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MINKOWSKI SUMS OF CANTOR-TYPE SETS
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KAZIMIERZ NIKODEM (Bielsko-Biała) and ZSOLT PÁLES (Debrecen)

Abstract. The classical Steinhaus theorem on the Minkowski sum of the Cantor set is
generalized to a large class of fractals determined by Hutchinson-type operators. Numerous
examples illustrating the results obtained and an application to t-convex functions are
presented.

1. Introduction. The celebrated results of Steinhaus [13] and Piccard
[10] state that if a set S ⊆ Rn is either large in the sense of Lebesgue measure
theory (i.e., S is of positive Lebesgue measure) or large in the sense of Baire
category (i.e., S is of the second Baire category), then the Minkowski sum
S+S := {x+y : x, y ∈ S} contains an interior point. An immediate question
arises: Do there exist sets S ⊆ Rn of Lebesgue measure zero and of first Baire
category such that S+S contains an interior point? An example of such a set
was discovered by Steinhaus [12] in 1917 who proved that, for the classical
Cantor set C ⊆ [0, 1], the Minkowski sum C+C is surprisingly large, namely

(1) C + C = [0, 2],

which is the same as the sum of the whole intervals [0, 1] + [0, 1]. The above
equality can also be expressed in the form

(2) 1
2C + 1

2C = [0, 1],

which means that every point of the convex hull of C (i.e., the interval [0, 1])
is a convex combination of two elements of C with coefficients 1/2.

The Cantor set C is usually defined in the following way: We remove from
the interval [0, 1] the open middle third, next we remove the open middle
thirds of each of the remaining two intervals, and so on. The remaining set
of points is the Cantor set. It is thinly scattered over [0, 1]. Since the sum of
the lengths of all the removed intervals equals

(1/3) + 2(1/3)2 + 22(1/3)3 + · · · = 1,

the Cantor set has Lebesgue measure zero and is nowhere dense and hence
it is of first Baire category. In the analysis of the Cantor set, the following
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characterization is very useful: C ⊆ R is the unique nonempty compact set
satisfying the Hutchinson-type identity

C = 1
3C + {0, 2/3}.

Sets satisfying similar identities are called fractals (cf. [1]). The aim of this
paper is to generalize the Steinhaus theorem to the class of fractals that are
determined by more general Hutchinson-type identities. Our main results
characterize those fractals F for which a convex combination λ1F+· · ·+λmF ,
with prescribed coefficients λ1, . . . , λm, is equal to the convex hull of F .
Finally, we present numerous examples illustrating the results obtained and
give an application to the theory of t-convex functions.

2. The Steinhaus theorem. The starting point of our investigations
is the following theorem due to Steinhaus [12].

Theorem 1. For the Cantor set C, the identity C + C = [0, 2] holds.

In this section we will present three short proofs of the Steinhaus theorem.
The first one bases on the original geometric method used by Steinhaus
(slightly modified by Utz [14]). The second one, which is algebraic, is due to
Randolph [11] (see also [7, p. 19]). The third one, proposed by us, is purely
set-theoretical. Our aim is to extend the last idea to fractals determined by
certain Hutchinson-type operators.

Proof 1. Given an arbitrary closed square K ⊂ R2 with sides parallel
to the coordinate axes, denote by Ki, i = 1, 2, 3, 4, the squares obtained
by removing from K the open middle third horizontal and vertical stripes.
Note that if a line y = −x+a meets K then it also meets at least one of the
squares Ki. Since, for every a ∈ [0, 2], the line y = −x + a meets the unit
square [0, 1]× [0, 1], it also meets the set C ×C, that is, there exist x, y ∈ C
such that x+ y = a. Hence C + C = [0, 2].

Proof 2. The Cantor set C consists of exactly those points in [0, 1] whose
ternary expansions can be written without the use of the digit 1. That is,

C =
{
x ∈ [0, 1] : x =

∑
n∈N

cn/3n, cn ∈ {0, 2}
}
.

Hence
1
2C =

{
x ∈ [0, 1] : x =

∑
n∈N

cn/3n, cn ∈ {0, 1}
}
.

