here $f(u) = \lambda(V * |u|^2)u$, $V(x) = |x|^{-\gamma}$, $0 < \gamma < d$, and * denotes the convolution in \mathbb{R}^d . If $\lambda > 0$, we call the equation (1.1) *defocusing*; if $\lambda < 0$, we call it *focusing*. This equation describes the mean-field limit of manybody quantum systems; see, e.g., [6], [7] and [36]. An essential feature of the Hartree equation is that the convolution kernel V(x) still retains the fine structure of micro two-body interactions of the quantum system. By contrast, NLS arises in further limiting regimes where two-body interactions are modeled by a single real parameter in terms of the scattering length. In particular, NLS cannot provide effective models for quantum systems with long-range interactions such as the physically important case of the Coulomb potential $V(x) \sim |x|^{-(d-2)}$ in $d \geq 3$, whose scattering length is infinite.

There are many works on the global well-posedness and scattering of equation (1.1). For the defocusing case with $2 < \gamma < \min(4, d)$, J. Ginibre and G. Velo [8] proved the global well-posedness and scattering results in the energy space. Later, K. Nakanishi [32] made use of a new Morawetz estimate to obtain similar results for more general functions V(x). Recently, the present authors have proved the global well-posedness and scattering for

²⁰¹⁰ Mathematics Subject Classification: 35Q40, 35Q55, 47J35.

Key words and phrases: blow-up, focusing, Hartree equation, mass-critical, mass concentration, profile decomposition.

the defocusing, energy-critical Hartree equation (see [28] and [29]). For the global well-posedness and scattering of the focusing, energy-critical Hartree equation we refer to [17] and [30].

In this paper, we mainly aim to characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with $H^1(\mathbb{R}^4)$ data and $L^2(\mathbb{R}^4)$ data.

Now we recall the related results about the focusing mass-critical Schrödinger equation

(1.2)
$$iu_t + \Delta u = -|u|^{4/d}u, \quad u(0) = u_0,$$

where d is the spatial dimension. Equation (1.2) is called mass-critical due to scaling invariance. If $u_0 \in H^1$ has radial symmetry, the mass concentration phenomenon for the blow-up solution was observed near the blow-up time in [22]. Later on, the radial symmetry assumption was removed by M. Weinstein [35] and Nawa [33]. For a more detailed analysis of the blowup dynamics of (1.2), see [20], [21], [24], [25], [26] and the references therein. If u_0 only lies in L^2 , the situation seems quite different because we cannot use the energy conservation law. The pioneering work in this direction is due to J. Bourgain [3] for d = 2, who proved that there exists a blow-up time T^* ,

$$\lim_{t\uparrow T^*} \sup_{\substack{\text{cubes }I\subset\mathbb{R}^2,\\\text{side}(I)<(T^*-t)^{1/2}}} \left(\int_I |u(t,x)|^2 \, dx\right)^{1/2} \ge c(\|u_0\|_{L^2_x}) > 0,$$

where $c(||u_0||_{L_x^2})$ is a constant depending on the mass of the initial data. A new proof can be found in S. Keraani [12] by means of the profile decomposition in [23]. Bourgain's result was extended to dimension d = 1 by R. Carles and S. Keraani [4] and to dimension $d \ge 3$ by P. Bégout and A. Vargas [2]. Recently, R. Killip, T. Tao and M. Visan [13] established global well-posedness and scattering for (1.2) with radial data in dimension two and mass strictly smaller than that of the ground state. Later R. Killip, M. Visan and X. Zhang [14] extended those results to $d \ge 3$. We dealt with the corresponding problem for the Hartree equation in [31].

This paper is devoted to the study of the blow-up behavior of the masscritical Hartree equation in dimension four:

(1.3)
$$\begin{cases} iu_t + \Delta u = -(|x|^{-2} * |u|^2)u & \text{in } \mathbb{R}^4 \times \mathbb{R}, \\ u(0) = u_0(x) & \text{in } \mathbb{R}^4. \end{cases}$$

The corresponding free equation is

(1.4)
$$\begin{cases} iu_t + \Delta u = 0 & \text{in } \mathbb{R}^4 \times \mathbb{R}, \\ u(0) = u_0(x) & \text{in } \mathbb{R}^4. \end{cases}$$

Note that $\gamma = 2$ is the unique exponent which is mass-critical in the sense

that the natural scaling

$$u_{\lambda}(t,x) = \lambda^2 u(\lambda^2 t, \lambda x)$$

leaves mass invariant. At the same time, $|x|^{-2}$ is just the physically important case of Coulomb potential for dimension d = 4. Moreover, equation (1.3) also has pseudo-conformal symmetry: If u(t, x) solves (1.3), then so does

(1.5)
$$v(t,x) = \frac{1}{|T-t|^2} \overline{u} \left(\frac{1}{t-T}, \frac{x}{t-T}\right) e^{i|x|^2/4(t-T)}$$

First we deal with equation (1.3) with data in $H^1(\mathbb{R}^4)$. For the solution $u(t) \in H^1$ of (1.3), the following quantities are conserved:

$$M(u(t)) = \|u(t)\|_{L^2_x} = \|u(0)\|_{L^2_x},$$

$$E(u(t)) = \frac{1}{2} \int_{\mathbb{R}^4} |\nabla u|^2 \, dx - \frac{1}{4} \int_{\mathbb{R}^4 \mathbb{R}^4} \frac{|u(x)|^2 |u(y)|^2}{|x-y|^2} \, dx \, dy = E(u(0)).$$

According to the local well-posedness theory [5], [27], the solution $u(t) \in H^1(\mathbb{R}^4)$ of (1.3) blows up at finite time T if and only if

$$\lim_{t \to T} \|\nabla u(t)\|_{L^2} = \infty.$$

The blow-up theory is mainly connected with the notion of *ground state*, the unique radial positive solution of the elliptic equation

(1.6)
$$-\Delta Q + Q = (V * |Q|^2)Q$$

The existence of the positive solution is proved by the concentration compactness principle at the beginning of Section 3, which is closely related to a refined Gagliardo–Nirenberg inequality of convolution type,

(1.7)
$$\|u\|_{L^{V}}^{4} \leq \frac{2}{\|Q\|_{L^{2}}^{2}} \|u\|_{L^{2}}^{2} \|\nabla u\|_{L^{2}}^{2},$$

where the definition of the L^V norm is given in (1.9) below. The radial symmetry of the positive solution can be obtained from [19]. By adapting Lieb's uniqueness proof in [18] for the ground states $\phi \in H^1$ of the Choquard–Pekar equation $(V(x) = |x|^{-1}$ in dimension d = 3), the analogous result for (1.6) can be obtained. See details in [15]. However, the uniqueness proof strongly depends on the specific features of equation (1.6). It is different from the corresponding results for semilinear elliptic equations in [16]. As our result (Theorem 1.1) depends on the uniqueness of the ground state of equation (1.6), it is the reason why we consider the case d = 4.

Together with the notion of the ground state Q, the invariance (1.5) yields an explicit blow-up solution such that $||u||_{L^2} = ||Q||_{L^2}$. One can ask if there are other finite time blow-up solutions of (1.3) with minimal mass

 $\|Q\|_{L^2}$ and how to characterize the dynamics of such blow-up solutions near the blow-up time.

Now, we can characterize the finite time blow-up solutions with minimal mass in $H^1(\mathbb{R}^4)$.

THEOREM 1.1. Let $u_0 \in H^1(\mathbb{R}^4)$ be such that $||u_0||_{L^2} = ||Q||_{L^2}$ and u be a blow-up solution of (1.3) at finite time T. Then there exists $x_0 \in \mathbb{R}^4$ such that $e^{i|x-x_0|^2/4T}u_0 \in \mathcal{A}$, where

$$\mathcal{A} = \{ \rho^2 e^{i\theta} Q(\rho x + y) : y \in \mathbb{R}^4, \, \rho \in \mathbb{R}^+_*, \, \theta \in [0, 2\pi) \}.$$

THEOREM 1.2. Let u be a solution of (1.3) which blows up at finite time T > 0 with initial data $u_0 \in H^1(\mathbb{R}^4)$, and $\lambda(t) > 0$ such that $\lambda(t) \|\nabla u\|_{L^2}$ $\to \infty$ as $t \uparrow T$. Then there exists $x(t) \in \mathbb{R}^4$ such that

$$\liminf_{t\uparrow T} \int_{|x-x(t)|\leq\lambda(t)} |u(t,x)|^2 \, dx \ge \int_{\mathbb{R}^4} |Q|^2 \, dx.$$

The counterpart of Theorem 1.1 for the Schrödinger equation has been established by F. Merle in [21]. The counterpart of Theorem 1.2 was proved by M. Weinstein in [35]. T. Hmidi and S. Keraani gave a direct and simplified proof of the above results in [9]. The new ingredient for the Hartree equation is the refined Gagliardo–Nirenberg inequality (1.7) of convolution type, whose proof is based on the well-known concentration compactness method and thus one has to deal with the intertwining of convolution and orthogonality.

Next we consider the blow-up behavior of (1.3) with L^2 data. In [27], we showed that for any $u_0 \in L^2(\mathbb{R}^4)$, there exists a unique maximal solution u to (1.3), with

$$u \in C((-T_*, T^*), L^2(\mathbb{R}^4)) \cap L^3_{\text{loc}}((-T_*, T^*), L^3(\mathbb{R}^4)),$$

and we have the following alternative: either $T_* = T^* = \infty$ or

$$\min\{T_*, T^*\} < \infty$$
 and $\|u\|_{L^3_t((-T_*, T^*), L^3_x)} = \infty.$

Moreover, there exists $\delta > 0$ such that if

(1.8)
$$||u_0||_{L^2} < \delta,$$

then the initial value problem (1.3) has a unique global solution $u(t,x) \in L^3_{t,x}(\mathbb{R} \times \mathbb{R}^4)$. We define δ_0 as the supremum of δ in (1.8) such that the global existence for the Cauchy problem (1.3) holds, with $u \in (C \cap L^\infty)(\mathbb{R}, L^2(\mathbb{R}^4)) \cap L^3(\mathbb{R} \times \mathbb{R}^4)$. Then in the ball $B_{\delta_0} := \{u_0 : ||u_0||_{L^2} < \delta_0\}$, (1.3) admits a complete scattering theory with respect to the associated linear problem. Similar to the focusing mass-critical Schrödinger equation, we also conjecture that δ_0 should be $||Q||_{L^2}$ for the Hartree equation. We have verified the conjecture for radial data in [31]. For general data, it remains open. DEFINITION 1.1. Let $u_0 \in L^2(\mathbb{R}^4)$. A solution of (1.3) is said to be a blow-up solution for t > 0 if either $T^* < \infty$, or

 $T^* = \infty$ and $||u||_{L^3_t((0,\infty), L^3_x)} = \infty$,

and similarly for t < 0.