It easily follows that 1
2C + 1

2C = [0, 1] and so C + C = [0, 2]. Indeed, if
x ∈ [0, 1] is of the form x =

∑
n∈N cn/3

n, where cn ∈ {0, 1, 2}, then set
y :=

∑
n∈N an/3

n, z :=
∑

n∈N bn/3
n, where an := [cn/2], bn := cn − [cn/2],



MINKOWSKI SUMS 97

i.e.,

an := bn := 0 if cn = 0; an := 0, bn := 1 if cn = 1;
an := bn := 1 if cn = 2.

Obviously, x = y + z and y, z ∈ 1
2C. Hence x ∈ 1

2C + 1
2C, proving [0, 1] ⊆

1
2C + 1

2C. The reverse inclusion is trivial.

Proof 3. The Cantor set C can be written in the form C =
⋂
n∈NCn,

where
C1 = [0, 1], Cn+1 = 1

3Cn + {0, 2/3}, n ∈ N.
Of course C1 + C1 = [0, 2], and by induction, for all n ∈ N,

Cn+1 + Cn+1 = 1
3(Cn + Cn) + {0, 2/3}+ {0, 2/3}

= [0, 2/3] + {0, 2/3, 4/3} = [0, 2].

Hence, using the identity (cf. [9])⋂
n∈N

(Cn + Cn) =
⋂
n∈N

Cn +
⋂
n∈N

Cn,

we conclude that C + C = [0, 2].

3. Minkowski sums of fractals. In this section we present general-
izations of the Steinhaus theorem for a large class of fractals determined by
certain Hutchinson-type operators.

Given a Banach space X, we denote by K(X) the family of all non-
empty compact subsets of X. It is well-known that K(X), endowed with
the Hausdorff–Pompeiu metric, is a complete metric space, furthermore the
multiplication by scalars and the Minkowski sum are continuous operations
with respect to this metric (cf. [6]). We shall use the notation

ΣkA := {x1 + · · ·+ xk : x1, . . . , xk ∈ A}
for the k-fold Minkowski sum of a set A ⊆ X.

Let γ ∈ (0, 1) and P ∈ K(X) and consider the Hutchinson-type operator
Φγ,P : K(X)→ K(X) defined by

(3) Φγ,P (A) := γA+ (1− γ)P, A ∈ K(X).

Note that if P is finite, say P = {p1, . . . , pN}, then

Φγ,P (A) =
N⋃
j=1

(γA+ (1− γ)pj) =
N⋃
j=1

Sj(A),

where Sj : X → X is a γ-contraction defined by Sj(x) := γx + (1 − γ)pj .
Such operators as well as their fixed points were considered by Hutchinson
in his classical paper [5].
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The properties of the map Φγ,P : K(X) → K(X) and of its fixed point
are summarized in the following lemma which is a variant of Theorem 3.1(3)
in [5].

Lemma 2. Let X be a Banach space, P ∈ K(X) and γ ∈ (0, 1). Define
Φγ,P : K(X) → K(X) by (3). Then Φγ,P has a unique fixed point Fγ,P ∈
K(X) (i.e., Φγ,P (Fγ,P ) = Fγ,P ); moreover, for all A ∈ K(X),

(4) lim
n→∞

Φnγ,P (A) = Fγ,P

(where Φnγ,P denotes the nth iterate of Φγ,P and the convergence is in the
sense of the Hausdorff–Pompeiu metric) and

(5) P ⊆ Fγ,P ⊆ convP,

hence also convFγ,P = convP .

Proof. Since Φγ,P : K(X) → K(X) is a contraction with contraction
factor γ < 1, by the Banach contraction principle it has a unique fixed point
Fγ,P ∈ K(X) and (4) holds for all A ∈ K(X).

To prove (5), we apply (4) in two particular cases. Clearly, P ⊆ Φγ,P (P ).
Hence Φnγ,P (P ) ⊆ Φn+1

γ,P (P ) for all n ∈ N, i.e. the sequence (Φnγ,P (P )) of sets
is increasing. Thus, applying (4) for A := P , we obtain

P ⊆ lim
n→∞

Φnγ,P (P ) = Fγ,P .

On the other hand, Φγ,P (convP ) ⊆ convP , so the sequence (Φnγ,P (convP ))
is decreasing. Thus, applying (4) with A := convP , we obtain

convP ⊇ lim
n→∞

Φnγ,P (convP ) = Fγ,P ,

which completes the proof (5).

The set Fγ,P is called the fractal determined by Φγ,P . The next theorem
gives a necessary and sufficient condition for its convex hull to coincide with
the set of all convex combinations of m elements of Fγ,P with prescribed
fixed coefficients.

Theorem 3. Let X be a Banach space, P ∈ K(X), γ ∈ (0, 1) and
λ1, . . . , λm > 0 with λ1 + · · ·+λm = 1. Let Fγ,P be the fractal determined by
the operator Φγ,P . Then

(6) λ1Fγ,P + · · ·+ λmFγ,P = convP

if and only if

(7) γ convP + (1− γ)(λ1P + · · ·+ λmP ) = convP.

Proof. Let D = convP .
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Sufficiency. Assume that (7) holds. We will show by induction that, for
all n ≥ 0,

(8) λ1Φ
n
γ,P (D) + · · ·+ λmΦ

n
γ,P (D) = D.

By the convexity of D, we have λ1D+ · · ·+λmD = D, which trivially yields
(8) for n = 0.

Now, assume that (8) holds for some n ≥ 0. Then, using the definition
of Φγ,P and (7), we obtain

λ1Φ
n+1
γ,P (D) + · · ·+ λmΦ

n+1
γ,P (D)

= λ1(γΦnγ,P (D) + (1− γ)P ) + · · ·+ λm(γΦnγ,P (D) + (1− γ)P )

= γ(λ1Φ
n
γ,P (D) + · · ·+ λmΦ

n
γ,P (D)) + (1− γ)(λ1P + · · ·+ λmP )

= γD + (1− γ)(λ1P + · · ·+ λmP ) = D,

which completes the proof of (8).
Finally, letting n→∞ in (8) and using (4), we get

λ1Fγ,P + · · ·+ λmFγ,P = D = convP,

which yields (6).
Necessity. Assume now that (6) is valid. By (5), we have

Fγ,P = Φγ,P (Fγ,P ) = γFγ,P + (1− γ)P ⊆ γD + (1− γ)P,

whence, by (6),

D = convP = λ1Fγ,P + · · ·+ λmFγ,P

⊆ λ1(D + (1− γ)P ) + · · ·+ λm(D + (1− γ)P )
= γ(λ1D + · · ·+ λmD) + (1− γ)(λ1P + · · ·+ λmP )
= γD + (1− γ)(λ1P + · · ·+ λmP ) ⊆ convP = D,

which proves (7).

For a given set P , it is not obvious whether or not identity (7) can
be satisfied with some convex combination coefficients λ1, . . . , λm > 0. As
we shall see below, in the finite-dimensional case we can always ensure the
existence of such coefficients.

We will need the following almost trivial statement.

Lemma 4. Let X be a linear space, D ⊆ X be convex, S ⊆ D be non-
empty and 0 ≤ β ≤ γ ≤ 1. Then

(9) βD + (1− β)S ⊆ γD + (1− γ)S.

Proof. If β = γ, then there is nothing to prove. Thus, we may assume
that γ > β ≥ 0.
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Let x be an element of the left hand side of (9). Then x = βu+ (1− β)v
for some u ∈ D, v ∈ S. Hence,

x = βu+ (1− β)v = γ

(
β

γ
u+

γ − β
γ

v

)
+ (1− γ)v ∈ γD + (1− γ)S,

where β
γu+ γ−β

γ v ∈ D by the convexity of D and the inclusion S ⊆ D.

The next result brings two conditions equivalent to (7) whenD = convP .

Theorem 5. Let X be a linear space, D ⊆ X be a convex set, P ⊆ D be
non-empty, and γ ∈ (0, 1) be a constant. Then the following conditions are
equivalent:

(i) There exists α ∈ (0, 1) such that

(10) αD + (1− α)P = D.

(ii) There exists m ∈ N such that

(11) γD + (1− γ)
(

1
m
P + · · ·+ 1

m
P

)
= D.

(iii) There exist m ∈ N and λ1, . . . , λm > 0 with λ1 + · · ·+ λm = 1 such
that

(12) γD + (1− γ)(λ1P + · · ·+ λmP ) = D.

Proof. The implication (ii)⇒(iii) is obvious.
(i)⇒(ii). Assume that (10) is satisfied by some α ∈ (0, 1). Using Lemma 4,

it follows for α ≤ α′ ≤ 1 that

D = αD + (1− α)P ⊆ α′D + (1− α′)P ⊆ D,

hence we may assume that α is a rational number.
We show by induction that, for all k ∈ N,

(13) αkD + (1− α)(αk−1P + · · ·+ P ) = D.