Now we are in a position to state the existence of blow-up solutions in both time directions with minimal mass in $L^2(\mathbb{R}^4)$.

THEOREM 1.3. There exists an initial data $u_0 \in L^2(\mathbb{R}^4)$ with $||u_0||_{L^2} = \delta_0$ for which the solution of (1.3) blows up for both t > 0 and t < 0.

As a direct consequence of the above theorem and the pseudo-conformal transform (1.5), we obtain the existence of finite time blow-up solutions with minimal mass in $L^2(\mathbb{R}^4)$.

COROLLARY 1.1. There exists an initial data $u_0 \in L^2(\mathbb{R}^4)$ with $||u_0||_{L^2} = \delta_0$, for which the solution of (1.3) blows up at finite time $T^* > 0$.

THEOREM 1.4. Let u be a blow-up solution of (1.3) at finite time $T^* > 0$ such that $||u_0||_{L^2} < \sqrt{2} \delta_0$. Let $t_n \uparrow T^*$ as $n \to \infty$, and let $\lambda(t) > 0$ be such that

$$\frac{\sqrt{T^*-t}}{\lambda(t)} \to 0 \quad \text{ as } t \uparrow T^*.$$

Then there exist a subsequence of $\{t_n\}_{n=1}^{\infty}$ (still denoted by $\{t_n\}$) and $x(t) \in \mathbb{R}^4$ with the following properties.

- (i) There exists $\psi \in L^2(\mathbb{R}^4)$ with $\|\psi\|_{L^2} \ge \delta_0$ such that the solution U of (1.3) with initial data ψ blows up for both t > 0 and t < 0.
- (ii) There exists a sequence $\{\rho_n, \xi_n, x_n\}_{n=1}^{\infty} \subset \mathbb{R}^*_+ \times \mathbb{R}^4 \times \mathbb{R}^4$ such that

$$\rho_n^2 e^{ix \cdot \xi_n} u(t_n, \rho_n x + x_n) \rightharpoonup \psi \quad weakly in L^2.$$

Furthermore,

$$\lim_{n \to \infty} \frac{\rho_n}{\sqrt{T^* - t_n}} \le \frac{1}{\sqrt{T^{**}}}$$

where T^{**} denotes the lifespan of U.

(iii) We have

$$\liminf_{t\uparrow T^*} \int\limits_{|x-x(t)|\leq\lambda(t)} |u(x,t)|^2 \, dx \geq \delta_0^2.$$

COROLLARY 1.2. Let u be a blow-up solution with minimal mass of (1.3) at finite time $T^* > 0$. Let $t_n \uparrow T^*$ as $n \to \infty$. Then there exists a subsequence of $\{t_n\}_{n=1}^{\infty}$ (still denoted by $\{t_n\}_{n=1}^{\infty}$) and $x(t) \in \mathbb{R}^4$ with the following properties:

(i) There exists $\psi \in L^2(\mathbb{R}^4)$ with $\|\psi\|_{L^2} \ge \delta_0$ such that the solution U of (1.3) with initial data ψ blows up for both t > 0 and t < 0.

(ii) There exists a sequence $\{\rho_n, \xi_n, x_n\}_{n=1}^{\infty} \subset \mathbb{R}^*_+ \times \mathbb{R}^4 \times \mathbb{R}^4$ such that $\rho_n^2 e^{ix \cdot \xi_n} u(t_n, \rho_n x + x_n) \to \psi$ strongly in L^2 .

Furthermore,

$$\lim_{n \to \infty} \frac{\rho_n}{\sqrt{T^* - t_n}} \le \frac{1}{\sqrt{T^{**}}}$$

where T^{**} denotes the lifespan of U. (iii) We have

$$\liminf_{t\uparrow T^*} \int_{|x-x(t)|\leq \lambda(t)} |u(x,t)|^2 \, dx \geq \delta_0^2.$$

Similar results for the nonlinear Schrödinger equation have appeared in F. Merle and L. Vega [23] and S. Keraani [12]. Since the nonlinearity is nonlocal for the Hartree equation, we have to introduce a suitable decomposition in physical space to exploit the orthogonality.

We will often use the notations $a \leq b$ and a = O(b) to mean that there exists some constant C such that $a \leq Cb$. The derivative operator ∇ refers to the derivatives with respect to space variables only. We also occasionally use subscripts to denote the spatial derivatives and use the summation convention over repeated indices.

For $1 \leq p \leq \infty$, we define the dual exponent p' by 1/p + 1/p' = 1. For any time interval I, we use $L_t^q L_x^r(I \times \mathbb{R}^4)$ to denote the spacetime Lebesgue norm

$$\|u\|_{L^{q}_{t}L^{r}_{x}(I\times\mathbb{R}^{4})} := \left(\int_{I} \|u\|^{q}_{L^{r}(\mathbb{R}^{4})} dt\right)^{1/q}$$

with the usual modifications when $q = \infty$. When q = r, we abbreviate $L_t^q L_x^r$ by $L_{t,x}^q$.

We say that a pair (q, r) is *admissible* if

$$\frac{2}{q} = 4\left(\frac{1}{2} - \frac{1}{r}\right), \quad 2 \le q \le \infty.$$

For a spacetime slab $I \times \mathbb{R}^4$, we define the *Strichartz norms*

$$\|u\|_{\dot{S}^{0}(I)} := \sup_{(q,r) \text{ admissible}} \|u\|_{L^{q}_{t}L^{r}_{x}(I \times \mathbb{R}^{4})}, \quad \|u\|_{\dot{S}^{1}(I)} := \|\nabla u\|_{\dot{S}^{0}(I)}$$

We also define $\dot{\mathcal{N}}^0$ to be the Banach dual space of \dot{S}^0 .

Throughout this paper, we write

(1.9)
$$\|u\|_{L^{V}} := \left(\iint |u(x)|^{2} V(x-y) |u(y)|^{2} \, dx \, dy \right)^{1/4}$$

The rest of this paper is organized as follows: In Section 2, we recall the preliminary estimates such as Strichartz estimates and the virial identity. In Section 3, we prove Theorems 1.1 and 1.2. Section 4 is devoted to the proof of Theorems 1.3 and 1.4.

2. Preliminaries. We now recall some useful estimates. First, we have the following *Strichartz inequalities*:

LEMMA 2.1 ([5], [10]). Let u be an $\dot{S}^0(I)$ solution to the Schrödinger equation in (1.1). Then

$$\|u\|_{\dot{S}^{0}} \lesssim \|u(t_{0})\|_{L^{2}(\mathbb{R}^{4})} + \|f(u)\|_{L^{q'}_{t}L^{r'}_{x}(I \times \mathbb{R}^{4})}$$

for any $t_0 \in I$ and any admissible pair (q, r). The implicit constant is independent of the choice of the interval I.

By definition, it immediately follows that for any function u on $I\times \mathbb{R}^4,$

$$\|u\|_{L^{\infty}_{t}L^{2}_{x}}+\|u\|_{L^{3}_{t,x}}\lesssim \|u\|_{\dot{S}^{0}}$$

where all spacetime norms are taken on $I \times \mathbb{R}^4$.

LEMMA 2.2. Let $f(u)(t,x) = \pm u(V * |u|^2)(t,x)$, where $V(x) = |x|^{-2}$. For any time interval I and $t_0 \in I$, we have

$$\left\|\int_{t_0}^{t} e^{i(t-s)\Delta} f(u)(s,x) ds\right\|_{\dot{S}^0(I)} \lesssim \|u\|_{L^3_{t,x}}^3.$$

Proof. By the Strichartz estimate, the Hardy–Littlewood–Sobolev inequality and the Hölder inequality, we have

$$\begin{split} \left\| \int_{t_0}^{t} e^{i(t-s)\Delta} f(u)(s,x) \, ds \right\|_{\dot{S}^0(I)} &\lesssim \|f(u)(t,x)\|_{L^1_t L^2_x} \lesssim \|V * |u|^2 \|_{L^{3/2}_t L^6_x} \|u\|_{L^3_{t,x}} \\ &\lesssim \|u\|_{L^3_t x}^3. \end{split}$$

In addition, we can obtain the virial identity appearing in the proof of the localized Morawetz estimates [28]. Indeed, let $V_0^a(t) = \int a(x)|u(t,x)|^2 dx$, where a(x) is real-valued and u is the solution of (1.1) with $f(u) = -(|x|^{-\gamma} * |u|^2)u$. Then we get

$$M_0^a(t) =: \partial_t V_0^a(t) = 2\Im \int a_j u_j \overline{u} \, dx$$

and

$$(2.1) \quad \partial_t M_0^a(t) = -2\Im \int a_{jj} u_t \overline{u} \, dx - 4\Im \int a_j \overline{u}_j u_t \, dx$$
$$= -\int \Delta \Delta a |u|^2 \, dx + 4\Re \int a_{jk} \overline{u}_j u_k \, dx$$
$$-\iint (\nabla a(x) - \nabla a(y)) \nabla V(x-y) |u(y)|^2 |u(x)|^2 \, dx \, dy.$$

LEMMA 2.3. If we choose $a(x) = |x|^2$, then

(2.2)
$$\partial_t M_0^a(t) = 8 \int |\nabla u|^2 dx - 2\gamma \iint V(x-y) |u(y)|^2 |u(x)|^2 dx dy.$$

LEMMA 2.4. If $a(x) = |x|^2$ and $\gamma = 2$, we have

 $\partial_t^2 V_0^a(t) = 16E(u(0)).$ (2.3)

If E(u(0)) < 0, then the nonnegative function $V_0^a(t)$ is concave, so the maximal interval of existence is finite. This implies that the solution of (1.3)has to blow up in both directions.

3. The blow-up dynamics of the focusing mass-critical Hartree equation with H^1 data. Let $V(x) = |x|^{-2}$. We study the minimizing functional

$$J := \min\{J(u) : u \in H^1(\mathbb{R}^4)\}, \quad \text{where} \quad J(u) := \frac{\|u\|_{L^2}^2 \|\nabla u\|_{L^2}^2}{\|u\|_{L^V}^4}$$

First, we have

LEMMA 3.1. If W is a minimizer of J(u), then

(3.1)
$$\Delta W + \alpha (|x|^{-2} * |W|^2) W = \beta W,$$

where $\alpha = 2J/\|W\|_{L^2}^2$ and $\beta = \|\nabla W\|_{L^2}^2/\|W\|_{L^2}^2$.

REMARK 3.1. If W is a minimizer of J(u), then |W| is also a minimizer. Hence, we can assume that W is positive. In fact, we have

$$-|\nabla W| \le \nabla |W| \le |\nabla W|$$

in the sense of distributions. In particular, $|W| \in H^1$ and $J(|W|) \leq J(W)$.

Proof of Lemma 3.1. The minimizing function W is in $H^1(\mathbb{R}^4)$ and satisfies the Euler–Lagrange equation

$$\left. \frac{d}{d\varepsilon} J(W + \varepsilon v) \right|_{\varepsilon = 0} = 0.$$

Equivalently, we have

$$\begin{aligned} \|\nabla W\|_{L^{2}}^{2} \|W\|_{L^{V}}^{4} \int 2\Re(W\bar{v}) \, dx + \|W\|_{L^{2}}^{2} \|W\|_{L^{V}}^{4} \int 2\Re(\nabla W\nabla\bar{v}) \, dx \\ &- \|\nabla W\|_{L^{2}}^{2} \|W\|_{L^{2}}^{2} \Big(\int (V * 2\Re(W\bar{v})) |W|^{2} \, dx + \int (V * |W|^{2}) 2\Re(W\bar{v}) \, dx \Big) = 0. \end{aligned}$$

Since

Since

$$\int (V * 2\Re(W\bar{v})) |W|^2 \, dx = \int (V * |W|^2) 2\Re(W\bar{v}) \, dx$$

we have

$$\Delta W + \frac{2J}{\|W\|_{L^2}^2} \left(V * |W|^2 \right) W = \frac{\|\nabla W\|_{L^2}^2}{\|W\|_{L^2}^2} W$$

PROPOSITION 3.1. J is attained at a function u with the following properties:

$$u(x) = aQ(\lambda x + b)$$
 for some $a \in \mathbb{C}^*$, $\lambda > 0$, and any $b \in \mathbb{R}^4$,

where Q satisfies (1.6). Moreover,

$$J = \|Q\|_{L^2}^2 / 2.$$

We prove this proposition by the following profile decomposition.

LEMMA 3.2 (Profile decomposition [9]). For a bounded sequence $\{u_n\}_{n=1}^{\infty} \subset H^1(\mathbb{R}^4)$, there is a subsequence of $\{u_n\}_{n=1}^{\infty}$ (still denoted by $\{u_n\}$) and a sequence $\{U^{(j)}\}_{j\geq 1}$ in $H^1(\mathbb{R}^4)$ and for any $j \geq 1$, a family $\{x_n^j\}$ such that:

(i) If
$$j \neq k$$
, then $|x_n^j - x_n^k| \to \infty$ as $n \to \infty$
(ii) For every $l \ge 1$,

(3.2)
$$u_n(x) = \sum_{j=1}^l U^{(j)}(x - x_n^j) + r_n^l(x),$$

where, for any $p \in (2, 4)$,

(3.3)
$$\limsup_{n \to \infty} \|r_n^l\|_{L^p(\mathbb{R}^4)} \to 0 \quad \text{as } l \to \infty.$$

(iii) We have

(3.4)
$$\|u_n\|_{L^2}^2 = \sum_{j=1}^l \|U^{(j)}\|_{L^2}^2 + \|r_n^l\|_{L^2}^2 + o_n(1),$$

(3.5)
$$\|\nabla u_n\|_{L^2}^2 = \sum_{j=1}^l \|\nabla U^{(j)}\|_{L^2}^2 + \|\nabla r_n^l\|_{L^2}^2 + o_n(1).$$

Proof of Proposition 3.1. Choose a sequence $\{u_n\}_{n=1}^{\infty} \subset H^1(\mathbb{R}^4)$ such that $J(u_n) \to J$. Suppose $||u_n||_{L^2} = 1$ and $||u_n||_{L^V} = 1$. Then

$$J(u_n) = \int |\nabla u_n|^2 \, dx \to J.$$

Note that $\{u_n\}_{n=1}^{\infty}$ is bounded in H^1 , so by Lemma 3.2, we have (3.2)–(3.5). From (3.4) and (3.5), we have

(3.6)
$$\sum_{j=1}^{l} \|U^{(j)}\|_{L^2}^2 \le 1, \qquad \sum_{j=1}^{l} \|\nabla U^{(j)}\|_{L^2}^2 \le J.$$

Moreover, by the Hölder and Young inequalities, we have

$$||r_n^l||_{L^V}^4 \le ||r_n^l||_{L^{8/3}}^4.$$

From (3.3), $\limsup_{n\to\infty} \|r_n^l\|_{L^{8/3}} \xrightarrow{l\to\infty} 0$. It follows that

$$\limsup_{n \to \infty} \|r_n^l\|_{L^V} \xrightarrow{l \to \infty} 0.$$

Moreover,

$$\iint \frac{\left|\sum_{j=1}^{l} U^{(j)}(x - x_{n}^{j})\right|^{2} \left|\sum_{j=1}^{l} U^{(j)}(y - x_{n}^{j})\right|^{2}}{|x - y|^{2}} \, dx \, dy$$

$$(3.7) \qquad \leq \sum_{j=1}^{l} \iint \frac{|U^{(j)}(x - x_{n}^{j})|^{2} |U^{(j)}(y - x_{n}^{j})|^{2}}{|x - y|^{2}} \, dx \, dy$$

(3.8)
$$+ \sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{|U^{(j)}(x - x_n^j)| |U^{(k)}(x - x_n^k)| (\sum_{i=1}^{l} |U^{(i)}(y - x_n^i)|)^2}{|x - y|^2} \, dx \, dy$$

(3.9)
$$+ \sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{|U^{(j)}(y - x_n^j)| |U^{(k)}(y - x_n^k)| (\sum_{i=1}^{l} |U^{(i)}(x - x_n^i)|)^2}{|x - y|^2} \, dx \, dy$$

(3.10)
$$+ \sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{|U^{(j)}(x - x_n^j)|^2 |U^{(k)}(y - x_n^k)|^2}{|x - y|^2} \, dx \, dy.$$

Without loss of generality we can assume that all $U^{(j)}$'s are continuous and compactly supported. Then

$$(3.7) = \sum_{j=1}^{l} \iint \frac{|U^{(j)}(x)|^2 |U^{(j)}(y)|^2}{|x-y|^2} \, dx \, dy,$$

and by orthogonality, we have

,

$$(3.8) \le \sum_{i=1}^{l} \sum_{j=1}^{l} \sum_{k \ne j} \|U^{(i)}(y - x_n^i)\|_{L^{8/3}}^2 \|U^{(j)}(\cdot - x_n^j)U^{(k)}(\cdot - x_n^k)\|_{L^{4/3}} \to 0$$

as $n \to \infty$. (3.9) can be similarly estimated. Finally,

$$(3.10) = \sum_{j=1}^{l} \sum_{k \neq j} \iint \frac{|U^{(j)}(x)|^2 |U^{(k)}(y)|^2}{|x - y - x_n^j + x_n^k|^2} \, dx \, dy$$

$$\leq \sum_{j=1}^{l} \sum_{k \neq j} \frac{C}{|x_n^j - x_n^k|^2} \|U^{(j)}\|_{L^2}^2 \|U^{(k)}\|_{L^2}^2 \to 0, \quad n \to \infty.$$

Therefore, we conclude

$$\left\|\sum_{j=1}^{l} U^{(j)}(x-x_{n}^{j})\right\|_{L^{V}}^{4} \to \sum_{j=1}^{l} \|U^{(j)}\|_{L^{V}}^{4} \quad \text{as } n \to \infty.$$

Thus, we have

$$\lim_{l \to \infty} \sum_{j=1}^{l} \|U^{(j)}\|_{L^V}^4 = 1.$$

By the definition of J, we have

$$J \| U^{j} \|_{L^{V}}^{4} \leq \| U^{(j)} \|_{L^{2}}^{2} \| \nabla U^{(j)} \|_{L^{2}}^{2}.$$

So we get

$$J\sum_{j=1}^{l} \|U^{j}\|_{L^{V}}^{4} \leq \sum_{j=1}^{l} \|U^{(j)}\|_{L^{2}}^{2} \|\nabla U^{(j)}\|_{L^{2}}^{2}.$$

On the other hand,

$$\sum_{j=1}^{l} \|U^{(j)}\|_{L^2}^2 \|\nabla U^{(j)}\|_{L^2}^2 \le \sum_{j=1}^{l} \|U^{(j)}\|_{L^2}^2 \sum_{j=1}^{l} \|\nabla U^{(j)}\|_{L^2}^2 \le J.$$

Thus we conclude that only one term $U^{(j_0)}$ is nonzero, i.e.

(3.11)
$$||U^{(j_0)}||_{L^2} = 1, \quad ||U^{(j_0)}||_{L^V} = 1, \quad ||\nabla U^{(j_0)}||_{L^2}^2 = J.$$

This shows that $U^{(j_0)}$ is a minimizer of J(u). From (3.11), we have

$$\Delta U^{(j_0)} + 2J(|x|^{-2} * |U^{(j_0)}|^2)U^{(j_0)} = JU^{(j_0)}.$$

By Remark 3.1, we can assume that U^{j_0} is positive. Let $U^{(j_0)} = aQ(\lambda x + b)$, where Q is the positive solution of (1.6). An easy computation gives that $\lambda^2 = 2a^2 = J$.

Next we compute the best constant J in terms of Q. Multiplying (1.6) by Q and integrating both sides of the resulting equation, we have

(3.12)
$$-\int |\nabla Q|^2 \, dx + \int (V * |Q|^2) |Q|^2 \, dx = \int |Q|^2 \, dx.$$

Since

$$\begin{split} &\int (x \cdot \nabla Q) Q \, dx = -2 \int |Q|^2 \, dx, \\ &\int x \cdot \nabla Q \Delta Q \, dx = -\sum_{i,j} \int (\delta_{ij} \partial_i Q \partial_j Q + x_i \partial_i \partial_j Q \partial_j Q) = \|\nabla Q\|_{L^2}^2, \end{split}$$

and

$$\begin{split} \int x \cdot \nabla Q (V * |Q|^2) Q \, dx &= \frac{1}{2} \int x \cdot \nabla Q^2 (V * |Q|^2) \, dx \\ &= \frac{1}{2} \int x \cdot \nabla ((V * |Q|^2) Q^2) \, dx - \frac{1}{2} \int x \cdot (\nabla V * Q^2) Q^2 \, dx \\ &= -2 \int (V * |Q|^2) Q^2 \, dx + \int \int \frac{x \cdot (x - y)}{|x - y|^4} \, Q(x)^2 Q(y)^2 \, dx \, dy = -\frac{3}{2} \, \|Q\|_{L^V}^4, \end{split}$$

we have

$$\|\nabla Q\|_{L^2}^2 - \frac{3}{2} \|Q\|_{L^V}^4 = -2\|Q\|_{L^2}^2.$$

Together with (3.12), this yields $\|\nabla Q\|_{L^2}^2 = \|Q\|_{L^2}^2$. So,

$$J = \|\nabla U^{(j_0)}\|_{L^2}^2 = \|Q\|_{L^2}^2/2.$$

So far, we have obtained the existence of a positive solution of (1.6). In addition, Theorem 3 of [15] together with Theorem 1.2 of [19] implies that this positive solution is also radially symmetric and unique in $H^1(\mathbb{R}^4)$. Note that the uniqueness proof strongly depends on the specific features of equation (1.6). In fact, the uniqueness of the ground state Q of (1.6) has not be resolved completely for the general potential V(x), and is stated as an open problem in [6].