The case k = 1 follows from condition (ii). Now, assume that (13) has been
verified for some k. Then

αk+1D + (1− α)(αkP + · · ·+ P )

= α(αkD + (1− α)(αk−1P + · · ·+ P )) + (1− α)P
= αD + (1− α)P = D,

proving that (13) is valid.
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Now, choose k ∈ N so that αk ≤ γ. Using the convexity ofD and applying
Lemma 4 with β := αk and S := 1−α

1−αk (αk−1P + · · ·+ P ) ⊆ D, we obtain

D = αkD + (1− α)(αk−1P + · · ·+ P )

⊆ γD +
(1− γ)(1− α)

1− αk
(αk−1P + · · ·+ P ) ⊆ D.

Therefore,

(14) γD + (1− γ)
(
αk−1 − αk

1− αk
P + · · ·+ 1− α

1− αk
P

)
= D.

Since α = p/q for some p, q ∈ N, (14) can be rewritten as

(15) γD + (1− γ)
(
pk−1q − pk

qk − pk
P + · · ·+ qk − pqk−1

qk − pk
P

)
= D.

As obviously miP ⊆ ΣmiP with mi := pk−iqi − pk−i+1qi−1 (i = 1, . . . , k)
(15) shows that (11) is satisfied with m := m1 + · · ·+mk = qk − pk.

(iii)⇒(i). Assume that (12) holds for some m ∈ N and λ1, . . . , λm > 0
with λ1 + · · · + λm = 1. If m = 1 then (10) is satisfied with α := γ. In the
case m > 1, using the convexity of D, we obtain

D = γD + (1− γ)(λ1P + · · ·+ λm−1P + λmP )
⊆ γD + (1− γ)(λ1D + · · ·+ λm−1D + λmP )
= (γ + (1− γ)(λ1 + · · ·+ λm−1))D + (1− γ)λmP ⊆ D.

Therefore, (10) is satisfied with α := 1− (1− γ)λm.

Remark 6. For (10) to be valid for some α ∈ (0, 1), it is necessary that
extrD ⊆ P , where extrD denotes the set of extremal points of D. Indeed,
let x ∈ D be an extremal point of D. Then, by (10), there exist p ∈ P and
q ∈ D such that αq + (1− α)p = x. By the extremality of x, it follows that
x = q = p, so x ∈ P .

Assuming that D is also compact, by the celebrated Krein–Milman the-
orem we have D = conv(extrD). Hence, in this case, D = convP is also
necessary for (10) to be valid for some α ∈ (0, 1). As we shall see in Lemma 4
below, if X is also finite-dimensional then D = convP is also sufficient for
(10) to hold with α = dimX/(dimX + 1).

On the other hand, we shall show that, in an infinite-dimensional Hilbert
space X, there exists a compact set P such that

(16) α convP + (1− α)P = convP

is not valid with any α ∈ (0, 1). Let (pn)n∈N be an orthogonal system in X
such that

∑∞
n=1 ‖pn‖2 <∞. Let P := {0, p1, p2, p3, . . . }. Then P is compact
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since (pn) tends to zero. One can easily prove that

(17) convP =
{ ∞∑
n=1

tnpn

∣∣∣ tn ≥ 0,
∞∑
n=1

tn ≤ 1
}
.

Assume that there exists α ∈ (0, 1) such that (16) holds. Choose n ∈ N so
that α < n/(n+ 1). Then

p1 + · · ·+ pn
n+ 1

∈ convP ⊆ convP,

hence, by (16),
p1 + · · ·+ pn

n+ 1
∈ α convP + (1− α)P

= α convP + (1− α){p0, p1, p2, p3, . . . },
where p0 denotes 0. Therefore, using (17), we can find t1, t2, . . . ≥ 0 with
t1 + t2 + · · · ≤ 1 and k ∈ N ∪ {0} such that

p1 + · · ·+ pn
n+ 1

= α(t1p1 + t2p2 + · · · ) + (1− α)pk.