We first make use of the ground state Q to give a sufficient condition for the global existence of (1.3), which together with (1.5) implies that $||Q||_{L^2}$ is the minimal mass of blow-up solutions.

THEOREM 3.1. If $u_0 \in H^1(\mathbb{R}^4)$ and $||u_0||_{L^2} < ||Q||_{L^2}$, then the solution u(t) of (1.3) is global in time.

Proof. By the local well-posedness theory, it suffices to prove that for every $t \in \mathbb{R}$, we have

$$\|\nabla u(t)\|_{L^2} < \infty.$$

Now from Proposition 3.1 and the conservation of mass, we have

$$(3.13) E(u(t)) = \frac{1}{2} \int |\nabla u(t)|^2 dx - \frac{1}{4} \int (V * |u(t)|^2) |u(t)|^2 dx$$

$$\geq \frac{1}{2} \|\nabla u(t)\|_{L^2}^2 - \frac{1}{4} \frac{2}{\|Q\|_{L^2}^2} \|u(t)\|_{L^2}^2 \|\nabla u(t)\|_{L^2}^2$$

$$= \frac{1}{2} \|\nabla u(t)\|_{L^2}^2 \left(1 - \frac{\|u_0\|_{L^2}^2}{\|Q\|_{L^2}^2}\right).$$

Since $||u_0||_{L^2} < ||Q||_{L^2}$, we have the uniform bound of $||\nabla u(t)||_{L^2}^2$. This proves the global existence.

Before we prove Theorem 1.1, we state a proposition in two equivalent forms.

PROPOSITION 3.2 (Static version). If $u \in H^1(\mathbb{R}^4)$ is such that $||u||_{L^2} = ||Q||_{L^2}$ and E(u) = 0, then

 $u(x) = e^{i\theta} \lambda^2 Q(\lambda x + b) \quad \text{for some } \theta \in \mathbb{R}, \, \lambda > 0, \, b \in \mathbb{R}^4.$

Proof. Since E(u) = 0, we have $\|\nabla u\|_{L^2}^2 = \frac{1}{2} \|u\|_{L^V}^4$. So we get

$$J(u) = \frac{\|Q\|_{L^2}^2 \|\nabla u\|_{L^2}^2}{\|u\|_{L^V}^4} = \frac{1}{2} \|Q\|_{L^2}^2 = J.$$

By Proposition 3.1 and the uniqueness of the ground state Q, u is of the form $u(x) = aQ(\lambda x + b)$. The condition $||u||_{L^2} = ||Q||_{L^2}$ ensures that $|a| = \lambda^2$. So $u(x) = e^{i\theta}\lambda^2 Q(\lambda x + b)$.

PROPOSITION 3.3 (Dynamic version). Let $\{u_n\}_{n=1}^{\infty}$ be a sequence in $H^1(\mathbb{R}^4)$ such that $||u_n||_{L^2} = ||Q||_{L^2}$, $E(u_n) \leq M$ and $||\nabla u_n||_{L^2} \to \infty$. Define

$$\lambda_n := \frac{\|\nabla u_n\|_{L^2}}{\|\nabla Q\|_{L^2}}.$$

Then there exists a subsequence (still denoted by $\{u_n\}$), a sequence $\{y_n\} \subset \mathbb{R}^4$ and a real number θ such that

(3.14)
$$e^{i\theta}\lambda_n^{-2}u_n(\lambda_n^{-1}x+y_n) \to Q(x)$$
 strongly in H^1 .

Proof. Let

$$\tilde{u}_n(x) = \frac{1}{\lambda_n^2} u_n\left(\frac{x}{\lambda_n}\right).$$

Then $\|\tilde{u}_n\|_{L^2} = \|Q\|_{L^2}$ and $\|\nabla \tilde{u}_n\|_{L^2} = \|\nabla Q\|_{L^2}$. Moreover, $E(\tilde{u}_n) = E(u_n)/\lambda_n^2 \to 0$ as $n \to \infty$.

So we have

$$J(\tilde{u}_n) = \|Q\|_{L^2}^2 \frac{\|\nabla \tilde{u}_n\|_{L^2}^2}{\|\tilde{u}_n\|_{L^V}^4} = \|Q\|_{L^2}^2 \frac{\|\nabla \tilde{u}_n\|_{L^2}^2}{2\|\nabla \tilde{u}_n\|_{L^2}^2 - 4E(\tilde{u}_n)} \to \frac{\|Q\|_{L^2}^2}{2} = J$$

as $n \to \infty$. Therefore, by Lemma 3.2, we can choose a subsequence $\{\tilde{u}_n\}$ and $\{x_n\} \subset \mathbb{R}^4$ such that $\tilde{u}_n(x+x_n) \to aQ(\lambda x+b)$ in H^1 . The conditions $\|\tilde{u}_n\|_{L^2} = \|Q\|_{L^2}$ and $\|\nabla \tilde{u}_n\|_{L^2} = \|\nabla Q\|_{L^2}$ imply $|a| = \lambda = 1$, so we have (3.14) for $y_n = \lambda_n^{-1}(x_n - b)$.

In order to prove Theorem 1.1, we also need the following lemma. The proof relies heavily on the techniques of V. Banica [1].

LEMMA 3.3. Suppose $u \in H^1(\mathbb{R}^4)$ and $||u||_{L^2} = ||Q||_{L^2}$. Then for all real functions $w \in C^1$ with bounded ∇w , we have

$$\left|\int_{\mathbb{R}^4} \nabla w(x) \Im(u \nabla u)(x) \, dx\right| \le \sqrt{2} \, E(u)^{1/2} \Big(\int |u|^2 |\nabla w|^2 \, dx\Big)^{1/2}.$$

Proof. Since

$$||ue^{isw(x)}||_{L^2} = ||u||_{L^2} = ||Q||_{L^2}$$

for any $s \in \mathbb{R}$, by (3.13) we know that $E(ue^{isw(x)}) \ge 0$. So, for any s,

$$\frac{1}{2} \int_{\mathbb{R}^4} |\nabla u + isu \nabla w|^2 \, dx - \frac{1}{4} \int_{\mathbb{R}^4} (V * |u|^2) |u|^2 \, dx \ge 0.$$

Hence

$$E(u) + s \int_{\mathbb{R}^4} \nabla w \Im(u \nabla u) \, dx + \frac{s^2}{2} \int_{\mathbb{R}^4} |u|^2 |\nabla w|^2 \, dx \ge 0.$$

As this holds for any s, the discriminant is nonpositive. Hence we get the result.

Now we turn to the proof of Theorems 1.1 and 1.2, which is borrowed from [9].

Proof of Theorem 1.1. Suppose u(t, x) is the solution of (1.3) which blows up at T and let $t_n \uparrow T$. Let $u_n = u(t_n)$. By Proposition 3.3,

$$e^{i\theta}\lambda_n^{-2}u_n(\lambda_n^{-1}x+y_n) \to Q(x)$$
 strongly in H^1 .

From this we get

(3.15)
$$|u(t_n, x)|^2 dx - ||Q||_{L^2}^2 \delta_{x=y_n} \rightharpoonup 0$$

where $y_n \to 0$ (up to translation) or $y_n \to \infty$.

Now let $\phi \in C_0^{\infty}(\mathbb{R}^4)$ be a nonnegative radial function such that

$$\phi(x) = |x|^2$$
 if $|x| < 1$ and $|\nabla \phi|^2 \le C\phi(x)$.

For every $p \in \mathbb{N}^*$ we define

$$\phi_p(x) = p^2 \phi(x/p)$$
 and $g_p(t) = \int \phi_p(x) |u(t,x)|^2 dx$

By Lemma 3.3, for every $t \in [0, T)$, we have

$$\begin{aligned} |\dot{g}_p(t)| &= 2 \Big| \int_{\mathbb{R}^4} \nabla \phi_p(x) \Im(u \nabla u)(x) \, dx \Big| \le 2\sqrt{2} E(u_0)^{1/2} \Big(\int |u|^2 |\nabla \phi_p(x)|^2 \, dx \Big)^{1/2} \\ &\le C E(u_0)^{1/2} \Big(\int |u|^2 \phi_p(x) \, dx \Big)^{1/2} \le C(u_0) \sqrt{g_p(t)}. \end{aligned}$$

Integrating with respect to t, we get

$$|\sqrt{g_p(t)} - \sqrt{g_p(t_n)}| \le C(u_0)|t_n - t|.$$

If $y_n \to 0$, then $g_p(t_n) \to ||Q||_{L^2}^2 \phi_p(0) = 0$ by (3.15); if $|y_n| \to \infty$, also $g_p(t_n) \to 0$ since ϕ_p is compactly supported. So, if we let $n \to \infty$, we have

 $g_p(t) \le C(u_0)(T-t)^2.$

Now fix $t \in [0, T)$ and let $p \to \infty$. Then by (2.3) we get

(3.16)
$$8t^2 E(e^{i|x|^2/4t}u_0) = \int |x|^2 |u(t,x)|^2 \, dx \le C(u_0)(T-t)^2.$$

Hence $|y_n|^2 ||Q||_{L^2}^2 \leq C(u_0)T^2$. Thus y_n cannot go to infinity. This implies that $\{y_n\}$ converges to 0. Letting t go to T, from (3.16) we get $E(e^{i|x|^2/4T}u_0)$ = 0. Note also that $||e^{i|x|^2/4T}u_0||_{L^2} = ||Q||_{L^2}$. By Proposition 3.2, we conclude that $e^{i|x|^2/4T}u_0 \in \mathcal{A}$.

Proof of Theorem 1.2. We define

$$\rho(t) = \|\nabla Q\|_{L^2} / \|\nabla u\|_{L^2} \text{ and } v(t,x) = \rho^2 u(t,\rho x).$$

Let $t_n \uparrow T$, and set $v_n(x) = v(t_n, x)$. Then by mass conservation and the

definition of $\rho(t)$, we have

 $||v_n||_{L^2} = ||u_0||_{L^2}$ and $||\nabla v_n||_{L^2} = ||\nabla Q||_{L^2}.$

Since u blows up at time T, we have $\rho(t_n) \to 0$ as $t_n \to T$. Hence

$$E(v_n) = \rho_n^2 E(u_0) \to 0 \quad \text{as } n \to \infty.$$

In particular,

$$\|v_n\|_{L^V}^4 \to 2\|\nabla Q\|_{L^2}^2 \quad \text{as } n \to \infty.$$

According to Lemma 3.2, the sequence $\{v_n\}_{n=1}^{\infty}$ can be written, up to a subsequence, as

$$v_n(x) = \sum_{j=1}^{l} U^{(j)}(x - x_n^j) + r_n^l(x)$$

so that (3.3)-(3.5) hold. This implies, in particular, that

$$2\|\nabla Q\|_{L^2}^2 \le \limsup_{n \to \infty} \|v_n\|_{L^V}^4 = \limsup_{n \to \infty} \left\|\sum_{j=1}^{\infty} U^j(\cdot - x_n^j)\right\|_{L^V}^4.$$

As in the proof of Proposition 3.1, the pairwise orthogonality of the family $\{x^j\}_{j=1}^{\infty}$, together with (1.6) and (3.5), gives

$$2\|\nabla Q\|_{L^{2}}^{2} \leq \sum_{j=1}^{\infty} \|U^{j}\|_{L^{V}}^{4} \leq \sum_{j=1}^{\infty} \frac{2}{\|Q\|_{L^{2}}^{2}} \|U^{j}\|_{L^{2}}^{2} \|\nabla U^{j}\|_{L^{2}}^{2}$$
$$\leq \frac{2}{\|Q\|_{L^{2}}^{2}} \sup_{j\geq 1} \|U^{j}\|_{L^{2}}^{2} \sum_{j=1}^{\infty} \|\nabla U^{j}\|_{L^{2}}^{2} \leq \frac{2}{\|Q\|_{L^{2}}^{2}} \|\nabla v_{n}\|_{L^{2}}^{2} \sup_{j\geq 1} \|U^{j}\|_{L^{2}}^{2}$$
$$= \frac{2}{\|Q\|_{L^{2}}^{2}} \|\nabla Q\|_{L^{2}}^{2} \sup_{j\geq 1} \|U^{j}\|_{L^{2}}^{2}.$$

Therefore,

$$\sup_{j\geq 1} \|U^j\|_{L^2}^2 \geq \|Q\|_{L^2}^2.$$

Since $\sum ||U^j||_{L^2}^2$ converges, the supremum above is attained. In particular, there exists j_0 such that

$$\|U^{j_0}\|_{L^2}^2 \ge \|Q\|_{L^2}^2.$$

On the other hand, a change of variables gives

$$v_n(x+x_n^{j_0}) = U^{j_0}(x) + \sum_{\substack{1 \le j \le l \\ j \ne j_0}} U^j(x+x_n^{j_0}-x_n^j) + \tilde{r}_n^l(x),$$

where $\tilde{r}_n^l(x) = r_n^l(x+x_n^{j_0})$. The pairwise orthogonality of the family $\{x^j\}_{j=1}^{\infty}$ implies $U^j(\cdot + x_n^{j_0} - x_n^j) \to 0$ weakly for every $j \neq j_0$. Hence we get $r_n(\cdot + x_n^{j_0}) \to U^{j_0} + \tilde{r}^l$, where \tilde{r}^l denotes the weak limit of $\{\tilde{r}^l_n\}_{n=1}^{\infty}$. However,

$$\|\tilde{r}^l\|_{L^V} \le \limsup_{n \to \infty} \|\tilde{r}^l_n\|_{L^V} = \limsup_{n \to \infty} \|r^l_n\|_{L^V} \xrightarrow{l \to \infty} 0.$$

By uniqueness of the weak limit, we get $\tilde{r}^l = 0$ for every $l \neq j_0$ so that $r_n(\cdot + x_n^{j_0}) \rightharpoonup U^{j_0}$ in H^1 , that is,

$$\rho_n^2 u(t_n, \rho_n \cdot + x_n^{j_0}) \rightharpoonup U^{j_0} \in H^1$$
 weakly.

Thus for every A > 0,

$$\liminf_{n \to \infty} \int_{|x| \le A} \rho_n^4 |u(t_n, \rho_n x + x_n)|^2 \, dx \ge \int_{|x| \le A} |U^{j_0}|^2 \, dx.$$

In view of the assumption $\lambda(t_n)/\rho_n \to \infty$, this gives immediately

$$\liminf_{n \to \infty} \sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t_n)} |u(t_n, x)|^2 \, dx \ge \int_{|x| \le A} |U^{j_0}|^2 \, dx$$

for every A > 0, which means that

$$\liminf_{n \to \infty} \sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t_n)} |u(t_n, x)|^2 \, dx \ge \int |U^{j_0}|^2 \, dx \ge \int |Q|^2 \, dx.$$

Since the sequence $\{t_n\}_{n=1}^{\infty}$ is arbitrary, we infer

$$\liminf_{t \to T} \sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t)} |u(t,x)|^2 \, dx \ge \int |Q|^2 \, dx.$$

But for every $t \in [0, T)$, the function $y \mapsto \int_{|x-y| \le \lambda(t)} |u(t, x)|^2 dx$ is continuous and goes to 0 at infinity. As a result, we get

$$\sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t)} |u(t,x)|^2 \, dx = \int_{|x-x(t)| \le \lambda(t)} |u(t,x)|^2 \, dx$$

for some $x(t) \in \mathbb{R}^4$, and Theorem 1.2 is proved.

4. The blow-up dynamics of the focusing mass-critical Hartree equation with L^2 data. In this section we prove Theorems 1.3 and 1.4.

DEFINITION 4.1. For every sequence $\Gamma_n = \{\rho_n, t_n, \xi_n, x_n\}_{n=1}^{\infty} \subset \mathbb{R}^*_+ \times \mathbb{R}^4 \times \mathbb{R}^4$, we define the isometric operator Γ_n on $L^3_{t,x}(\mathbb{R} \times \mathbb{R}^4)$ by

$$\Gamma_n(f)(t,x) = \rho_n^2 e^{ix \cdot \xi_n} e^{-it|\xi_n|^2} f(\rho_n^2 t + t_n, \rho_n(x - t\xi_n) + x_n).$$

Two sequences $\Gamma_n^j = \{\rho_n^j, t_n^j, \xi_n^j, x_n^j\}_{n=1}^{\infty}$ and $\Gamma_n^k = \{\rho_n^k, t_n^k, \xi_n^k, x_n^k\}_{n=1}^{\infty}$ are said to be *orthogonal* if

$$\frac{\rho_n^j}{\rho_n^k} + \frac{\rho_n^k}{\rho_n^j} \to \infty$$

or

$$\rho_n^j = \rho_n^k \quad and \quad \frac{|\xi_n^j - \xi_n^k|}{\rho_n^j} + |t_n^j - t_n^k| + \left|\frac{\xi_n^j - \xi_n^k}{\rho_n^j} t_n^j + x_n^j - x_n^k\right| \to \infty.$$

LEMMA 4.1 (Linear profile decomposition [2]). Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be a bounded sequence in $L^2(\mathbb{R}^4)$. Then there exists a subsequence of $\{\varphi_n\}_{n=1}^{\infty}$ (still denoted by $\{\varphi_n\}_{n=1}^{\infty}$) with the following properties: there exists a family $\{V^j\}_{j=1}^{\infty}$ of solutions of (1.4) and a family of pairwise orthogonal sequences $\Gamma^j = \{\rho_n^j, t_n^j, \xi_n^j, x_n^j\}_{n=1}^{\infty}$ such that for every $(t, x) \in \mathbb{R} \times \mathbb{R}^4$,

(4.1)
$$e^{it\Delta}\varphi_n(x) = \sum_{j=1}^l \mathbf{\Gamma}_n^j V^j(t,x) + w_n^l(t,x)$$

with

(4.2)
$$\limsup_{n \to \infty} \|w_n^l\|_{L^3(\mathbb{R} \times \mathbb{R}^4)} \to 0 \quad \text{as } l \to \infty$$

Moreover, for every $l \geq 1$,

(4.3)
$$\|\varphi_n\|_{L^2}^2 = \sum_{j=1}^l \|V^j\|_{L^2}^2 + \|w_n^l\|_{L^2}^2 + o_n(1).$$

DEFINITION 4.2. Let $\Gamma_n = \{\rho_n, t_n, \xi_n, x_n\}_{n=1}^{\infty}$ be a sequence in $\mathbb{R}^*_+ \times \mathbb{R} \times \mathbb{R}^4 \times \mathbb{R}^4$ such that $\{t_n\}_{n=1}^{\infty}$ has a limit in $[-\infty, \infty]$ as $n \to \infty$. Let V be a solution of the linear Schrödinger equation (1.4). We say that U is the *nonlinear profile associated* to $\{V, \Gamma_n\}_{n=1}^{\infty}$ if U is the unique maximal solution of (1.3) satisfying

$$\|(U-V)(t_n,\cdot)\|_{L^2(\mathbb{R}^4)} \to 0 \quad \text{as } n \to \infty.$$

In order to prove Theorems 1.3 and 1.4, we first state a key theorem, which is similar to that in [11] and [12].

THEOREM 4.1 (Nonlinear profile decomposition). Let $\{\varphi_n\}_{n=1}^{\infty}$ be a bounded family in $L^2(\mathbb{R}^4)$ and $\{u_n\}_{n=1}^{\infty}$ the corresponding family of solutions to (1.3) with initial data $\{\varphi_n\}_{n=1}^{\infty}$. Let $\{V^j, \Gamma_n^j\}_{j=1}^{\infty}$ be the family of linear profiles associated to $\{\varphi_n\}_{j=1}^{\infty}$ via Lemma 4.1 and $\{U^j\}_{j=1}^{\infty}$ the family of nonlinear profiles associated to $\{V^j, \Gamma_n^j\}_{j=1}^{\infty}$ via Definition 4.2. Let $\{I_n\}_{n=1}^{\infty}$ be a family of intervals containing the origin 0. Then the following statements are equivalent:

(i) For every $j \ge 1$,

$$\lim_{n \to \infty} \|\mathbf{\Gamma}_n^j U^j\|_{L^3_{t,x}[I_n]} < \infty.$$

(ii) We have

$$\lim_{n \to \infty} \|u_n\|_{L^3_{t,x}[I_n]} < \infty$$

Moreover, if (i) or (ii) holds, then

(4.4)
$$u_n = \sum_{j=1}^{l} \mathbf{\Gamma}_n^j U^j + w_n^l + r_n^l,$$

where w_n^l is as in (4.2) and

(4.5)
$$\lim_{n \to \infty} (\|r_n^l\|_{L^3_{t,x}[I_n]} + \sup_{t \in I_n} \|r_n^l\|_{L^2}) \to 0 \quad \text{as } l \to \infty.$$

Proof. Step 1. We prove (4.4) and (4.5) provided that (i) or (ii) holds. Let

$$r_n^l = u_n - \sum_{j=1}^{l} U_n^j - w_n^l$$
, where $U_n^j := \mathbf{\Gamma}_n^j U^j$,

and let $V_n^j := \mathbf{\Gamma}_n^j V^j$. Then r_n^l satisfies the equation

(4.6)
$$\begin{cases} i\partial_t r_n^l + \Delta r_n^l = f_n^l, \\ r_n^l(0) = \sum_{j=1}^l (V_n^j - U_n^j)(0, x), \end{cases}$$

where

$$\begin{split} f_n^l &:= p(W_n^l + w_n^l + r_n^l) - \sum_{j=1}^l p(U_n^j), \\ p(z) &:= -(|x|^{-2} * |z|^2)z, \quad W_n^l &:= \sum_{j=1}^l U_n^j. \end{split}$$

It suffices to prove that

(4.7)
$$\lim_{n \to \infty} (\|r_n^l\|_{L^3_{t,x}[I_n]} + \sup_{t \in I_n} \|r_n^l\|_{L^2}) \xrightarrow{l \to \infty} 0$$

By the Strichartz estimates and the Young inequality, we have

.