If k = 0, then n/(n+ 1) = α(t1 + · · ·+ tn) ≤ α, which contradicts the choice
of n. If k ≥ 1, then from the comparison of the coefficients of pk, it follows
that k ≤ n and 1/(n+ 1) = αtk + (1− α) ≥ 1− α, which again contradicts
the inequality α < n/(n+ 1).

Thus (16) cannot be valid for any α ∈ (0, 1).

The following is a direct consequence of Theorems 3 and 5.

Theorem 7. Let X be a Banach space, P ∈ K(X) and γ ∈ (0, 1). Denote
by Fγ,P the fractal determined by the operator Φγ,P . Then there exists m ∈ N
such that ΣmFγ,P = m convP , i.e.,

(18) 1
m
Fγ,P + · · ·+ 1

m
Fγ,P = convP,

if and only if there exists α ∈ (0, 1) such that

(19) α convP + (1− α)P = convP.

Proof. If (19) holds, then condition (i) of Theorem 5 is satisfied with
D := convP . Thus, by (ii), we can find m ∈ N such that

(20) γ convP + (1− γ)
(

1
m
P + · · ·+ 1

m
P

)
= convP.

Therefore, (7) holds with λ1 = · · · = λm = 1/m and Theorem 3 yields (18).
Conversely, if (18) is valid then Theorem 3 implies (7) with λ1 = · · · =

λm = 1/m, i.e., (20) holds. Applying Theorem 5, it follows that, for some
α ∈ (0, 1), condition (19) must be satisfied.
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The next lemma is deduced by using Carathéodory’s theorem; it also fol-
lows from [3, Remark on p. 191]. It shows that condition (19) is automatically
satisfied in finite-dimensional spaces.

Lemma 8. Let X be a finite-dimensional space and P ∈ K(X). Then

(21) dimX

dimX + 1
convP +

1
dimX + 1

P = convP.

Proof. The inclusion ⊆ in (21) is obvious. To prove the reverse inclusion,
let x ∈ convP . By Carathéodory’s theorem, there exist p0, p1, . . . , pn ∈ P
and λ0, λ1, . . . , λn ∈ [0, 1] with λ0 +λ1 + · · ·+λn = 1 such that λ0p0 +λ1p1 +
· · · + λnpn = x, where n = dimX. We may assume that λ0 ≥ λi for all i.
Then λ0 ≥ 1/(n+ 1). Hence

β := 1− λ0 ≤
n

n+ 1
=: γ.

Applying Lemma 4 for the sets D := convP and S := {p0}, we get

x = λ0p0 + λ1p1 + · · ·+ λnpn ∈ λ0p0 + (1− λ0)D = βD + (1− β)p0

⊆ γD + (1− γ)p0 ⊆
n

n+ 1
D +

1
n+ 1

P,

proving the inclusion ⊆ in (21).

Remark 9. Note that the coefficient α = n/(n+ 1) (where n = dimX)
in Lemma 8 is the smallest one for which (21) is valid, i.e., for α < n/(n+ 1),
the condition

(22) α convP + (1− α)P = convP

may not hold for some compact set P ⊂ X. In fact, more generally, we show
that if P is the set of vertices of a k-dimensional simplex (where k ≤ n),
then (22) does not hold if α < k/(k + 1).

Assume that P := {p0, . . . , pk}, where p0, . . . , pk are affinely independent
vectors in X. Let α ∈ (0, 1) be a constant such that (22) holds. Then

1
k + 1

(p0 + · · ·+ pk) ∈ convP = α convP + (1− α)P.

Therefore, there exist an index i and constants t0, . . . , tk ≥ 0 with t0 + · · ·
+ tk = 1 such that

1
k + 1

(p0 + · · ·+ pk) = α(t0p0 + · · ·+ tkpk) + (1− α)pi.

By the affine independence of p0, p1, . . . , pk, the coefficients of pi on both
sides coincide, i.e., 1/(k + 1) = αti + 1 − α. Thus, ti = 1 − k/(α(k + 1)).
Since ti ≥ 0, this yields α ≥ k/(k + 1).
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As an immediate consequence of Lemma 8, we obtain the following result
which shows that in finite-dimensional spaces every fractal of the type Fγ,P
is sufficiently large.

Corollary 10. Let X be a finite-dimensional space, P ∈ K(X) and
γ ∈ (0, 1). Let Fγ,P be the fractal determined by the operator Φγ,P . Then
there exists m ∈ N such that ΣmFγ,P = m convP , i.e., (18) holds.