(4.9)
$$+ \|p(W_n^l + w_n^l) - p(W_n^l)\|_{L_t^1 L_x^2[I_n]}$$

(4.10)
$$+ \|p(W_n^l + w_n^l + r_n^l) - p(W_n^l + w_n^l)\|_{L^1_t L^2_x[I_n]}$$
$$+ \|r_n^l(0, \cdot)\|_{L^2}.$$

We will estimate the three terms. First, we estimate (4.8) from above by

(4.11)
$$\sum_{j_1=1}^{l} \sum_{j_2 \neq j_1} \|(|x|^{-2} * |U_n^{j_1}|^2) U_n^{j_2}\|_{L^{3/2}_{t,x}[I_n]}$$

(4.12)
$$+ \sum_{j_1=1} \sum_{j_2 \neq j_1} \sum_{j_3=1} \| (|x|^{-2} * (U_n^{j_1} U_n^{j_2})) U_n^{j_3} \|_{L^1_t L^2_x[I_n]}$$

Without loss of generality we can assume that both U^{j_1} and U^{j_2} have compact support in t and x. Let $V(x) = |x|^{-2}$. Then

If $\rho_n^{j_2}/\rho_n^{j_1} + \rho_n^{j_1}/\rho_n^{j_2} \to \infty$ or $|t_n^{j_1} - t_n^{j_2}| \to \infty$, by the compact support assumption on t, we conclude that the quantity (4.11) converges to 0 as $n \to \infty$. Otherwise, by orthogonality we have

(4.13)
$$\frac{|\xi_n^{j_1} - \xi_n^{j_2}|}{\rho_n^{j_1}} + \left|\frac{\xi_n^{j_1} - \xi_n^{j_2}}{\rho_n^{j_1}}t_n^{j_1} + x_n^{j_1} - x_n^{j_2}\right| \to \infty.$$

Without loss of generality, we may assume that $\rho_n^{j_2}/\rho_n^{j_1} \to 1$. Then the complicated expression of the function U^{j_2} of \tilde{t} and \tilde{x} can be simplified to

$$U^{j_2}\bigg(\tilde{t}-t_n^{j_1}+t_n^{j_2},\frac{\xi_n^{j_1}-\xi_n^{j_2}}{\rho_n^{j_1}}\tilde{t}+\tilde{x}-x_n^{j_1}+x_n^{j_2}-\frac{\xi_n^{j_1}-\xi_n^{j_2}}{\rho_n^{j_1}}t_n^{j_1}\bigg).$$

Meanwhile, we have

$$\begin{split} \int |U^{j_1}(\tilde{t}, \tilde{x} - \tilde{y})|^2 V(\tilde{y}) \, d\tilde{y} &\leq \int_{|\tilde{y}| \leq 1} |U^{j_1}(\tilde{t}, \tilde{x} - \tilde{y})|^2 V(\tilde{y}) \, d\tilde{y} \\ &+ \sum_{j=0}^{\infty} \int_{2^j \leq |\tilde{y}| \leq 2^{j+1}} |U^{j_1}(\tilde{t}, \tilde{x} - \tilde{y})|^2 V(\tilde{y}) \, d\tilde{y}. \end{split}$$

Note that U^{j_1} is compactly supported in x, so for any fixed j,

$$\int_{2^j \le |\tilde{y}| \le 2^{j+1}} |U^{j_1}(\tilde{t}, \cdot - \tilde{y})|^2 V(\tilde{y}) \, d\tilde{y}$$

is also compactly supported. Thus (4.13) implies that for any $j_1 \neq j_2$,

$$\begin{split} \lim_{n \to \infty} \iint \bigg| \int_{2^j \le |\tilde{y}| \le 2^{j+1}} |U^{j_1}(\tilde{t}, \cdot - \tilde{y})|^2 V(\tilde{y}) \, d\tilde{y} \, U^{j_2} \bigg(\tilde{t} - t_n^{j_1} + t_n^{j_2}, \\ \frac{\xi_n^{j_1} - \xi_n^{j_2}}{\rho_n^{j_1}} \, \tilde{t} + \tilde{x} - x_n^{j_1} + x_n^{j_2} - \frac{\xi_n^{j_1} - \xi_n^{j_2}}{\rho_n^{j_1}} \, t_n^{j_1} \bigg) \bigg|^{3/2} \, d\tilde{x} \, d\tilde{t} = 0. \end{split}$$

Therefore, the quantity (4.11) converges to 0 as $n \to \infty$.

On the other hand,

$$\|(|x|^{-2} * (U_n^{j_1} U_n^{j_2}))U_n^{j_3}\|_{L_t^1 L_x^2[I_n]} \le C \|U_n^{j_1} U_n^{j_2}\|_{L_{t,x}^{3/2}} \|U_n^{j_3}\|_{L_{t,x}^3}$$

By orthogonality, $\|U_n^{j_1}U_n^{j_2}\|_{L^{3/2}_{t,x}} \to 0$ as $n \to \infty$. Because $\|U_n^{j_3}\|_{L^3_{t,x}}$ is bounded, we see that the quantity (4.12) also converges to 0 as $n \to \infty$.

Next, we prove that

$$\lim_{l \to \infty} (\lim_{n \to \infty} \|W_n^l + w_n^l\|_{L^3_{t,x}[I_n]}) \le C.$$

From (4.3), we have

$$\|w_n^l\|_{L^3_{t,x}[I_n]} \le C \|w_n^l(0)\|_{L^2} \le C \|\varphi_n\|_{L^2}.$$

It suffices to verify

(4.14)
$$\lim_{l \to \infty} (\lim_{n \to \infty} \|W_n^l\|_{L^3_{t,x}[I_n]}) \le C.$$

From the orthogonality of Γ_n^j , as in [11], we can see that for every $l \ge 1$,

$$\|W_n^l\|_{L^3_{t,x}[I_n]}^3 = \left\|\sum_{j=1}^l U_n^j\right\|_{L^3_{t,x}[I_n]}^3 \to \sum_{j=1}^l \|U_n^j\|_{L^3_{t,x}[I_n]}^3 \quad \text{as } n \to \infty.$$

Meanwhile by (4.3), the series $\sum \|V^j\|_{L^2}^2$ converges. Thus for every $\epsilon > 0$, there exists $l(\epsilon)$ such that

$$\|V^j\|_{L^2} \le \epsilon, \quad \forall j > l(\epsilon).$$

The theory of small data asserts that, for ϵ sufficiently small, U^j is global and $\|U^j\|_{L^3_{t,x}} \lesssim \|V^j\|_{L^2}$, which yields

$$\sum_{j>l(\epsilon)} \|U^j\|_{L^3_{t,x}}^3 < \infty.$$

So we have to deal only with a finite number of nonlinear profiles $\{U^j\}_{1 \le j \le l(\epsilon)}$. But in view of the pairwise orthogonality of $\{\Gamma_n^j\}_{j=1}^{\infty}$, one has

$$\lim_{n \to \infty} \left\| \sum_{j=1}^{l(\epsilon)} U_n^j \right\|_{L^3_{t,x}[I_n]} \le \sum_{j=1}^{l(\epsilon)} \lim_{n \to \infty} \|U_n^j\|_{L^3_{t,x}[I_n]} < \infty,$$

and thus (4.14) follows.

Now, we estimate (4.9):

$$\begin{split} \|p(W_n^l + w_n^l) - p(W_n^l)\|_{L_t^1 L_x^2[I_n]} \\ &\lesssim \|(|x|^{-2} * |W_n^l + w_n^l|^2) w_n^l\|_{L_t^1 L_x^2[I_n]} + \|(|x|^{-2} * (W_n^l w_n^l)) w_n^l\|_{L_t^1 L_x^2[I_n]} \\ &+ \|(|x|^{-2} * |w_n^l|^2) W_n^l\|_{L_t^1 L_x^2[I_n]} \\ &\lesssim \|W_n^l\|_{L_{t,x}^3[I_n]}^2 \|w_n^l\|_{L_{t,x}^3[I_n]} + \|w_n^l\|_{L_{t,x}^3[I_n]}^2 (\|W_n^l\|_{L_{t,x}^3[I_n]} + \|w_n^l\|_{L_{t,x}^3[I_n]}) \\ &= o_n(1). \end{split}$$

The last equality is due to (4.14) and the fact that $||w_n^l||_{L^3_{t,x}[I_n]} \to 0$ as $l \to \infty$.

(4.10) can be estimated similarly:

$$(4.10) \lesssim \|W_n^l + w_n^l\|_{L^3_{t,x}[I_n]}^2 \|r_n^l\|_{L^3_{t,x}[I_n]} + \|W_n^l + w_n^l\|_{L^3_{t,x}[I_n]} \|r_n^l\|_{L^3_{t,x}[I_n]}^2 + \|r_n^l\|_{L^3_{t,x}[I_n]}^3.$$

Now we can prove (4.7). Collecting all the previous facts, we have

$$(4.15) \qquad \sup_{t \in I_n} \|r_n^l\|_{L^2} + \|r_n^l\|_{L^3_{t,x}[I_n]} \\ \leq C(\|W_n^l + w_n^l\|_{L^3_{t,x}[I_n]} \|r_n^l\|_{L^3_{t,x}[I_n]} + \|r_n^l\|_{L^3_{t,x}[I_n]}^3 + \|r_n^l\|_{L^3_{t,x}[I_n]}^2 + \|r_n^l(0,\cdot)\|_{L^2}) \\ + o_n(1).$$

As in [12], for every $\varepsilon > 0$ we can divide $I_n^+ = I_n \cap \mathbb{R}_+$ into finitely many *n*-dependent intervals, namely,

$$I_n^+ = [0, a_n^1] \cup [a_n^1, a_n^2] \cup \dots \cup [a_n^{p-1}, a_n^p),$$

with each interval denoted by I_n^i (i = 1, ..., p), so that for every $1 \le i \le p$ and every $l \ge 1$,

$$\limsup_{n\to\infty} \|W_n^l + w_n^l\|_{L^3_{t,x}(I_n^i\times\mathbb{R}^4)} \leq \varepsilon.$$

The $I_n^- = I_n \cap \mathbb{R}_-$ can be similarly dealt with. Applying (4.15) on I_n^1 , it follows that

$$\sup_{t \in I_n^1} \|r_n^l\|_{L^2} + \|r_n^l\|_{L^3_{t,x}[I_n^1]} \\
\lesssim \epsilon \|r_n^l\|_{L^3_{t,x}[I_n^1]} + \|r_n^l\|_{L^3_{t,x}[I_n^1]}^3 + \|r_n^l\|_{L^3_{t,x}[I_n^1]}^2 + \|r_n^l(0,\cdot)\|_{L^2} + o_n(1).$$

By choosing ϵ sufficiently small, we obtain

$$\sup_{t \in I_n^1} \|r_n^l\|_{L^2} + \|r_n^l\|_{L^3_{t,x}[I_n^1]} \lesssim \|r_n^l(0,\cdot)\|_{L^2} + \sum_{\alpha=2}^3 \|r_n^l\|_{L^3_{t,x}[I_n^1]}^{\alpha} + o(1).$$

Observe that, by the definition of the nonlinear profile U_n^j , we have

$$\lim_{n \to \infty} \|r_n^l(0, \cdot)\|_{L^2} = 0$$

for every $l \ge 1$. This fact and a standard bootstrap argument show easily that

$$\lim_{n \to \infty} (\sup_{t \in I_n^1} \|r_n^l\|_{L^2} + \|r_n^l\|_{L^3_{t,x}[I_n^1]}) \xrightarrow{l \to \infty} 0.$$

This gives in particular

$$\lim_{n \to \infty} \|r_n^l(a_n^1, \cdot)\|_{L^2} \xrightarrow{l \to \infty} 0$$

and allows us to repeat the same argument for I_n^2 . We iterate the same process for every $1 \leq i \leq p$. Since $I = I_n^1 \cup I_n^2 \cup \cdots \cup I_n^p$ and p is finite independently of n and l, we get

$$\lim_{n \to \infty} (\|r_n^l\|_{L^3_{t,x}[I_n]} + \sup_{t \in I_n} \|r_n^l\|_{L^2}) \to 0$$

as $l \to \infty$, which is (4.7).

Step 2. Now we prove the equivalence of (i) and (ii). (i) \Rightarrow (ii). Suppose that for all j, $\lim_{n\to\infty} \|\mathbf{\Gamma}_n^j U^j\|_{L^3_{t,x}[I_n]} < \infty$. Then

$$\|u_n\|_{L^3_{t,x}[I_n]} \le \sum_{j=1}^l \|U_n^j\|_{L^3_{t,x}[I_n]} + \|r_n^l\|_{L^3_{t,x}[I_n]} + \|w_n^l\|_{L^3_{t,x}[I_n]}$$

From (4.2), we have

$$\limsup_{n \to \infty} \|w_n^l\|_{L^3_{t,x}[I_n]} \xrightarrow{l \to \infty} 0 \quad \text{and} \quad \lim_{n \to \infty} \|r_n^l\|_{L^3_{t,x}[I_n]} \xrightarrow{l \to \infty} 0.$$

It immediately follows that

$$\lim_{n \to \infty} \|u_n\|_{L^3_{t,x}[I_n]} < \infty.$$

(ii) \Rightarrow (i). If (i) does not hold, there exists a family of $\tilde{I}_n \subset I_n$ with 0 included such that

$$\sum_{j=1}^{\infty} \lim_{n \to \infty} \|U_n^j\|_{L^3_{t,x}[\tilde{I}_n]}^3 > M$$

for arbitrarily large M and

$$\|u_n\|_{L^3_{t,x}[\tilde{I}_n]} < \infty.$$

By orthogonality, we have

$$\lim_{n \to \infty} \|u_n\|_{L^3_{t,x}[\tilde{I}_n]}^3 \ge \sum_{j=1}^{\infty} \lim_{n \to \infty} \|U_n^j\|_{L^3_{t,x}[\tilde{I}_n]}^3 > M.$$

This leads to

$$\lim_{n \to \infty} \|u_n\|_{L^3_{t,x}[I_n]}^3 \ge \lim_{n \to \infty} \|u_n\|_{L^3_{t,x}[\tilde{I}_n]}^3 > M,$$

which implies that

$$\lim_{n \to \infty} \|u_n\|_{L^3_{t,x}[I_n]} = \infty.$$

This contradicts (ii) and completes the proof of Theorem 4.1.

Proof of Theorem 1.3. We choose $\{u_{0,n}\}$ such that $||u_{0,n}||_{L^2} \downarrow \delta_0$, and let u_n be the solution of (1.3) with data $u_{0,n}$. By the definition of δ_0 , we can assume that the interval of existence for u_n is finite. By the time translation symmetry and scaling, we may assume that $\{u_n\}_{n=1}^{\infty}$ is well defined on [0, 1], and

$$\lim_{n \to \infty} \|u_n\|_{L^3_t([0,1],L^3_x)} = \infty.$$

Let $\{U^j, V^j, \rho_n^j, s_n^j, \xi_n^j, x_n^j\}$ be the family of linear and nonlinear profiles associated to $\{u_n\}_{n=1}^{\infty}$ via Lemma 4.1 and Theorem 4.1. Then the equivalence in Theorem 4.1 implies that there exists a j_0 such that U^{j_0} blows up. On one hand, by the definition of B_{δ_0} ,

$$\|V^{j_0}\|_{L^2} \ge \delta_0.$$

On the other hand, we have

$$\sum_{j\geq 0} \|V^{j_0}\|_{L^2}^2 \leq \lim_{n\to\infty} \|u_{0,n}\|_{L^2}^2 = \delta_0^2.$$

Thus by mass conservation and the definition of nonlinear profile, we have

$$\|U^{j_0}\|_{L^2} = \|V^{j_0}\|_{L^2} \le \delta_0.$$

Therefore,

$$\|U^{j_0}\|_{L^2} = \delta_0,$$

because U^{j_0} is the solution of (1.3) satisfying $U(s^{j_0}, x) = V(s^{j_0}, x)$, where $s^{j_0} = \lim_{n \to \infty} s_n^{j_0}$. If s^{j_0} is finite, then U^{j_0} is the blow-up solution with minimal mass. If $s^{j_0} = \infty$, we can use the pseudo-conformal transformation to get a blow-up solution with minimal mass. This shows the existence of initial data such that the solution of (1.3) blows up in finite time for t > 0. In the proof of Theorem 1.4 we will show that there exists an initial data $u_0 \in L^2(\mathbb{R}^4)$ with $||u_0||_{L^2} = \delta_0$ such that the solution u of (1.3) blows up for both t > 0 and t < 0.

Proof of Theorem 1.4. (i) Suppose u is a solution of (1.3) which blows up at finite time $T^* > 0$ and $t_n \uparrow T^*$ as $n \to \infty$. Let

$$u_n(t,x) = u(t_n + t, x).$$

Then $\{u_n\}_{n=1}^{\infty}$ is a family of solutions on $I_n = [-t_n, T^* - t_n)$. Moreover,

$$\lim_{n \to \infty} \|u_n\|_{L^3_{t,x} \in [0, T^* - t_n)} = \lim_{n \to \infty} \|u_n\|_{L^3_{t,x} \in [-t_n, 0]} = \infty.$$

Since $||u_n||_{L^2}$ is bounded due to L^2 conservation, we can apply Lemma 4.1 and then Theorem 4.1 on $I_n = [0, T^* - t_n)$ to deduce that there exists some j_0 such that the nonlinear profile $\{U^{j_0}, \rho_n^{j_0}, s_n^{j_0}, \xi_n^{j_0}, x_n^{j_0}\}$ satisfies

(4.16)
$$\lim_{n \to \infty} \|U^{j_0}\|_{L^3_{t,x}[I^{j_0}_n]} = \infty$$

where

$$I_n^{j_0} := [s_n^{j_0}, (\rho_n^{j_0})^2 (T^* - t_n) + s_n^{j_0}).$$

In fact, let $s^{j_0} = \lim_{n \to \infty} s_n^{j_0}$. Then $s^{j_0} \neq \infty$, since otherwise $I_n^{j_0} \to \emptyset$ and (4.16) is impossible. This implies either $s^{j_0} = -\infty$ or $s^{j_0} = 0$ (up to translation). If $s^{j_0} = 0$, let U^{j_0} be the solution of (1.4) with initial data V^{j_0} . Then (4.16) implies that U^{j_0} blows up at time $T_{j_0}^* \in (0,\infty)$ and

(4.17)
$$\lim_{n \to \infty} (\rho_n^{j_0})^2 (T^* - t_n) \ge T_{j_0}^*.$$

If we also assume that $||u_0||_{L^2} < \sqrt{2} \delta_0$, then there is at most one linear profile with L^2 norm greater than δ_0 thanks to (4.3). That means that the profile U^{j_0} found above is the only blow-up nonlinear profile (since all the other profiles have L^2 norm less than δ_0 and so they are global). By repeating the same argument in $I_n = [-t_n, 0]$, we get

$$\lim_{n \to \infty} \|U^{j_0}\|_{L^3_{t,x}[I_n^{j_0}]} = \infty, \quad I_n^{j_0} = [-(\rho_n^{j_0})^2 t_n + s_n^{j_0}, s_n^{j_0}].$$

This implies that $s^{j_0} \neq -\infty$. Hence $s^{j_0} = 0$ and the solution U^{j_0} of (1.3) with initial data $V^{j_0}(0, \cdot)$ blows up also for t < 0. Thus the nonlinear profile U^{j_0} is the solution of (1.3) which blows up for both t < 0 and t > 0.