Proof. By Lemma 8, condition (19) of Theorem 7 is satisfied with α :=
dimX/(dimX + 1). Thus, by that theorem, (18) must be valid for some
m ∈ N.

4. Examples and applications. The following examples show some
applications of our main results.

Example 1. The Cantor set C is the fractal determined by the operator
Φ1/3,{0,1} : K(R)→ K(R), i.e., C = F1/3,{0,1}. Since

1
3 [0, 1] + 2

3

(
1
2{0, 1}+ 1

2{0, 1}
)

= [0, 1/3] + {0, 1/3, 2/3}
= [0, 1/3] ∪ [1/3, 2/3] ∪ [2/3, 1] = [0, 1],

applying Theorem 3, we obtain
1
2C + 1

2C = [0, 1].

Now, we can raise a more general question: For which values of λ ∈ (0, 1) do
we have λC+(1−λ)C = [0, 1]? In view of Theorem 3, it suffices to determine
all λ ∈ (0, 1) such that

(23) 1
3 [0, 1] + 2

3(λ{0, 1}+ (1− λ){0, 1}) = [0, 1].

In the case 0 < λ ≤ 1/2, we have
1
3 [0, 1] + 2

3(λ{0, 1}+ (1− λ){0, 1}) = [0, 1/3] + {0, 2λ/3, (2− 2λ)/3, 2/3}
= [0, 1/3] ∪ [2λ/3, (1 + 2λ)/3] ∪ [(2− 2λ)/3, (3− 2λ)/3] ∪ [2/3, 1]
= [0, (1 + 2λ)/3] ∪ [(2− 2λ)/3, 1].

Thus, condition (23) holds if and only if 1 + 2λ ≥ 2− 2λ, i.e., if λ ≥ 1/4.
In the case 1/2 ≤ λ < 1, we can similarly obtain the inequality λ ≤ 3/4.
Therefore,

λC + (1− λ)C = [0, 1]

holds if and only if 1/4 ≤ λ ≤ 3/4.

Example 2. Consider now another set C̃ ⊆ [0, 1] constructed similarly
to the Cantor set. We remove from [0, 1] the open middle half, next the open
middle half of each of the remaining two pieces, etc. Iterating this process,
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we obtain a set C̃ homeomorphic to C. However, 1
2 C̃ + 1

2 C̃ is not equal to
[0, 1]. To show this, first observe that C̃ is the fractal determined by the
operator Φ1/4,{0,1}, i.e., C̃ = F1/4,{0,1}. We have

1
4 [0, 1] + 3

4(1
2{0, 1}+ 1

2{0, 1}) = [0, 1/4] + {0, 3/8, 3/4} 6= [0, 1],

hence condition (7) of Theorem 3 is violated, implying that 1
2 C̃+ 1

2 C̃ 6= [0, 1].
On the other hand,

1
4 [0, 1] + 3

4(1
3{0, 1}+ 2

3{0, 1}) = [0, 1/4] + {0, 1/4, 2/4, 3/4} = [0, 1],

which implies that

(24) 1
3 C̃ + 2

3 C̃ = [0, 1].

One can also easily check that λ = 1/3 is the only possible parameter in
(0, 1/2] for which λC̃ + (1− λ)C̃ = [0, 1]. The equality (24) also gives

[0, 3] = C̃ + 2C̃ ⊆ C̃ + C̃ + C̃ ⊆ [0, 3].

Hence
Σ3C̃ = C̃ + C̃ + C̃ = [0, 3].

Example 3 (An extension of Examples 1 and 2). For γ ∈ (0, 1), denote
by Cγ the fractal Fγ,{0,1} ⊆ [0, 1]. (Note that C1/3 = C and C1/4 = C̃.)
Then, for every m ∈ N, the identity

(25) ΣmCγ = [0,m]

holds if and only if m ≥ (1− γ)/γ. Indeed, by Theorem 3, (25) holds if and
only if

(26) γ[0, 1] + (1− γ)
(

1
m
{0, 1}+ · · ·+ 1

m
{0, 1}

)
= [0, 1].