(ii) The linear decomposition yields

$$(\mathbf{\Gamma}_{n}^{j_{0}})^{-1}(e^{it\Delta}(u(t_{n},\cdot))) = V^{j_{0}} + \sum_{1 \le j \le l, \ j \ne j_{0}} (\mathbf{\Gamma}_{n}^{j_{0}})^{-1} \mathbf{\Gamma}_{n}^{j} V^{j} + (\mathbf{\Gamma}_{n}^{j_{0}})^{-1} w_{n}^{l}.$$

The family $\{\Gamma_n^j\}_{i=1}^\infty$ is pairwise orthogonal, so for every $j \neq j_0$,

$$(\mathbf{\Gamma}_n^{j_0})^{-1} \mathbf{\Gamma}_n^j V^j \xrightarrow{n \to \infty} 0$$
 weakly in L^2 .

Then

$$(\mathbf{\Gamma}_n^{j_0})^{-1}(e^{it\Delta}(u(t_n,\cdot))) \xrightarrow{n\to\infty} V^{j_0} + \tilde{w}^l \quad \text{weakly},$$

where \tilde{w}^l denotes the weak limit of $(\Gamma_n^{j_0})^{-1} w_n^l$. However,

$$\|\tilde{w}^l\|_{L^3_{t,x}} \le \lim_{n \to \infty} \|w^l_n\|_{L^3_{t,x}} \xrightarrow{l \to \infty} 0.$$

By uniqueness of the weak limit, we get $\tilde{w}^l = 0$ for every $l \ge j_0$. Hence,

$$(\mathbf{\Gamma}_n^{j_0})^{-1}(e^{it\Delta}(u(t_n,\cdot))) \xrightarrow{n\to\infty} V^{j_0}.$$

We need the following lemma:

LEMMA 4.2 ([23]). Let $\{\varphi_n\}_{n\geq 1}$ and φ be in $L^2(\mathbb{R}^4)$. The following statements are equivalent:

(1) $\varphi_n \rightharpoonup \varphi$ weakly in $L^2(\mathbb{R}^4)$. (2) $e^{it\Delta}\varphi_n \rightharpoonup e^{it\Delta}\varphi$ in $L^3_{t,x}(\mathbb{R}^{4+1})$.

Applying this lemma to $(\mathbf{\Gamma}_n^{j_0})^{-1}(e^{it\Delta}(u(t_n,\cdot)))$, we get

$$e^{-is_n\Delta}(\rho_n^2 e^{ix\cdot\xi_n} e^{i\theta_n} u(t_n, \rho_n x + x_n)) \rightharpoonup V^{j_0}(0, \cdot)$$

with

$$s_n = s_n^{j_0}, \qquad \rho_n = \frac{1}{\rho_n^{j_0}}, \qquad \theta_n = \frac{x_n^{j_0} \xi_n^{j_0}}{\rho_n^{j_0}}, \qquad x_n = \frac{-x_n^{j_0}}{\rho_n^{j_0}}, \qquad \xi_n = -\frac{\xi_n^{j_0}}{\rho_n^{j_0}}.$$

Up to a subsequence, we can assume that $e^{i\theta_n} \to e^{i\theta}$. Since $s_n \to 0$, we get (4.18) $\rho_n^2 e^{ix \cdot \xi_n} u(t_n, \rho_n x + x_n) \rightharpoonup e^{-i\theta} V^{j_0}(0, \cdot).$

The associated solution is $e^{-i\theta}U^{j_0}$. (4.17) gives

$$\lim_{n \to \infty} \frac{\rho_n}{\sqrt{T^* - t_n}} \le \frac{1}{\sqrt{T_{j_0}^*}}.$$

This completes the proof of Theorem 1.4(ii).

(iii) Let u be a solution of (1.1) with $||u_0||_{L^2} < \sqrt{2} \delta_0$ which blows up at finite time $T^* > 0$. Let $t_n \uparrow T^*$ as $n \to \infty$. So there exists $V \in L^2(\mathbb{R}^4)$ with $||V||_{L^2} \ge \delta_0$ and a sequence $\{\rho_n, \xi_n, x_n\} \subset \mathbb{R}^*_+ \times \mathbb{R}^4 \times \mathbb{R}^4$ such that up to a subsequence,

$$(\rho_n)^2 e^{ix\cdot\xi_n} u(t_n,\rho_n x + x_n) \xrightarrow{n \to \infty} V$$

and

$$\lim_{n \to \infty} \frac{\rho_n}{\sqrt{T^* - t_n}} \le A$$

for some $A \ge 0$. Thus we have

$$\lim_{n \to \infty} \rho_n^4 \int_{|x| \le R} |u(t_n, \rho_n x + x_n)|^2 \, dx \ge \int_{|x| \le R} |V|^2 \, dx$$

for every $R \ge 0$. This implies that

$$\lim_{n \to \infty} \sup_{y \in \mathbb{R}^4} \int_{|x-y| \le R\rho_n} |u(t_n, x)|^2 \, dx \ge \int_{|x| \le R} |V|^2 \, dx.$$

Since $\sqrt{T^* - t}/\lambda(t) \to 0$ as $t \uparrow T^*$, it follows that $\rho_n/\lambda(t_n) \to 0$ and then

$$\lim_{n \to \infty} \sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t_n)} |u(t_n, x)|^2 \, dx \ge \int |V|^2 \, dx \ge \delta_0^2.$$

Since $\{t_n\}_{n=1}^{\infty}$ is an arbitrary sequence, we infer

$$\liminf_{t \to T} \sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t)} |u(t,x)|^2 \, dx \ge \delta_0^2.$$

However, for every $t \in [0, T)$, the function $y \mapsto \int_{|x-y| \leq \lambda(t)} |u(t, x)|^2 dx$ is continuous and goes to 0 at infinity. As a consequence,

$$\sup_{y \in \mathbb{R}^4} \int_{|x-y| \le \lambda(t)} |u(t,x)|^2 \, dx = \int_{|x-x(t)| \le \lambda(t)} |u(t,x)|^2 \, dx$$

for some $x(t) \in \mathbb{R}^4$, and this completes the proof of Theorem 1.4.

Proof of Corollary 1.2. In the context of the proof of Theorem 1.4 we also assume that

$$||u_n||_{L^2} = ||u_0||_{L^2} = \delta_0.$$

(4.3) gives $||V^{j_0}||_{L^2} \leq \delta_0$. It follows that $||V^{j_0}||_{L^2} = \delta_0$. This implies that there exists a unique profile V^{j_0} and the weak limit in (4.18) is strong.

Acknowledgements. The authors thank Professor S. Keraani for several lectures on his work [9] and helpful discussions, and thank Pin Yu for a helpful discussion. C. Miao, G. Xu and L. Zhao were partly supported by the NSF of China (No. 10725102, No. 10801015 and No. 10901148).

REFERENCES

- V. Banica, Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 139–170.
- [2] P. Bégout and A. Vargas, Mass concentration phenomena for the L²-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), 5257–5282.
- [3] J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Notices 1998, no. 8, 253–283.
- [4] R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equation II. The L²-critical case, Trans. Amer. Math. Soc. 359 (2007), 33–62.
- T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Math. 10, Courant Inst. Math. Sci., New York Univ., New York, 2003.
- [6] J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, in: Séminaire: Équations aux Dérivées Partielles 2003-2004, exp. 19, École Polytech., Palaiseau, 2004, 26 pp.
- J. Ginibre, An introduction to nonlinear Schrödinger equations, in: Nonlinear Waves (Sapporo, 1995), GAKUTO Int. Ser. Math. Sci. Appl. 10, Gakkōtosho, Tokyo, 1997, 85–133.
- [8] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of Hartree equations, in: Nonlinear Wave Equations (Providence, RI, 1998), Contemp. Math. 263, Amer. Math. Soc., Providence, RI, 2000, 29–60.
- T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Notices 2005, no. 46, 2815–2828.

- [10] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.
- S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), 353–392.
- [12] —, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal. 235 (2006), 171–192.
- [13] R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. 11 (2009), 1203–1258.
- [14] R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE 1 (2008), 229–266.
- [15] J. Krieger, E. Lenzmann and P. Raphael, On stability of pseudo-conformal blowup for L²-critical Hartree equation, arXiv:0808.2324.
- [16] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Ration. Mech. Anal. 105 (1989), 243–266.
- [17] D. Li, C. Miao and X. Zhang, The focusing energy-critical Hartree equation, J. Differential Equations 246 (2009), 1139–163.
- [18] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquar's nonlinear equation, Stud. Appl. Math. 57 (1977), 93–105.
- [19] S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal. 71 (2009), 1796–1806.
- [20] F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, in: Proc. Int. Congress of Mathematicians (Berlin, 1998), Doc. Math. Extra Vol. III (1998), 57–66.
- [21] —, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), 427–454.
- [22] F. Merle and Y. Tsutsumi, L² concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations 84 (1990), 205–214.
- [23] F. Merle and L. Vega, Compactness at blow-up time for L² solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Notices 1998, no. 8, 399–425.
- [24] F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591–642.
- [25] —, —, On universality of blow-up profile for L² critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), 565–672.
- [26] —, —, On a sharp lower bound on the blow-up rate for the L² critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2005), 37–90.
- [27] C. Miao, G. Xu and L. Zhao, The Cauchy problem of the Hartree equation, J. Partial Differential Equations 21 (2008), 22–44.
- [28] —, —, —, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, J. Funct. Anal. 253 (2007), 605–627.
- [29] —, —, —, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in \mathbb{R}^{1+n} , preprint.
- [30] —, —, —, Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case, Colloq. Math. 114 (2009), 213–236.
- [31] —, —, —, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl. 91 (2009), 49–79.
- [32] K. Nakanishi, Energy scattering for Hartree equations, Math. Res. Lett. 6 (1999), 107–118.

50	C. X.	MIAO ET AL.
[33]	,	enomenon for the nonlinear Schrödinger equation y, Funkcial. Ekvac. 35 (1992), 1–18.
[34]	T. Tao, M. Visan, and X. Zhang, M NLS, Forum Math. 20 (2008), 881	<i>linimal-mass blowup solutions of the mass-critical</i> -919.
[35]	[5] M. Weinstein, The nonlinear Schrödinger equation—singularity formation, stabil- ity and dispersion, in: The Connection between Infinite-Dimensional and Finite- Dimensional Dynamical Systems, Contemp. Math. 99, Amer. Math. Soc., Provi- dence, RI, 1989, 213–232.	
[36] http://tosio.math.toronto.edu/wiki/index.php/Hartree equation.		
Changxing Miao, Guixiang Xu Lifeng Zh		
Institute of Applied Physics and		Department of Mathematics
		University of Science and Technology of China
P.O. Box 8009		E-mail: zhaolifengustc@yahoo.cn
Beijing, China, 100088		
E-mail: miao_changxing@iapcm.ac.cn xu_guixiang@iapcm.ac.cn		

Received 18 March 2009; revised 24 April 2009

(5183)