Obviously,
(27)

γ[0, 1] + (1− γ)
(

1
m
{0, 1}+ · · ·+ 1

m
{0, 1}

)
= [0, γ] +

1− γ
m
{0, 1, . . . ,m},

which is the union of m + 1 translates of the interval [0, γ]. Therefore, this
set can cover [0, 1] only if (m + 1)γ ≥ 1. Conversely, if (m + 1)γ ≥ 1, then
the consecutive intervals of the right hand side of (27) are not disjoint and
hence they cover [0, 1], i.e., (26) holds.

For other examples of this type, see Ger [4].

Example 4. Let S be the classical Sierpiński carpet defined in the fol-
lowing way: We divide the unit square [0, 1]× [0, 1] into the 3-by-3 grid and
remove the central square; next we repeat this process for each of the remain-
ing eight squares, etc. Clearly, S is the fractal determined by the operator
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Φ1/3,P : K(R2)→ K(R2), where

P = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 1/2), (1/2, 0), (1, 1/2), (1/2, 1)}.

It can be easily shown that
1
3([0, 1]× [0, 1]) + 2

3(1
2P + 1

2P ) = [0, 1]× [0, 1].

Therefore, by Theorem 3, we also have 1
2S + 1

2S = [0, 1]× [0, 1].

Example 5. Consider two other Sierpiński-type sets: T is determined
by Φ1/3,P1

, where P1 = {(0, 0), (0, 1), (1, 0), (1, 1), (1/2, 1/2)}, and U is de-
termined by Φ1/3,P2

, where P2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. By Theorem 3,
we obtain

1
2T + 1

2T = 1
2U + 1

2U = [0, 1]× [0, 1].

Finally, we present an application of our results to regularity of t-convex
functions.

Let D be a convex open subset of a normed space and t ∈ (0, 1). A func-
tion f : D → R is called t-convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), x, y ∈ D;

f is Jensen-convex if it is 1/2-convex; f is convex if it is t-convex for all t ∈
(0, 1). It is known that a convex function defined on an infinite-dimensional
space need not be continuous; also, Jensen-convex functions may be dis-
continuous even if they are defined on an open interval in R. However, if
a Jensen-convex function is bounded from above on a set with nonempty
interior then, by the Bernstein–Doetsch theorem [2] (see also [7]), it is con-
tinuous. Even a stronger result holds: If f is Jensen-convex and bounded
from above on a set A such that A + A has nonempty interior then f is
continuous (cf. [4], [7]). We will generalize this result to t-convex functions.
Given a function f : D → R set

K(f) := {t ∈ (0, 1) : f is t-convex on D}.
By Kuhn’s theorem [8], if f is t-convex, then K(f) = [K(f)] ∩ (0, 1), where
[K(f)] denotes the subfield of R generated byK(f). In particular, Q∩(0, 1) ⊂
K(f), and consequently every t-convex function is Jensen-convex.

Theorem 11. Let D be an open convex subset of a normed space X and
let A ⊂ D be such that for some t1, . . . , tm ∈ K(f) with t1 + · · ·+ tm = 1 the
set t1A + · · · + tmA has nonempty interior. Let f : D → R be t-convex and
bounded from above on A. Then f is a continuous convex function on D.

Proof. By Kuhn’s theorem, f is Jensen-convex. One can prove easily by
induction that if f is t-convex then

(28) f(s1x1 + · · ·+ snxn) ≤ s1f(x1) + · · ·+ snf(xn),



MINKOWSKI SUMS 107

for all n ∈ N, x1, . . . , xn ∈ D and s1, . . . , sn ∈ K(f) such that s1 + · · · +
sn = 1. Now, if f ≤ M on A for some constant M < ∞, then, by (28), the
same inequality holds on t1A+ · · ·+ tmA. Since this latter set has nonempty
interior, the Bernstein–Doetsch theorem implies that f is continuous.

Corollary 12. Let D be an open convex subset of a finite-dimensional
normed space X, let γ ∈ (0, 1) and let P ∈ K(X) with P ⊂ D be such that
convP has nonempty interior. Let f : D → R be t-convex and bounded from
above on the fractal Fγ,P determined by (3). Then f is a continuous convex
function on D.

Proof. Apply the previous theorem with A := Fγ,P and Corollary 10.

Example 6. As an immediate consequence of the above corollary and
Example 2 we see, for instance, that every 1/3-convex function f : I → R
(where I is an open interval containing [0, 1]) bounded from above on the
set C̃ is continuous.
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